首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor-ligand interaction in mononuclear phagocytes is intimately linked to alterations in membrane phospholipids and release of arachidonic acid (AA). In addition, synthesis of bioactive lipids from released AA can result in further modification of cell responses. Upon challenge with opsonized zymosan, [3H]-arachidonic acid ([3H]-AA)-labeled human monocytes released 25 +/- 2% of their incorporated radiolabel within 30 min. Pretreatment of the monocytes with 5 X 10(-4) M isobutylmethylxanthine (IBMX) or 1 X 10(-3) M dibutyryl cyclic AMP (d-cAMP) inhibited total [3H]-AA release in the presence of zymosan by 47% and 42%, respectively. Analysis of incorporated [3H]-AA in cellular phospholipid pools indicated that significant amounts of label were lost from both phosphatidylcholine (PC) and phosphatidylinositol (PI) during zymosan stimulation. Treatment with d-cAMP substantially inhibited the loss of label from PC, but had no affect on PI. HPLC analysis of cell supernatants from zymosan-treated cells indicated that 5-HETE was the predominant metabolite generated from [3H]-AA, and its production was depressed during treatment with d-cAMP. Phospholipase activity in human monocyte homogenates was not effected by d-cAMP or IBMX at the highest concentrations used, whether these were added directly to the homogenate or by pretreatment of whole cells, demonstrating that inhibition required an intact cell. These results suggest that human monocytes exposed to opsonized zymosan release AA via two mechanisms and that modulation by cAMP is indirectly effecting a phospholipase directed towards PC.  相似文献   

2.
Leukotrienes can be produced by cooperative interactions between cells in which, for example, arachidonate derived from one cell is oxidized to leukotriene A(4) (LTA(4)) by another and this can then be exported for conversion to LTB(4) or cysteinyl leukotrienes (cys-LTs) by yet another. Neutrophils do not contain LTC(4) synthase but are known to cooperate with endothelial cells or platelets (which do have this enzyme) to generate cys-LTs. Stimulation of human neutrophils perfusing isolated rabbit hearts resulted in production of cys-LTs, whereas these were not seen with perfused hearts alone or isolated neutrophils. In addition, the stimulated, neutrophil-perfused hearts generated much greater amounts of total LTA(4) products, suggesting that the hearts were supplying arachidonate to the neutrophils and, in addition, that this externally derived arachidonate was preferentially used for exported LTA(4) that could be metabolized to cys-LTs by the coronary endothelium. Stable isotope-labeled arachidonate and electrospray tandem mass spectrometry were used to differentially follow metabolism of exogenous and endogenous arachidonate. Isolated, adherent neutrophils at low concentrations (to minimize transcellular metabolism between them) were shown to generate higher proportions of nonenzymatic LTA(4) products from exogenous arachidonate (deuterium-labeled) than from endogenous (unlabeled) sources. The endogenous arachidonate, on the other hand, was preferentially used for conversion to LTB(4) by the LTA(4) hydrolase. This result was not because of saturation of the LTA(4) hydrolase, because it occurred at widely differing concentrations of exogenous arachidonate. Finally, in the presence of platelets (which contain LTC(4) synthase), the LTA(4) synthesized from exogenous deuterium-labeled arachidonate was converted to cys-LTs to a greater degree than that from endogenous sources. These experiments suggest that exogenous arachidonate is preferentially converted to LTA(4) for export (not intracellular conversion) and raises the likelihood that there are different intracellular pathways for arachidonate metabolism.  相似文献   

3.
Phospholipid remodeling resulting in arachidonic acid (AA) release and metabolism in human neutrophils stimulated by calcium ionophore A23187 has been extensively studied, while data obtained using physiologically relevant stimuli is limited. Opsonized zymosan and immune complexes induced stimulus-specific alterations in lipid metabolism that were different from those induced by A23187. [3H]AA release correlated with activation of phospholipase A2 (PLA2) but not with cellular activation as indicated by superoxide generation. The latter correlated more with calcium-dependent phospholipase C (PLC) activation and elevation of cellular diacylglycerol (DAG) levels. When cells that had been allowed to incorporate [3H]AA were stimulated with A23187, large amounts of labeled AA was released, most of which was metabolized to 5-HETE and leukotriene B4. Stimulation with immune complexes also resulted in the release of [3H]AA but this released radiolabeled AA was not metabolized. In contrast, stimulation with opsonized zymosan induced no detectable release of [3H]AA. Analysis of [3H]AA-labeled lipids in resting cells indicated that the greatest amount of label was incorporated into the phosphatidylinositol (PI) pool, followed closely by phosphatidylcholine and phosphatidylserine, while little [3H]AA was detected in the phosphatidylethanolamine pool. During stimulation with A23187, a significant decrease in labeled PI occurred and labeled free fatty acid in the pellet increased. With immune complexes, only a small decrease was seen in labeled PI while the free fatty acid in the pellets was unchanged. In contrast, opsonized zymosan decreased labeled PI, and increased labeled DAG. Phospholipase activity in homogenates from human neutrophils was also assayed. A23187 and immune complexes, but not zymosan, significantly enhanced PLA2 activity in the cell homogenates. On the other hand, PLC activity was enhanced by zymosan and immune complexes. Stimulated increases in PLC activity correlated with enhanced superoxide generation induced by the stimulus.  相似文献   

4.
5.
The superoxide release and the change in the intracellular free calcium ions on stimulation with N-formyl-methionyl-leucyl-phenylalanine were studied in human neutrophils deprived of divalent cations by treatment of the cells with ionophore A23187 in the presence of EGTA. The depleted cells showed no release of superoxide on stimulation with the chemotactic peptide when calcium ions were absent in the medium, but the activity was completely recovered when the cells were preincubated with calcium for at least 3 min before the stimulation. The cells pretreated with Cd2+ showed slight activity of the release, but no recovery was observed with other divalent cations such as Mg2+, Sr2+, Co2+, Ba2+ and Zn2+. The recovery with calcium ions was dependent on the time of the addition relative to the time of the stimulation with the chemotactic peptide: a simultaneous addition of both calcium and the peptide elicited about half of the full activity, while no release was observed when calcium was added later than 2 min after the stimulation with the peptide, though a marked elevation of the intracellular free calcium monitored by quin-2 fluorescence was found. Comparison of the time-courses of the superoxide release and the change in the fluorescence suggest that, besides the elevation of intracellular free calcium, a transient reaction which is also dependent on calcium is required for the full induction of the superoxide-producing activity.  相似文献   

6.
Products of the 5-lipoxygenase pathway were analyzed after different stimuli in human polymorphonuclear leukocytes prelabeled with 3H-arachidonic acid. Upon stimulation with the Ca2+ ionophore, A23187, polymorphonuclear leukocytes generate 118.2 +/- 18 pg [3H]dihydroxyeicosatetraenoic acids (diHETEs, including 3H-leukotriene B4 and its 6-trans-stereoisomers), after exposure to serum coated zymosan (35.8 +/- 9 pg) and N-fMet-Leu-Phe (39.5 +/- 9 pg). Conversion of 3H-arachidonic acid paralleled its release after A23187 and fMet-Leu-Phe exposure leaving only 13.8 +/- 7% and 13.6 +/- 3% of the released 3H-arachidonic acid unmetabolized, respectively. In contrast, after stimulation with serum-coated zymosan only a small fraction of the released 3H-arachidonate was converted to 5-lipoxygenase products leaving 73.0 +/- 5% of the released 3H-arachidonic acid unmetabolized. In parallel, leukotriene B4 synthesis was studied in unlabeled polymorphonuclear leukocytes, resulting in 40 +/- 15 ng upon A23187 stimulation, 4 +/- 0.9 ng upon stimulation with fMet-Leu-Phe and 1.8 +/- 0.9 ng after serum-coated zymosan, showing a different ratio of leukotriene B4 to 3H-diHETE for A23187 in contrast to serum-coated zymosan and fMet-Leu-Phe. These results indicate that the coupling between the release of the precursor fatty acid and the metabolism via the 5-lipoxygenase pathway differs greatly between different stimuli.  相似文献   

7.
Activated human neutrophils supernatant enhances prostanoids production by bull seminal cyclooxygenase (455% of control). Superoxide anion and hydrogen peroxide are not involved in this stimulation, in these experimental conditions. Myeloperoxidase (by this hemic nature) and HPETEs (by their -OOH function) could trigger cyclooxygenase. In the presence of uric acid (10−3 M), a potent hydroxyl radical scavenger, the cyclooxygenase stimulation by supernatant is increased until 709% of the control.  相似文献   

8.
Activated human neutrophils supernatant enhances prostanoids production by bull seminal cyclooxygenase (455% of control). Superoxide anion and hydrogen peroxide are not involved in this stimulation, in these experimental conditions. Myeloperoxidase (by its hemic nature) and HPETEs (by their -OOH function) could trigger cyclooxygenase. In the presence of uric acid (10(-3) M), a potent hydroxyl radical scavenger, the cyclooxygenase stimulation by supernatant is increased until 709% of the control.  相似文献   

9.
10.
Eicosapentaenoic acid (EPA) was used to modulate the activation of alveolar macrophages, to examine its potential anti-inflammatory effect in addition to its anti-arteriosclerotic or anti-thrombotic effects. Wistar strain rat alveolar macrophages (2 x 10(6) cell) obtained by bronchoalveolar lavage were preincubated with EPA (0-20 microM), and further incubated with 1 mg of silica for 90 min. Leukotriene (LT) B4 and LTB5 of the supernatant were analyzed by reverse phase HPLC. EPA inhibited the production of LTB4 dose-dependently. The production of LTB5, a metabolite from EPA, was increased at low concentrations of EPA (0-10 microM) and decreased at high concentrations (>10 microM). These results suggest that EPA is competitive with arachidonic acid (AA) at low concentrations, and that EPA may inhibit AA metabolism via inhibition of 5-lipoxygenase or phospholipase A2 at high concentrations.  相似文献   

11.
The ability of the lectin concanavalin A (ConA) and N-formyl-methionyl-leucyl-phenylalanine (fMLF) to induce protein-tyrosine phosphorylation in human neutrophils was examined by immunoblot analysis. ConA caused an increase in tyrosine phosphorylation of protein bands with apparent molecular masses of 120, 80, 76, 66 and 40 kDa; on the other hand, fMLF caused an increase in those of only 80-kDa and 40-kDa proteins. These protein-tyrosine phosphorylations were time- and dose-dependent. The tyrosine phosphorylation of 40-kDa protein induced by fMLF was suppressed but that by ConA was not suppressed by pertussis toxin pretreatment. At the same time, pertussis toxin pretreatment also inhibited lysozyme release and aggregation of neutrophils induced by fMLF but did not inhibit those responses induced by ConA. These results suggest that the tyrosine phosphorylation of 40-kDa protein may be involved in a part of neutrophil activation and be regulated via pleiotropic signal transduction pathways. In addition, immunoblot analysis employing antibodies against microtubule-associated protein 2 (MAP2) kinase suggested that this tyrosine-phosphorylated 40-kDa protein might be the MAP2 kinase.  相似文献   

12.
Neomycin is a potent agent for arachidonic acid release in human platelets   总被引:6,自引:0,他引:6  
Neomycin (10 microM - 1 mM) was found to induce considerable release of [3H]arachidonic acid from phosphatidylinositol, phosphatidylcholine and phosphatidylethanolamine in saponin-permeabilized human platelets prelabeled with [3H]arachidonic acid. The magnitude of arachidonate liberation was almost equal to that induced by A23187 (400 nM) or even greater than that caused by thrombin (1 U/ml). Moreover, neomycin enhanced arachidonic acid release induced by thrombin. Since no significant formation of diacylglycerol and phosphatidic acid via phospholipase C was observed, the arachidonate liberation was considered to be mainly catalyzed by phospholipase A2 action. Addition of neomycin (100 microM) to 45Ca2+-preloaded platelets elicited 45Ca2+ mobilization from intracellular stores. These results indicate evidence that neomycin evokes Ca2+ mobilization from internal stores, which leads to activation of phospholipase A2 to release arachidonic acid in human platelets.  相似文献   

13.
The effect of ten flavonoids was studied on the stimulation of washed human platelets by either arachidonic acid or thrombin. The oxygenated metabolites released were analyzed by radioimmunoassay, glass-capillary-column gas chromatography and high-pressure liquid chromatography. No effect was evidenced for naringenin, rutinose and phloridzin up to 1000 microM. Thromboxane B2 and 12-hydroxyeicosatetraenoic acid production was depressed simultaneously by all other compounds at different IC50. When tested for their effect on reversibility, however, cyclooxygenase and lipoxygenase inhibition was found to be different depending upon the flavonoid used. All compounds, except morin and rutin, inhibited platelet aggregation and [14C]serotonin release with parallel inhibition of thromboxane synthesis when tested on arachidonic acid-induced platelet-rich plasma stimulation. Some flavonoids inhibited the metabolism of human neutrophils stimulated by ionophore A23187 as assessed by high-performance liquid chromatography. Our results show that flavonoids interfere with the different oxidative metabolisms of arachidonic acid. No clearcut specificity could be found between one compound and one metabolic pathway.  相似文献   

14.
Human platelets have been shown to contain a Ca++- and CoA-independent transacylase enzyme that catalyzes the transfer of arachidonic acid from phosphatidylcholine (PC) to lysoplasmenylethanolamine. It has been suggested that this route may represent a major source for released arachidonic acid in stimulated platelets. In this study, we have shown using arachidonic-labelled human platelets that the thrombin-induced activation of a transacylase reaction was not affected by concentrations of trifluoperazine (TFP) (15 micrograms/2 X 10(9) cells) which abolished the accumulation of free [3H]arachidonic acid in the presence of the cyclooxygenase/lipoxygenase inhibitor BW755C. TFP, at this concentration failed to block the hydrolysis of phosphatidylcholine (PC) completely and had no effect on the increased radioactivity seen in total phosphatidylethanolamine (PE) (160% of control after 4 min of incubation). These results suggest that the transacylase pathway activated in response to thrombin is not likely dependent on calcium. As TFP blocks effectively both the accumulation of free [3H]arachidonic acid and the mass of arachidonic acid without affecting the transfer of this fatty acid from PC to PE in thrombin-stimulated human platelets, it is very unlikely that the transacylation pathway represents a major source of release arachidonic acid. Based on these findings, we conclude that the above pathway may be primarily involved in the turnover of plasmenylethanolamine lipids in stimulated human platelets.  相似文献   

15.
Sulfur mustard (2,2(')-dichloroethyl sulfide) is a chemical warfare agent that causes incapacitating skin blisters in humans 12-24h post-exposure following a variable asymptomatic phase. Recent reports demonstrate that inflammation plays a vital role in sulfur mustard toxicity. One of the key biochemical pathways involved in inflammation is the arachidonic acid cascade. In this report, we demonstrate that arachidonic acid is released in response to sulfur mustard and investigate the mechanisms of arachidonic acid release. Exposure to sulfur mustard caused a 5- to 8-fold increase in arachidonic acid release from human keratinocytes that had been radiolabeled with arachidonic acid. Maximal arachidonic acid release occurred between 12 and 24h. Several enzymatic pathways can lead to arachidonic acid release. Treatment with 2.0% (v/v) ethanol, an inhibitor of phospholipase D, decreased sulfur mustard-induced arachidonic acid release 40+/-7%. Additionally, 100 microM (+/-)-propranolol, an inhibitor of phosphatidic acid phosphohydrolase, blocked sulfur mustard-induced arachidonic acid release by 62+/-3%. These findings suggest that arachidonic acid release is mediated by phospholipase D and phosphatidic acid phosphohydrolase in human keratinocytes following sulfur mustard exposure. Due to the 12-24h delay in arachidonic acid release following sulfur mustard exposure, delayed therapeutic intervention may be possible. Indeed, we found that the addition of 100 microM (+/-)-propranolol up to 18 h after sulfur mustard exposure was still able to block arachidonic acid release by 30+/-3%.  相似文献   

16.
Diacylglycerol lipase activity has been demonstrated in human fetal membranes and decidua vera tissues. The specific activity of the enzyme is highest in the microsomal fraction of decidua vera tissue. The acylester bond at the sn-1 position of 1,2-diacyl-sn-glycerol is hydrolyzed followed by release of the fatty acid at the sn-2 position. The diacylglycerol lipase activity present in the microsomal fraction of decidua vera tissue hydrolyzes preferentially a diacylglycerol containing an arachidonoyl group in the sn-2 position. Monoacylglycerol lipase activity was also demonstrated in these tissues. The specific activity of monoacylglycerol lipase was significantly greater than that of diacylglycerol lipase and catalyzed preferentially the hydrolysis of monoacylglycerols containing an arachidonyl group in the sn-2 position. Based on the subcellular distribution and the differential effects of various inhibitors, we suggest that the monoacylglycerol lipase and diacylglycerol lipase in decidua vera tissue are 2 distinct enzymes. Diacylglycerol kinase specific activity was examined also and was found to be 4-5 times greater in amnion than in either chorion laeve or decidua vera. The importance of diacylglycerol metabolism in the mechanism of arachidonic acid release and prostaglandin biosynthesis is discussed.  相似文献   

17.
A Ca2+-activated and phospholipid-dependent protein kinase (PKC) has been described in several cell systems, including the human neutrophil. We found that less than 30 pmol 32P/10 min/10(6) cell equivalents of phorbol ester- or 1-oleoyl-2-acetylglycerol-stimulated PKC activity was obtained when neutrophil homogenates were used as an enzyme source. However, detergent-soluble and detergent-insoluble fractions prepared from the same homogenates, respectively, catalyzed 578 +/- 50 and 136 +/- 40 pmol 32P/10 min/10(6) cell equivalents. Recombining detergent-soluble and detergent-insoluble fractions resulted in the complete loss of activity. We therefore explored the possibility of an endogenous inhibitor of PKC in neutrophils. Homogenates from neutrophil cytoplasts, which lack the nuclei and intracellular granules of whole neutrophils, yielded 813 +/- 28 pmol 32P/10 min/10(6) cell equivalents. In addition, total neutrophil homogenates from a patient with a specific granule deficiency yielded high activities, namely 424 +/- 48 pmol 32P/10 min/10(6) cell equivalents. Specific granule-deficient neutrophils possessed translocated and activated PKC, and phosphoprotein patterns from these cells resembled those from activated normal neutrophils. Our results suggested the existence of an inhibitor of previously active PKC. That this inhibitor is primarily associated with neutrophil-specific granule membranes was suggested by our finding of high PKC activity associated with cell preparations or combinations of cell fractions that were free of specific granules, but not necessarily of other cellular organelles. Preliminary characterization of the endogenous inhibitor indicated that it was protease- and heat-sensitive, and did not exhibit either protease or phosphatase activity. We speculate that the inhibitor may play a physiologic role in regulating the activity of its target enzyme.  相似文献   

18.
The goal of this study was to determine the effects of a putative specific cytosolic phospholipase A2 inhibitor, arachidonyl trifluoromethyl ketone (AACOCF3), on arachidonic acid (AA) release and lipid mediator biosynthesis by ionophore-stimulated human neutrophils. Initial studies indicated that AACOCF3 at concentrations 0-10 micro m did not affect AA release from neutrophils. In contrast, AACOCF3 potently inhibited leukotriene B4 formation by ionophore-stimulated neutrophils (IC50 approximately 2.5 micro m). Likewise, AACOCF3 significantly inhibited the biosynthesis of platelet activating factor. In cell-free assay systems, 10 micro m AACOCF3 inhibited 5-lipoxygenase and CoA-independent transacylase activities. [3H]AA labeling studies indicated that the specific activities of cell-associated AA mimicked that of leukotriene B4 and PtdCho/PtdIns, while the specific activities of AA released into the supernatant fluid closely mimicked that of PtdEtn. Taken together, these data argue for the existence of segregated pools of arachidonate in human neutrophils. One pool of AA is linked to lipid mediator biosynthesis while another pool provides free AA that is released from cells. Additionally, the data suggest that AACOCF3 is also an inhibitor of CoA-independent transacylase and 5-lipoxygenase. Thus, caution should be exercised in using AACOCF3 as an inhibitor of cytosolic phospholipase A2 in whole cell assays because of the complexity of AA metabolism.  相似文献   

19.
A chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine (fMLP), induced an acidification of cytosol by about 0.05 pH units in 30 sec followed by an alkalinization in human neutrophils. The quantitative contribution of acid production to the acidification was studied. The superoxide (O2 ) production stimulated by fMLP was not involved in the acidification because the production of acids in neutrophils from patients with chronic granulomatous disease who do not produce O2 , was the same as that in normal neutrophils. The intracellular acidification was completely inhibited by deoxyglucose, suggesting that energy metabolism enhanced upon stimulation by fMLP might be the main source of the acidification. Although enhancement of the lactate formation by fMLP was 0.8 nmol/106 cells, which could lower intracellular pH by 0.08 pH units, the lactate production could not explain the initial acidification because the production of lactate started at 1 min after the stimulation while the intracellular acidification began immediately after the stimulation. Mitochondrial respiratory inhibitors such as KCN and rotenone had no effects on the fMLP-induced intracellular acidification. The fMLP-induced production of CO2 in 30 sec through the hexose monophosphate shunt was only 2.6 pmol/106 cells, which was calculated to decrease intracellular pH by only 0.0014. Thus, changes of energy metabolism induced by fMLP does not explain the acidification.Abbreviations fMLP N-formyl-methionyl-leucyl-phenylalanine - BCECF-AM 2,7-bis(carboxyethyl)carboxyfluorescein acetoxymethyl ester - PMA phorbol 12-myristate 13-acetate - CGD chronic granulomatous disease - HMP hexose monophosphate - pHi intracellular pH  相似文献   

20.
L929, a murine fibrosarcoma cell line highly sensitive to the anti-proliferative and cytotoxic action of tumour necrosis factor (TNF), was used as a target cell in our studies. We [Suffys et al. (1987) Biochem. Biophys. Res. Commun. 149, 735-743], as well as others, have previously provided evidence that a phospholipase (PL), most probably a PL-A2-type enzyme, is likely to be involved in TNF-mediated cell killing. We now further document this conclusion and provide suggestive evidence that the enzyme activity specifically involved in TNF cytotoxicity differs from activities associated with the eventual cell death process itself or with non-toxic serum treatment. We also show that the 5,8,11,14-icosatetraenoic acid (arachidonic acid, delta 4 Ach) released by PL, and possibly metabolized, is unlikely to be a key mediator of the TNF-mediated cytotoxicity. These conclusions are based on the following experimental findings. 1. TNF treatment of cells, prelabelled for 24 h with [3H] delta 4Ach or [14C] delta 3Ach (delta 3Ach identical to 5,8,11-icosatrienoic acid) resulted in an early, time-dependent and concentration-dependent release of radioactivity in the supernatant preceding actual cell death. The extent of this response was moderate, albeit reproducible and significant. Analysis of the total lipid fraction from cells plus supernatant revealed that only release of arachidonic acid from phospholipids, but not its metabolization was induced by TNF. However, the release of less unsaturated fatty acids, such as linoleic acid (Lin) or palmitic acid (Pam), was not affected during the first hours after TNF addition. 2. An L929 subclone, selected for resistance to TNF toxicity, was found to be defective in TNF-induced delta 4Ach libration. 3. Interleukin-1 (IL1) was not cytotoxic for L929 and did not induce release of delta 4Ach. 4. Release of delta 4Ach was not restricted to TNF; the addition of serum to the cells also induced release of fatty acids into the medium. In this case, however, there was no specificity, as all fatty acids tested, including Lin and Pam, were released. 5. Inhibition of PL-A2 activity by appropriate drugs markedly diminished TNF-induced delta 4Ach release and resulted also in a strong decrease in TNF-induced cytotoxicity. 6. Other drugs, including serine protease inhibitors, which strongly inhibit TNF-induced cytotoxicity, also decreased the TNF-induced delta 4Ach release, whereas LiCl potentiated both TNF-mediated effects. 7. Protection of cells against TNF toxicity by means of various inhibitors was not counteracted by addition of exogenous fatty acids, including delta 4Ach.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号