首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetic studies with substrate analogs and group-directed chemical modification agents were carried out for the purpose of identifying the enzyme-substrate interactions required for phosphonoacetaldehyde (P-Ald) binding and catalyzed hydrolysis by P-Ald hydrolase (phosphonatase). Malonic semialdehyde (Ki = 1.6 mM), phosphonoacetate (Ki = 10 mM), phosphonoethanol (Ki = 10 mM), and fluorophosphate (Ki = 20 mM) were found to be competitive inhibitors of the enzyme but not substrates. Thiophosphonoacetaldehyde and acetonyl phosphonate underwent phosphonatase-catalyzed hydrolysis but at 20-fold and 140-fold slower rates, respectively, than did P-Ald. In the presence of NaBH4, acetonyl-phosphonate inactivated phosphonatase at a rate exceeding that of its turnover. Sequence analysis of the radiolabeled tryptic peptide generated from [3-3H]acetonylphosphonate/NaBH4-treated phosphonatase revealed that Schiff base formation had occurred with the catalytic lysine. From the Vm/Km and Vm pH profiles for phosphonatase-catalyzed P-Ald hydrolysis, an optimal pH range of 6-8 was defined for substrate binding and catalysis. The pH dependence of inactivation by acetylation of the active site lysine with acetic anhydride and 2,4-dinitrophenyl acetate evidenced protonation of the active site lysine residue as the cause for activity loss below pH 6. The pH dependence of inactivation of an active site cysteine residue with methyl methanethiol-sulfonate indicated that deprotonation of this residue may be the cause for the loss of enzyme activity above pH 8.  相似文献   

2.
B Badet  D Roise  C T Walsh 《Biochemistry》1984,23(22):5188-5194
The pyridoxal phosphate dependent Salmonella typhimurium dadB alanine racemase was inactivated with D- and L-beta-fluoroalanine, D- and L-beta-chloroalanine, and O-acetyl-D-serine. Enzyme inactivation with each isomer of beta-chloro[14C]alanine followed by NaBH4 reduction and trypsin digestion afforded a single radiolabeled peptide. In the same manner, NaB3H4-reduced native enzyme gave a single labeled peptide after trypsin digestion. Purification and sequencing of these three radioactive peptides revealed them to be a common, unique hexadecapeptide which contained labeled lysine at position 6 in each case. Enzyme which had been inactivated, but not reductively stabilized with NaBH4, released a labile pyridoxal phosphate-inactivator adduct on denaturation. The structure of this adduct suggests that the enzyme was inactivated by trapping the coenzyme in a ternary adduct with inactivator and the active site lysine. Under denaturing conditions, facile alpha,beta-elimination occurred, releasing the aldol adduct of pyruvate and pyridoxal phosphate. Reduction of the ternary enzyme adduct blocked this elimination pathway. The overall mechanism of racemase inactivation is discussed in light of these results.  相似文献   

3.
Phosphonoacetaldehyde hydrolase (EC 3.11.1.1), the bacterial enzyme that catalyses the reaction HCO-CH2-PO(OH)2+H2O leads to HCO-CH3+Pi, is inactivated by borohydride if either phosphonoacetaldehyde or acetaldehyde is present. This supports the suggestion that the substrate forms an imine with an amino group of the enzyme. Such imine formation would labilize the C-P bond in the same way that aldolase and related enzymes labilize C-C and C-H bonds (Scheme 1a).  相似文献   

4.
S G Disa  A Gupta  S Kim  W K Paik 《Biochemistry》1986,25(9):2443-2448
CNBr treatment of calf thymus [methyl-14C]histone H4, methylated in vitro with S-adenosyl-L-[methyl-14C]methionine by a highly histone-specific wheat germ protein methylase I (S-adenosyl-L-methionine:protein-L-arginine N-methyltransferase, EC 2.1.1.23), produced two peptide fragments corresponding to residues 1-83 and 84-102, with the former being radioactive. Two-dimensional peptide mapping of the chymotryptic and tryptic digest of [methyl-14C]histone H4 and analysis of the chymotryptic digest on HPLC have shown that only a single peptide is radiolabeled. In order to define the exact site of methylation (arginine residue), the radioactive peptide from the chymotryptic digest of [methyl-14C]histone H4 was further purified on HPLC by linear and then isocratic elution. The purified chymotryptic peptide was then digested with trypsin and purified on HPLC, and its amino acid composition was determined on HPLC. These results indicate that the peptide corresponding to residues 24-35 of histone H4 is radiolabeled. Since this peptide contains a single arginine residue at position 35, we have concluded that the enzyme is specific not only to the protein substrate but also to the methylation site.  相似文献   

5.
Phosphonoacetaldehyde (Pald) is formed in a variety of biosynthetic pathways leading to natural phosphonates and is an intermediate in the degradation pathway of the natural product 2-aminoethylphosphonate. To facilitate the investigation of the enzymes catalyzing these pathways, a method for the synthesis of radiolabeled Pald was developed. The enzyme pyruvate phosphate dikinase was used to prepare phosphoenolpyruvate (PEP) from pyruvate, adenosine triphosphate (ATP), and orthophosphate. Then PEP was converted to phosphonopyruvate (Ppyr) with PEP mutase and then to Pald with Ppyr decarboxylase. By using [beta-32P]ATP or [2-14C]pyruvate as precursor, [32P]Pald or [1-14C]Pald was obtained, respectively. The utilization of the synthetic, radiolabeled Pald as a probe of enzyme mechanism was demonstrated with the enzyme phosphonoacetaldehyde hydrolase (trivial name phosphonatase). The single turnover time course for the formation and consumption of radiolabeled covalent enzyme species evidenced a kinetically competent covalent intermediate.  相似文献   

6.
[3H]Pyridoxal-P can be covalently incorporated into Escherichia coli B mutant strain AC70R1 ADP-glucose synthase by reduction with NaBH4. Two distinct lysine residues can be modified by the allosteric activator pyridoxal-P. Incorporation of [3H]pyridoxal-P in the presence of substrate ADP-glucose + MgCl2 prevents pyridoxylation of an ADP-glucose-protected site and allows modification of the allosteric activator site. Incorporation of [3H]pyridoxal-P in the presence of the allosteric effector, 1,6-hexanediol-P2, protects against pyridoxylation of the allosteric activator site and allows modification of the ADP-glucose-protected site. The activator site CNBr [3H]pyridoxyl-P peptide was purified to homogeneity in the presence of urea by Sephadex G-50 and CM-cellulose chromatography. The peptide consists of 59 residues, with a molecular weight of 6750. The NH2-terminal of the peptide has a 16-residue sequence overlap with the previously determined NH2-terminal sequence of the native enzyme. The activator site pyridoxyl-P lysine is identified as residue 38 of the native enzyme's NH2 terminus. The ADP-glucose-protected site CNBr [3H]pyridoxyl peptide was purified to homogeneity by Sephadex G-50 and DEAE-cellulose chromatography. The peptide consists of 21 residues, with a molecular weight of 2460. The sequence of this peptide has been elucidated.  相似文献   

7.
L C Hsu  M Okamoto  E E Snell 《Biochimie》1989,71(4):477-489
A coupled assay with alpha-hydroxyglutarate dehydrogenase was used to analyze the kinetic behavior of histidinol phosphate aminotransferase from Salmonella typhymurium. Data obtained from studies of initial velocity, inhibition by products or substrate analogues, isotope exchange rates, and the determination of the equilibrium constant were consistent only with a Ping-Pong Bi Bi mechanism. Variations in inhibition patterns by different substrate analogues indicate that the microenvironment about the pyridoxal phosphate and the pyridoxamine phosphate forms of histidinol phosphate amino-transferase are different, and favor the presence of one active site with partially overlapping substrate-binding subsites for these 2 forms of the enzyme. Histidinol phosphate aminotransferase also catalyzes decomposition of beta-chloro-L-alanine to pyruvate, NH3 and Cl-; no transamination of this substrate occurs and inactivation of the enzyme accompanies this reaction. After reduction of histidinol-P aminotransferase with [3H]NaBH4, carboxymethylation, and tryptic digestion, one major radioactive peptide absorbing at 325 nm was isolated. Its primary structure was determined to be TLSK*AFALAGLR, where K* is the P-pyridoxyllysine residue. Although this peptide is only 30-40% homologous with the corresponding segment reported for other transaminases, all of these peptides are similar in placement of an hydroxyamino acid residue three residues upstream from the lysine residue, and in the cluster of hydrophobic amino acid residues immediately following the lysine residue.  相似文献   

8.
Pure 2-amino-3-ketobutyrate CoA ligase from Escherichia coli, which catalyzes the cleavage/condensation reaction between 2-amino-3-ketobutyrate (the presumed product of the L-threonine dehydrogenase-catalyzed reaction) and glycine + acetyl-CoA, is a dimeric enzyme (Mr = 84,000) that requires pyridoxal 5'-phosphate as coenzyme for catalytic activity. Reduction of the hololigase with tritiated NaBH4 yields an inactive, radioactive enzyme adduct; acid hydrolysis of this adduct allowed for the isolation and identification of epsilon-N-pyridoxyllysine. Quantitative determinations established that 2 mol of pyridoxal 5'-phosphate are bound per mol of dimeric enzyme. After the inactive, tritiated enzyme adduct was digested with trypsin, a single radioactive peptide containing 23 amino acids was isolated and found to have the following primary structure: Val-Asp-Ile-Ile-Thr-Gly-Thr-Leu-Gly-Lys*-Ala-Leu-Gly-Gly-Ala-Ser-Gly-Gly -Tyr-Thr-Ala-Ala-Arg (where * = the lysine residue in azomethine linkage with pyridoxal 5'-phosphate). This peptide corresponds to residues 235-257 in the intact protein; 10 residues around the lysine residue have a high level of homology with a segment of the primary structure of 5-aminolevulinate synthase from chicken liver.  相似文献   

9.
Bis-PLP (P'P2-bis[5'-pyridoxal]diphosphate) was used as a probe of the catalytic site of 4-aminobutyrate aminotransferase. It reacts with lysine residues connected with aminotransferase activity and the binding of 1 mol of reduced bis-PLP/enzyme monomer abrogates catalytic activity. The reactive lysine residues are characterized by low pK values (pK = 7.3). The presence of substrate 2-oxoglutarate (4 mM) prevents inactivation of the aminotransferase treated with bis-PLP. After tryptic digestion of the enzyme modified with bis-PLP and reduced with tritiated NaBH4, a radioactive peptide absorbing at 320 nm was separated by reverse-phase high-performance liquid chromatography. The amino acid sequence of the radioactive peptide, elucidated by Edman degradation, revealed that a specific lysine residue of monomeric 4-aminobutyrate aminotransferase has reacted with bis-PLP. The sequence of the modified peptide differs from the sequence of the peptide bearing the cofactor pyridoxal-5-P covalently attached to a lysine residue. It is postulated that the modified lysine residue is involved in direct interactions with negatively charged carboxylic groups of 2-oxoglutarate.  相似文献   

10.
Pyridoxal 5'-phosphate is a competitive inhibitor of glucosamine-6-phosphate synthase with respect to the substrate fructose 6-phosphate. Irreversible inactivation of pyridoxal-5'-phosphate-treated enzyme with [14C]-cyanide resulted in covalent incorporation of close to 1 mol pyridoxal 5'-phosphate/mol enzyme subunit. The enzyme-pyridoxal-5'-phosphate complex could also be inactivated by reduction with NaBH3CN. Sequence analysis of the unique radioactively labelled tryptic peptide, resulting from inactivation with [3H]NaBH3CN, identified the C-terminal nonapeptide encompassing the modified Lys603. The presence of fructose 6-phosphate protected this residue from pyridoxylation. Direct evidence that a lysine residue is involved in the binding of the substrate as a Schiff base came from the isolation at 4 degrees C of a enzyme-fructose-6-phosphate complex in a 1:1 molar ratio. Treatment of the enzyme-[14C]fructose-6-phosphate complex with NaBH3CN revealed one site of modification in the tryptic peptide map. In contrast, trapping the same complex with potassium cyanide resulted in the isolation of several radiolabelled peptides containing lysines which could potentially bind fructose 6-phosphate. However, since the radioactivity was not specifically associated with the lysine residues, it is suggested that these 14C-labelled peptides resulted from the decomposition of an unstable alpha,alpha'-dihydroxyaminonitrile adduct rather than from a lack of specificity of fructose 6-phosphate fixation. Lys603 is then the candidate of choice for fructose 6-phosphate binding since it lies at or near the active site as demonstrated by the trapping experiments with pyridoxal 5'-phosphate described above, and among the lysines which belong to the sugar-binding domain this is the only one conserved between the three members of the purF, glutamine-dependent, amidotransferase subfamily which include the glucosamine-6-phosphate synthase from Escherichia coli, Saccharomyces cerevisiae and the Rhizobium nodulation protein NodM.  相似文献   

11.
Deoxyhypusine synthase catalyzes the first step in hypusine (N epsilon-(4-amino-2-hydroxybutyl)lysine) synthesis in a single cellular protein, eIF5A precursor. The synthesis of deoxyhypusine catalyzed by this enzyme involves transfer of the 4-aminobutyl moiety of spermidine to a specific lysine residue in the eIF5A precursor protein to form a deoxyhypusine-containing eIF5A intermediate, eIF5A(Dhp). We recently discovered the efficient reversal of deoxyhypusine synthesis. When eIF5A([3H]Dhp), radiolabeled in the 4-aminobutyl portion of its deoxyhypusine residue, was incubated with human deoxyhypusine synthase, NAD, and 1,3-diaminopropane, [3H]spermidine was formed by a rapid transfer of the radiolabeled 4-aminobutyl side chain of the [3H]deoxyhypusine residue to 1,3-diaminopropane. No reversal was observed with [3H]hypusine protein, suggesting that hydroxylation at the 4-aminobutyl side chain of the deoxyhypusine residue prevents deoxyhypusine synthase-mediated reversal of the modification. Purified human deoxyhypusine synthase also exhibited homospermidine synthesis activity when incubated with spermidine, NAD, and putrescine. Thus it was found that [14C]putrescine can replace eIF5A precursor protein as an acceptor of the 4-aminobutyl moiety of spermidine to form radiolabeled homospermidine. The Km value for putrescine (1.12 mM) as a 4-aminobutyl acceptor, however, is much higher than that for eIF5A precursor (1.5 microM). Using [14C]putrescine as an acceptor, various spermidine analogs were evaluated as donor substrates for human deoxyhypusine synthase. Comparison of spermidine analogs as inhibitors of deoxyhypusine synthesis, as donor substrates for synthesis of deoxyhypusine (or its analog), and for synthesis of homospermidine (or its analog) provides new insights into the intricate specificity of this enzyme and versatility of the deoxyhypusine synthase reaction.  相似文献   

12.
Chen D  Frey PA 《Biochemistry》2001,40(2):596-602
Lysine 2,3-aminomutase (LAM) catalyzes the interconversion of L-lysine and L-beta-lysine. The enzyme contains pyridoxal 5'-phosphate (PLP) and a [4Fe-4S] center and requires S-adenosylmethionine (SAM) for activity. The hydrogen transfer is mediated by the 5'-deoxyadenosyl radical generated in a reaction of the iron-sulfur cluster with SAM. PLP facilitates the radical rearrangement by forming a lysine-PLP aldimine, in which the imine group participates in the isomerization mechanism. We here report the identification of lysine 346 as important for PLP binding and catalysis. Reduction of LAM with NaBH(4) rapidly inactivated the enzyme with concomitant UV/visible spectrum changes characteristic of reduction of an aldimine formed between PLP and lysine. Following reduction with NaBH(4) and proteolysis with trypsin, a single phosphopyridoxyl peptide of 36 amino acid residues was identified by reverse-phase liquid chromatography/mass spectrometry (LC/MS). The purified phosphopyridoxyl peptide exhibited an absorption band at 325 nm, and its identity was further confirmed by tandem mass spectrometry (MS/MS) sequencing. The bound PLP is linked to lysine 346 in a PGGGGK (PLP) structure. The sequence of this binding motif is conserved in LAMs from Bacillus and Clostridium and other homologous proteins but is distinct from the PLP-binding motifs found in other PLP enzymes. The function of lysine 346 was further studied by site-directed mutagenesis. The purified K346Q mutant was inactive, and its content of PLP was only approximately 15% of that of the wild-type enzyme. The data indicate that the formation of the aldimine linkage between lysine 346 and PLP is important for LAM catalysis. Sequences similar to the PLP-binding motifs in other enzymes were also present in LAM. However, lysine residues within these motifs neither are the PLP-binding sites in LAM nor are directly involved in LAM catalysis. This study represents the first comprehensive investigation of PLP binding in a SAM-dependent iron-sulfur enzyme.  相似文献   

13.
Mouse ornithine decarboxylase (ODC) was expressed in Escherichia coli and the purified recombinant enzyme used for determination of the binding site for pyridoxal 5'-phosphate and of the residues modified in the inactivation of the enzyme by the enzyme-activated irreversible inhibitor, alpha-difluoromethylornithine (DFMO). The pyridoxal 5'-phosphate binding lysine in mouse ODC was identified as lysine 69 of the mouse sequence by reduction of the purified holoenzyme form with NaB[3H]4 followed by digestion of the carboxymethylated protein with endoproteinase Lys-C, radioactive peptide mapping using reversed-phase high pressure liquid chromatography and gas-phase peptide sequencing. This lysine is contained in the sequence PFYAVKC, which is found in all known ODCs from eukaryotes. The preceding amino acids do not conform to the consensus sequence of SXHK, which contains the pyridoxal 5'-phosphate binding lysine in a number of other decarboxylases including ODCs from E. coli. Using a similar procedure to analyze ODC labeled by reaction with [5-14C]DFMO, it was found that lysine 69 and cysteine 360 formed covalent adducts with the inhibitor. Cysteine 360, which was the major adduct accounting for about 90% of the total labeling, is contained within the sequence -WGPTCDGL(I)D-, which is present in all known eukaryote ODCs. These results provide strong evidence that these two peptides form essential parts of the catalytic site of ODC. Analysis by fast atom bombardment-mass spectrometry of tryptic peptides containing the DFMO-cysteine adduct indicated that the adduct formed in the enzyme was probably the cyclic imine S-(2-(1-pyrroline)methyl)cysteine. This is readily oxidized to S-((2-pyrrole)methyl)cysteine or converted to S-((2-pyrrolidine)methyl)cysteine by NaBH4 reduction. This adduct is consistent with spectral evidence showing that inactivation of the enzyme with DFMO does not entail the formation of a stable adduct between the pyridoxal 5'-phosphate, the enzyme, and the inhibitor.  相似文献   

14.
Pure 2-keto-4-hydroxyglutarate aldolase of Escherichia coli, a "lysine-type" trimeric enzyme which has the unique properties of forming an "abortive" Schiff-base intermediate with glyoxylate (the aldehydic product/substrate) and of showing strong beta-decarboxylase activity toward oxalacetate, binds any one of its substrates (2-keto-4-hydroxyglutarate, pyruvate, or glyoxylate) in a competitive manner. To determine whether the substrates bind at the same or different (juxta-positioned) sites and what degree of homology might exist between the active-site lysine peptide of this enzyme and that of other lysine-type (Class I) aldolases or beta-decarboxylases, the azomethine formed separately by this aldolase with either [14C]pyruvate or [14C]glyoxylate was reduced with CNBH3-. After each enzyme adduct was digested with trypsin, the 14C-labeled peptide was isolated, purified, and subjected to amino acid analysis and sequence determination. In each case, the same 14-amino acid lysine-peptide was isolated and found to have the following primary sequence: Glu-Phe-*Lys-Phe-Phe-Pro-Ala-Glu-Ala-Asn-Gly-Gly-Val-Lys (where * = the active-site lysine). Hence, glyoxylate competes for, and inhibits aldolase activity by reacting with, the one active-site lysine residue/subunit. This active-site lysine peptide has a high degree (65%) of homology with that of 2-keto-3-deoxy-6-phosphogluconate aldolase of Pseudomonas putida but is not similar to that of any Class I fructose-1,6-bisphosphate aldolase or of acetoacetate beta-decarboxylase of Clostridium acetobutylicum. Furthermore, it was found that extensive reaction of glyoxylate with the N-terminal amino group of this enzyme may well be general complicating factor in sequence studies with proteins plus glyoxylate.  相似文献   

15.
The chemical modification of pig liver 4-aminobutyrate aminotransferase by the antiepileptic drug 4-aminohex-5-enoate (Vigabatrin) has been studied. After inactivation by 14C-labeled Vigabatrin, the enzyme was digested with trypsin, and automated Edman degradation of the purified labeled peptide gave the sequence FWAHEHWGLDDPADVMTFSKK. Chymotryptic digestion of the tryptic peptide and sequencing of a resulting tripeptide identified the penultimate lysine residue of this peptide as the site of covalent modification. This lysine normally binds the coenzyme. Absorption spectroscopy demonstrated the absence of coenzyme from the tryptic peptide, and mass spectrometry showed its mass/charge ratio to be increased by 128. All of the bound coenzyme released after denaturation of the inactivated enzyme was as pyridoxamine phosphate. The structural nature of the modification is deduced, and mechanisms for its occurrence identified. Initially, 1 mol of radiolabeled inhibitor was bound per mol of monomer of the enzyme, although approximately half was released during denaturation and digestion, while the remainder was irreversibly bound. Coenzyme not released as pyridoxamine phosphate retained the absorbance characteristics of the aldimine, although the enzyme was completely inactive. Mass spectrometry of the sample of purified radiolabeled tryptic peptide revealed the presence of an approximately equal amount of a second fragment that contained no modification and from which the second lysine was absent, indicating that at the time of proteolysis the active site lysine was unaltered in 50% of the enzyme molecules.  相似文献   

16.
Modification of gastric (H+ + K+)-ATPase with pyridoxal 5'-phosphate   总被引:2,自引:0,他引:2  
Pig gastric membrane vesicles enriched in (H+ + K+)-ATPase were covalently modified with pyridoxal 5'-phosphate (PLP). The modification resulted in inhibition of K+-dependent ATP hydrolysis, formation of phosphoenzyme and ATP-driven H+-uptake catalyzed by (H+ + K+)-ATPase. ATP, ADP, and adenyl-5'-yl imidodiphosphate were protective ligands, whereas Mg2+ and K+ were not. Specific PLP-binding of about 4.5 nmol/mg membrane protein was necessary for complete inhibition of the enzyme activity, indicating that the stoichiometry of PLP-binding to the enzyme was about 1:1. Limited proteolysis of the enzyme modified with [3H]PLP by trypsin suggests that PLP specifically modifies the lysine residue located in the 16-kDa fragment of the enzyme cleaved by trypsin. These results suggested that PLP binds to a specific lysine residue in the nucleotide-binding site or a region in its vicinity and inhibits the substrate binding or phosphorylation step of (H+ + K+)-ATPase.  相似文献   

17.
Pyridoxal phosphate-dependent histidine decarboxylase from Morganella morganii AM-15 was inactivated by (S)-alpha-fluoromethylhistidine by a pseudo first-order reaction, with KI and k inact values of 0.1 mM and 32.2 min-1, respectively, and was most efficient at pH 6.5-7.0. Both L-histidine and the competitive inhibitor, L-histidine methyl ester, protected against inactivation. The apoenzyme was not inactivated. These findings indicate that inhibition is a mechanism-based process. Under optimal conditions a single molecule of alpha-fluoromethylhistidine inactivates one enzyme subunit, indicating that no escaping side reaction occurs during the inactivation process. The bound inactivator is not released by dialysis of the native protein but is released upon denaturation by heat or urea. This released product was not fully characterized, but it contains the tritium of ring-labeled alpha-fluoromethyl-[3H]histidine, exhibits the spectral properties of a 3-hydroxypyridine derivative, and does not yield any amino acids on hydrolysis. The label was much more stable following borohydride reduction of the inactivated protein, and a tryptic peptide containing the modified residue was isolated. Sequencing of this peptide and the corresponding peptide from the native enzyme revealed that the inactivator binds to a serine residue of the holoenzyme. Two P-pyridoxyl peptides from tryptic or CNBr digests of the NaBH4-reduced enzyme were also isolated. Sequence and compositional data obtained with these peptides showed that the serine residue to which the inhibitor binds is not near the lysine residue that binds pyridoxal-P in the primary sequence of the protein, although the two residues must be near one another in the three-dimensional structure to account for these results. A speculative mechanism for inactivation, consistent with the experimental findings, is presented.  相似文献   

18.
Further chemical evidence has been obtained using NaB3H4 to support our previous assignment of a thiol ester bond in human C3 (Tack, B. F., Harrison, R. A., Janatova, J., Thomas, M. L., and Prahl, J. W. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 5764-5768). Following trypsin activation of human C3 in the presence of NaB3H4, 3H was shown to have incorporated specifically into the alpha'-chain of C3b. Subsequent fragmentation of [3H]C3b with porcine elastase further localized the label to the C3d subdomain. Under identical conditions, native C3 or C3 pretreated with trypsin (C3b) showed low reactivity with NaB3H4. A tryptic peptide containing the 3H label was isolated following digestion of [3H]C3b on activated thiol-Sepharose. After hydrolysis and saponification of the peptide hydrolysate, amino acid analysis indicated that the 3H had been incorporated into alpha-amino-delta-hydroxyvaleric acid, the product expected from reduction of an ester bond involving a glutamyl residue. On sequence analysis of the labeled peptide, the 3H was shown to reside at the position of the glutamyl residue previously proposed to be involved in the thiol ester bond. The residue at this position was confirmed as alpha-amino-delta-[3H] hydroxyvaleric acid by high performance liquid chromatography analysis and, after back hydrolysis, by amino acid analysis. These data significantly strengthen earlier studies which indicated the presence of a beta-Cys-gamma-Glu thiol ester bond in human C3.  相似文献   

19.
An NAD+ dependent succinic semialdehyde dehydrogenase from bovine brain was inactivated by pyridoxal-5'- phosphate. Spectral evidence is presented to indicate that the inactivation proceeds through formation of a Schiff's base with amino groups of the enzyme. After NaBH(4) reduction of the pyridoxal-5'-phosphate inactivated enzyme, it was observed that 3.8 mol phosphopyridoxyl residues were incorporated/enzyme tetramer. The coenzyme, NAD+, protected the enzyme against inactivation by pyridoxal-5'-phosphate. The absorption spectrum of the reduced and dialyzed pyridoxal-5'-phosphate-inactivated enzyme showed a characteristic peak at 325 nm, which was absent in the spectrum of the native enzyme. The fluorescence spectrum of the pyridoxyl enzyme differs completely from that of the native enzyme. After tryptic digestion of the enzyme modified with pyridoxal-5'-phosphate followed by [3H]NaBH4 reduction, a radioactive peptide absorbing at 210 nm was isolated by reverse-phase HPLC. The sequences of the peptide containing the phosphopyridoxyllysine were clearly identical to sequences of other mammalian succinic semialdehyde dehydrogenase brain species including human. It is suggested that the catalytic function of succinic semialdehyde dehydrogenase is modulated by binding of pyridoxal-5'-phosphate to specific Lys(347) residue at or near the coenzyme-binding site of the protein.  相似文献   

20.
A single cellular protein of Mr approximately 18,000 and pI near 5.1, recently identified as eukaryotic translation initiation factor eIF-4D, contains the unusual amino acid hypusine [N epsilon-(4-amino--2-hydroxybutyl)lysine] formed post-translationally from lysine with a structural contribution from the polyamine spermidine. When the 3H-labeled hypusine-containing protein isolated from Chinese hamster ovary (CHO) cells that were grown with radioactive polyamine is digested with trypsin and the digest is subjected to two-dimensional separation, a single radioactive peptide is seen. A labeled peptide that occupies this same position is found in a digest of the [3H]hypusine protein from human lymphocytes and the single hypusine-containing tryptic peptide from purified rabbit reticulocyte eIF-4D also moves to this identical position. Stepwise Edman degradation of the tryptic digest of CHO cell hypusine-protein releases the radioactivity as a single peak in accordance with our earlier evidence for a single hypusine residue per molecule of eIF-4D. The similar patterns of radioactive peptides obtained from tryptic digests of radioiodinated eIF-4D from CHO cells, human lymphocytes, and rabbit reticulocytes suggest a highly conserved primary structure for this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号