首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mink cell cultures infected with the Snyder-Theilen strain of feline sarcoma-leukemia virus were cloned from single cells under conditions favoring single virus-single cell interactions. The primary colonies included (i) typical feline sarcoma virus (FeSV)-transformed nonproducer clones, one of which segregated revertants, and (ii) FeSV-infected, phenotypically normal clones, three of which spontaneously converted to the transformed phenotype. The revertants and spontaneous transformants were compared with parental and sister clones expressing the opposite phenotype. Transformed subclones formed colonies in agar, were tumorigenic in nude mice, and failed to bind epidermal growth factor, whereas flat sister subclones were indistinguishable from uninfected mink cells in each of these assays. Sister subclones derived from the same infectious event contained FeSV proviruses integrated at the same molecular site, regardless of which phenotype was expressed. One revertant clone, however, lacked most FeSV proviral DNA sequences but retained terminal portions of the FeSV genome which persisted at the original site of proviral DNA insertion. Two flat subclones expressed viral RNA and the phosphorylated "gag-x" polyprotein (pp78gag-x) encoded by the gag and src sequences of the FeSV genome. Both of these clones were susceptible to retransformation by FeSV. Although unable to induce foci, the viruses rescued from these cells contained as much FeSV RNA as the focus-forming viruses rescued from transformed sister subclones and could be retransmitted to mink cells, again inducing FeSV gene products without signs of morphological transformation. We conclude that these FeSV genomes represent transformation-defective mutants.  相似文献   

2.
3.
Transformation-defective (td) mutants with different sizes of genomic RNA were isolated from the Prague strain of Rous sarcoma virus, subgroup C(PR-C). All six td viruses (tdTYPR-C) isolated from a single UV-irradiated stock of PR-C (clone 2 of TYPR-C) had slightly longer RNA than did the ordinary class b RNA of tdB77 and Rous-associated virus-7. td viruses spontaneously segregated in uncloned TYPR-C also contained genomic RNA of a size similar to tdTYPR-C RNA. On the other hand, two td mutants isolated from another stock of PR-C (LAPR-C) had the class b RNA. Fingerprint analysis confirmed that tdTYPR-C and tdLAPR-C were derived by deletion from clone 2 of TYPR-C and LAPR-C, respectively, and also showed that clone 2 of TYPR-C had sequences in its genome RNA different from those of LAPR-C, although it gave a fingerprinting pattern similar to the latter. These results strongly suggest that differences between the nucleotide sequences in TYPR-C and LAPR-C RNA may result in different extents of deletion.  相似文献   

4.
We have been interested in how Rous sarcoma virus (RSV) influences transformed cell morphology and compared the molecular properties of chicken embryo cells (CEC) infected with mutants of RSV that induce the fusiform transformed cell morphology with those of CEC infected by wild-type RSV, which induces the more normal round transformed cell morphology. We looked for properties shared by all fusiform mutant-infected cells, because these may be responsible for maintaining the fusiform morphology. Five different fusiform mutants, two wild-type RSVs, and one wild-type back revertant of a fusiform mutant were studied. In the fusiform mutant-infected cells, the localization and myristylation of pp60src were determined and the extent of expression of the extracellular matrix protein fibronectin was examined at both the mRNA and protein levels. The phosphorylation of vinculin on tyrosine also was examined in the same CEC. Within all fusiform mutant-transformed CEC, pp60src was dramatically absent from the adhesion plaque sites normally seen in cells transformed with wild-type RSV, and these transformed CEC all expressed more fibronectin mRNA and protein in the extracellular matrix than did the wild-type RSV-transformed CEC. The absence of pp60src from the adhesion plaques was not due to lack of myristylation of the src protein, and tyrosine phosphorylation of vinculin was not related to fibronectin expression. These results suggest that the inverse relationship between pp60src in the adhesion plaques and fibronectin expression in the extracellular matrix may be interconnected phenomena and could be related to the maintenance of the fusiform transformed morphology.  相似文献   

5.
Mutants (PH2010, PH2011, PH2012) of Rous sarcoma virus which have a growth-inhibitory effect on chicken embryo fibroblasts were isolated from a temperature-sensitive mutant of the Schmidt-Ruppin strain of Rous sarcoma virus (tsNY68). The growth rate of fibroblasts infected with these viruses was about 50 to 60% of that of uninfected fibroblasts. A morphological difference between mutant-infected and uninfected fibroblasts was observed at logarithmic phase but not at stationary phase. Neither the protein p60src nor its associated protein kinase activity was significantly detected by an immunoprecipitation assay in the cells infected with these mutants. Analysis of the unintegrated DNA of the mutant PH2010 showed that a sequence of about 1.4 kilobase pairs at the src gene region is deleted. Further examination of the viral structural proteins in infected cells as well as in virions by immunoprecipitation and peptide mapping revealed that the molecular size of the Pr76 gag protein of the mutant RSV is smaller than that of the mutant tsNY68 because of partial deletion at the p19 gag gene. The peptide maps suggest that the deleted region of the altered p19 of the mutant is near the carboxy terminal of p19. The amount of Prgp92env synthesized in the mutant-infected cells was about fivefold more than that in tsNY68-infected cells.  相似文献   

6.
The cell-free synthesis of three major proteins from virion RNA of nondefective Rous sarcoma virus (RSV), but not from RNA of transformation-defective deletion mutants, has been observed. The apparent molecular weights of these transformation-specific proteins are approximately 60,000 (60K), 25K, and 17K. Tryptic maps of methionine-containing peptides revealed the 17K, 25K, and 60K proteins to be overlapping in sequence. However, only partial homology was observed between the 17K, 25K and 60K proteins synthesized from Schmidt-Ruppin strain, subgroup D, RSV RNA and those synthesized from Prague strain, subgroup B, RSV, RNA. About half of the methionine peptides in the Schmidt-Ruppin strain, subgroup D, 60K protein were shared with the Prague strain, subgroup D, 60K protein, and the rest were distinct to each. The virion RNAs coding for the 60K, 25K, and 17K proteins were found to be polyadenylated and to sediment with maximal mRNA activity at about 23, 19 to 20, and 18S, respectively. In addition, transformation-specific proteins with molecular weights of 39K and 33K were observed by in vitro synthesis. These proteins are also related to the 60K, 25K, and 17K proteins and were synthesized from polyadenylated RSV RNA of approximately 21 to 22S. RNase T1-resistant oligonucleotides were analyzed in parallel, and the src-specific oligonucleotides were found to be first present in equimolar amounts in those gradient fractions sedimenting at 21 to 22S. Our data suggest that synthesis of the 60K protein is initiated near the 5' terminus of the src gene, whereas the 39K, 33K, 25K, and 17K proteins are initiated internally in the src gene. All of these proteins appear to be initiated independently, but they may have a common termination site.  相似文献   

7.
The src genes of four Rous sarcoma virus (RSV) mutants temperature-sensitive (ts) for cell transformation were analyzed. The mutant src genes were cloned into a replication-competent RSV expression vector, and the contribution of individual mutations to the ts phenotype was assessed by in vitro recombination with wild-type src sequences. Three of the mutants, which were derived from the Schmidt-Ruppin strain of RSV, each encoded two mutations within the conserved kinase domain. In all three cases, one of the two mutations was an identical valine to methionine change at amino acid position 461. Virus encoding recombinant src genes containing each of these mutations alone were not ts for transformation, demonstrating that two mutations are required for temperature sensitivity. The sequence of the src gene of the Bryan high-titer strain of RSV was determined and compared with that of the fourth ts mutant which was derived from it, again revealing two lesions in the kinase domain of the mutant.  相似文献   

8.
Rous sarcoma virus (RSV)-induced transformation is mediated by the action of the viral src gene product pp60src. This transforming protein is found at several cytoplasmic locations, including the adhesion plaques of RSV-transformed cells. In these studies, we have focused on the adhesion plaque location of pp60src and determined whether any of the induced transformation parameters correlate with the presence of pp60src in the adhesion plaques. A series of partial transformation mutants of RSV that induce distinct transformation phenotypes were used, and infected chicken embryo cells were examined for (i) intracellular pp60src location, (ii) vinculin localization, (iii) abundance of phosphotyrosine on vinculin, (iv) integrity of stress fibers, and (v) expression of cell surface fibronectin. The results indicate that, among the limited number of mutants studied here, the presence of pp60src in adhesion plaques is independent of growth in soft agar and the increased phosphorylation of vinculin on tyrosine, but it does correlate with the loss of cell surface fibronectin. An elevated abundance of phosphotyrosine on vinculin is insufficient to cause stress fiber dissolution and is independent of the loss of fibronectin from the extracellular matrix. However, the increased relative amount of phosphotyrosine on vinculin is related to the ability of the cells to grow in soft agar. The adhesion plaque binding and tyrosine-specific kinase activities seem to represent two independent functions of pp60src.  相似文献   

9.
Stocks of Rous sarcoma virus Bryan strain were mutagenized using a bromodeoxyuridine treatment immediately after infection. Thirty temperature-sensitive (ts) mutants defective in transformation (td) were isolated by a replica plating technique. Twenty of these mutants were preliminarily characterized and found to be defective in late functions related to transformation. These mutants were used in experiments of cooperative transformation with four Prague strain td ts mutants of different co-transformation group. A small number of Bryan ts mutants were found to cooperate with some of the Prague mutants in transforming chicken embryo cells at the nonpermissive temperature. However, the amount of co-transformation observed was lower than that observed with cooperating Prague ts mutants and no clear-cut pattern of cotransformation was obtained in Prague and Bryan crosses. Indirect evidence indicates that cooperative transformation is the result of recombination events.  相似文献   

10.
F/St mice are unique in producing high levels of both ecotropic and xenotropic murine leukemia virus. The high ecotropic virus phenotype is determined by three or more V (virus-inducing) loci. A single locus for inducibility of xenotropic murine leukemia virus was mapped to chromosome 1 close to, but possibly not allelic to, Bxv-1. Although the high ecotropic virus phenotype is phenotypically dominant, the high xenotropic virus phenotype was recessive in all crosses tested. Suppression of xenotropic murine leukemia virus is governed by a single gene which is not linked to the xenotropic V locus.  相似文献   

11.
We have constructed deletions within the region of cloned Rous sarcoma virus DNA coding for the N-terminal 30 kilodaltons of p60src. Infectious virus was recovered after transfection. Deletions of amino acids 15 to 149, 15 to 169, or 149 to 169 attenuated but did not abolish transforming activity, as assayed by focus formation and anchorage-independent growth. These deletions also had only slight effects on the tyrosine kinase activity of the mutant src protein. Deletion of amino acids 169 to 264 or 15 to 264 completely abolished transforming activity, and src kinase activity was reduced at least 10-fold. However, these mutant viruses generated low levels of transforming virus by recombination with the cellular src gene. The results suggest that as well as previously identified functional domains for p60src myristylation and membrane binding (amino acids 1 to 14) and tyrosine kinase activity (amino acids 250 to 526), additional N-terminal sequences (particularly amino acids 82 to 169) can influence the transforming activity of the src protein.  相似文献   

12.
Four phenotypically normal mink cell clones, each containing a transformation-defective provirus of the Snyder-Theilen strain of feline sarcoma virus (ST-FeSV), synthesized an 85,000-dalton viral polyprotein (P85) indistinguishable in size and antigenic complexity from that encoded by wild-type transforming ST-FeSV. An additional transformation-defective, ST-FeSV-containing flat cell clone produced a polyprotein of 88,000 daltons (P88). The viral polyproteins immunoprecipitated from cytoplasmic extracts of these cells lacked the tyrosine-specific protein kinase activity associated with the wild-type ST-FeSV gene product. In addition, the products encoded by representative transformation-defective ST-FeSV genomes were poorly phosphorylated in vivo and lacked detectable phosphotyrosine residues. Whereas proteins of ST-FeSV transformants contained elevated levels of phosphotyrosine, those of mink cells containing transformation-defective ST-FeSV exhibited phosphotyrosine levels no higher than those found in uninfected cells. These findings provide genetic evidence that the tyrosine-specific protein kinase activity associated with ST-FeSV P85 is required for virus-induced transformation.  相似文献   

13.
Chicken embryo cells infected with partial transformation mutants of Rous sarcoma virus were tested for tumor-forming ability in chickens and in nude mice. Cells transformed by each of these partial transformation mutants display different combinations of transformation parameters. They therefore present a potentially favorable system for analyzing which properties of transformed cells are necessary for tumor formation. We found that the relative tumorigenicity of the virus mutants was generally similar in chickens and in nude mice, except that certain temperature-conditional mutants appeared to be sensitive to the differences in body temperature of the two experimental animals. (The body temperature of nude mice is 4 to 5 degrees C lower than that of chickens). Thus, the nude mouse appears to be a suitable system for testing the tumorigenicity of transformed chicken cells. Because mice are nonpermissive for Rous sarcoma virus infection and replication, it was possible to recover the transformed chicken cells from the tumors in this host and to determine what phenotypic changes they had undergone during tumor development. We also examined the relationship between various cellular properties of the virus-infected chicken cells in vitro and their tumorigenicity in nude mice. The combined results of these two studies indicated that anchorage independence and plasminogen activator production were highly correlated with the tumor-forming ability of these cells, whereas loss of fibronectin did not correlate with tumorigenicity. Furthermore, the inability of the least tumorigenic virus mutant to stimulate the phosphorylation of a 36,000-Mr target of pp60src raises the possibility that the 36,000-Mr protein plays a role in tumor formation.  相似文献   

14.
Cloning and sequencing of two temperature-sensitive transforming mutations of Rous sarcoma virus reveal that their lesions are due to distinct but close single amino acid changes near the carboxy terminus of the v-src gene product. Back mutations to wild type result from second mutations at either nearby or distant sites.  相似文献   

15.
16.
S Oertle  N Bowles    P F Spahr 《Journal of virology》1992,66(6):3873-3878
Avian retroviruses (with the notable exception of spleen necrosis virus) express their protease (PR) both in their gag and their gag-pol polyprotein precursors, in contrast to other retroviruses, notably, the mammalian retroviruses, in which PR is encoded in the gag-pol polyprotein or in a separate reading frame as a gag-pro product. The consequence is that the avian PR is expressed in stoichiometric rather than catalytic amounts. To investigate the significance of the particular genome organization of the avian retrovirus prototype Rous sarcoma virus, we developed an assay that measures complementation between the gag and the gag-pol polyproteins by expressing them from two different plasmids in transfected cells. By using this assay, we showed that the protease PR from the gag-pol polyprotein is capable of autocatalytic self-cleavage and -activation when coexpressed with a protease-deficient gag protein and that the PR domain has a role in viral particle assembly. Furthermore, this complementation assay can be used to investigate the role of the gag domain in the gag-pol polyprotein by determining whether it can rescue a defect in the gag polyprotein. We report here the results of such an experiment, which studied a mutation in the N terminus of the gag gene.  相似文献   

17.
In vitro translation of Rous sarcoma virus virion RNA resulted in the synthesis of a protein kinase which, when immunoprecipitated with antitumor serum, phosphorylated the immunoglobulin heavy chain. Even though in vitro translation of virion RNA resulted in the synthesis of a number of polypeptides which were recognized by antitumor serum, control experiments demonstrated that an immunoprecipitable protein kinase activity was found only when an immunoprecipitable p60src, the polypeptide product of the src gene, was synthesized. A protein kinase with similar properties was therefore intimately associated with p60src which was synthesized in vitro in the reticulocyte lysate, just as it is with p60src which is obtained from transformed chick and mammalian cells. It is therefore highly unlikely that this association is artifactual. ts NY68 is a mutant of Rous sarcoma virus which is able to transform cells at 36 but not at 41 degrees C. In vitro translation of ts NY68 virion RNA at 30 degrees C resulted in efficient synthesis of immunoprecipitable p60src, but very inefficient synthesis of an immunoprecipitable protein kinase. The p60src obtained by in vitro translation of wild-type virion RNA was more than 20-fold more active as a protein kinase than was that obtained from ts NY68 RNA. The correlation in the case of ts NY68 of a deficiency in protein kinase activity with an inability to transform cells at high temperature suggests that the protein kinase activity associated with p60src is indeed critical to cellular transformation.  相似文献   

18.
Recombinant murine retroviruses containing the src gene of the avian retrovirus Rous sarcoma virus were isolated. Such viruses were isolated from cells after transfection with DNAs in which the src gene was inserted into the genome of the amphotropic murine retrovirus 4070A. The isolated viruses had functional gag and pol genes, but they were all env defective since the src gene was inserted in the middle of the env gene coding region. Infectious transforming virus could be isolated only from cells transfected with DNA constructions in which the src gene was in the same polarity as that of a long terminal repeat of the amphotropic viral genome. These recombinant viruses encoded a pp60src protein with a molecular weight similar to that of the Schmidt-Ruppin strain of Rous sarcoma virus. In addition, the src protein(s) of these recombinant viruses was as active as protein kinases in the immune complex protein kinase assay. Intravenous injection of helper-independent Moloney and Friend murine leukemia virus pseudotypes of the src recombinant viruses into 6-week-old NIH Swiss mice resulted in the appearance of splenic foci within 2 weeks, splenomegaly and, later after infection (8 to 10 weeks), anemia. Infectious transforming virus could be recovered from the spleens of diseased animals. Such viruses encoded pp60src but not p21ras or mink cell focus-forming virus-related glycoproteins.  相似文献   

19.
Eight transformation-defective, temperature-sensitive (ts) mutants of the Prague strain of Rous sarcoma virus, subgroup A, have been isolated after mutagenesis with 5-bromodeoxyuridine followed by selection on the basis of focus tests. Five of these mutants, ts GI201, GI202, GI203, GI204, and GI205, exhibit properties like most previously reported isolates in that they show a temperature-sensitive response to each of a variety of transformation-specific parameters tested. Interestingly, GI201, in addition to the temperature-sensitive defect, carries a lesion that was observed as a nonconditional loss of expression of plasminogen activator protease. Three mutants, ts GI251, GI252, and GI253 have been disignated partial transformation-defective (PTD) mutants since they behave as ts mutants according to some tests for transformation and as wild type according to others. These three mutants fail to form foci at the nonpermissive temperature (41 degrees C) and art nontumorigenic in 3-week-old chickens (body temperature, 42 degrees C). The agglutinability by concanavalin A of cells infected with these mutants shows a definite temperature sensitivity, as do the rate of 2-deoxyglucose uptake and the disappearance of the 250, 000-dalton normal cell glycoprotein (large, external, transformation sensitive [LETS]). Although the PTD mutant-infected cells, unlike cells infected with other transformation mutants, exhibit a cell-bound plasminogen activator protease at the nonpermissive temperature, this activator is not detectable as a free protease in the medium, as it is with wild-type, virus-infected cells. The PTD mutants behave like the wild-type parent in their ability to induce transformed growth properties in the infected cells, i.e., growth beyond normal cell saturation density with or without serum-supplemented medium and growth leading to colony formation in soft-agar- or methyl cellulose-containing suspension media.  相似文献   

20.
We have compared the polypeptide products of the src gene of several strains of Rous sarcoma virus produced by in vitro translation of heat-denatured 70S virion RNA in the nuclease-treated reticulocyte lysate with those present in chick cells transformed by these viruses. We have done this by immunoprecipitation, using sera from rabbits injected at birth with Schmidt-Ruppin Rous sarcoma virus. In vitro translation results in the synthesis of at least nine polypeptides which appear to be encoded by the src gene. These range in size from 17,000 to 60,000 daltons. The sera from tumor-bearing rabbits precipitated these polypeptides arising from the in vitro translation of RNA from Schmidt-Ruppin Rous sarcoma virus of both subgroup A and subgroup D and from one stock of Prague Rous sarcoma virus of subgroup C. In each case, all of this family of related polypeptides could be precipitated except the smallest, the 17,000-dalton polypeptide. No precipitation of analogous polypeptides resulting from the translation of RNA from other strains of Rous sarcoma virus was observed. Cells transformed by these three strains of Rous sarcoma virus contain easily detectable amounts of a polypeptide, p60src, essentially identical to the 60,000-dalton in vitro product. With one exception, they do not contain significant amounts of polypeptides analogous to the smaller in vitro products which can be precipitated by these sera. Cells transformed by one stock of Schmidt-Ruppin Rous sarcoma virus of subgroup A did contain a 39,000-dalton polypeptide, which was related, by peptide mapping, to the 60,000-dalton polypeptide and was similar in size to a precipitable in vitro product. The 60,000-dalton polypeptide present in transformed cells appeared to be phosphorylated 10 to 25 min after its synthesis, metabolically very stable, and not derived from a precursor polypeptide. All immunoprecipitates from transformed cells which contained p60src also contained an 80,000-dalton phosphoprotein. This polypeptide is unrelated to p60src, as determined by peptide mapping, and may well be a host cell polypeptide which is specifically associated with p60src.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号