首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Pyruvate dehydrogenase kinase isoforms (PDK1-4) are the molecular switch that down-regulates activity of the human pyruvate dehydrogenase complex through reversible phosphorylation. We showed previously that binding of the lipoyl domain 2 (L2) of the pyruvate dehydrogenase complex to PDK3 induces a "cross-tail" conformation in PDK3, resulting in an opening of the active site cleft and the stimulation of kinase activity. In the present study, we report that alanine substitutions of Leu-140, Glu-170, and Glu-179 in L2 markedly reduce binding affinities of these L2 mutants for PDK3. Unlike wildtype L2, binding of these L2 mutants to PDK3 does not preferentially reduce the affinity of PDK3 for ADP over ATP. The inefficient removal of product inhibition associated with ADP accounts for the decreased stimulation of PDK3 activity by these L2 variants. Serial truncations of the PDK3 C-terminal tail region either impede or abolish the binding of wild-type L2 to the PDK3 mutants, resulting in the reduction or absence of L2-enhanced kinase activity. Alanine substitutions of residues Leu-27, Phe-32, Phe-35, and Phe-48 in the lipoyl-binding pocket of PDK3 similarly nullify L2 binding and L2-stimulated PDK3 activity. Our results indicate that the above residues in L2 and residues in the C-terminal region and the lipoyl-binding pocket of PDK3 are critical determinants for the cross-talk between L2 and PDK3, which up-regulates PDK3 activity.  相似文献   

2.
Human pyruvate dehydrogenase complex (PDC) is down-regulated by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK4 is overexpressed in skeletal muscle in type 2 diabetes, resulting in impaired glucose utilization. Here we show that human PDK4 has robust core-free basal activity, which is considerably higher than activity levels of other PDK isoforms stimulated by the PDC core. PDK4 binds the L3 lipoyl domain, but its activity is not significantly stimulated by any individual lipoyl domains or the core of PDC. The 2.0-A crystal structures of the PDK4 dimer with bound ADP reveal an open conformation with a wider active-site cleft, compared with that in the closed conformation epitomized by the PDK2-ADP structure. The open conformation in PDK4 shows partially ordered C-terminal cross-tails, in which the conserved DW (Asp(394)-Trp(395)) motif from one subunit anchors to the N-terminal domain of the other subunit. The open conformation fosters a reduced binding affinity for ADP, facilitating the efficient removal of product inhibition by this nucleotide. Alteration or deletion of the DW-motif disrupts the C-terminal cross-tail anchor, resulting in the closed conformation and the nearly complete inactivation of PDK4. Fluorescence quenching and enzyme activity data suggest that compounds AZD7545 and dichloroacetate lock PDK4 in the open and the closed conformational states, respectively. We propose that PDK4 with bound ADP exists in equilibrium between the open and the closed conformations. The favored metastable open conformation is responsible for the robust basal activity of PDK4 in the absence of the PDC core.  相似文献   

3.
The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1>PDK4 approximately PDK2>PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects.  相似文献   

4.
The mechanism of action of structurally distinct pyruvate dehydrogenase kinase (PDK) inhibitors was examined in assays with experimental contexts ranging from an intact pyruvate dehydrogenase complex (PDC) with and without supplemental ATP or ADP to a synthetic peptide substrate to PDK autophosphorylation. Some compounds directly inhibited the catalytic activity of PDKs. Some of the inhibitor classes tested inhibited autophosphorylation of recombinant PDK1 and PDK2. During these studies, PDC was shown to be directly inhibited by a novel mechanism; the addition of supplemental recombinant PDKs, an effect that is ADP-dependent and partly alleviated by members of each of the compound classes tested. Overall, these data demonstrate that small molecules acting at diverse sites can inhibit PDK activity.  相似文献   

5.
Pyruvate dehydrogenase kinase (PDK) isoforms 2 and 3 were produced via co-expression with the chaperonins GroEL and GroES and purified with high specific activities in affinity tag-free forms. By using human components, we have evaluated how binding to the lipoyl domains of the dihydrolipoyl acetyltransferase (E2) produces the predominant changes in the rates of phosphorylation of the pyruvate dehydrogenase (E1) component by PDK2 and PDK3. E2 assembles as a 60-mer via its C-terminal domain and has mobile connections to an E1-binding domain and then two lipoyl domains, L2 and L1 at the N terminus. PDK3 was activated 17-fold by E2; the majority of this activation was facilitated by the free L2 domain (half-maximal activation at 3.3 microm L2). The direct activation of PDK3 by the L2 domain resulted in a 12.8-fold increase in k(cat) along with about a 2-fold decrease in the K(m) of PDK3 for E1. PDK3 was poorly inhibited by pyruvate or dichloroacetate (DCA). PDK3 activity was stimulated upon reductive acetylation of L1 and L2 when full activation of PDK3 by E2 was avoided (e.g. using free lipoyl domains or ADP-inhibited E2-activated PDK3). In marked contrast, PDK2 was not responsive to free lipoyl domains, but the E2-60-mer enhanced PDK2 activity by 10-fold. E2 activation of PDK2 resulted in a greatly enhanced sensitivity to inhibition by pyruvate or DCA; pyruvate was effective at significantly lower levels than DCA. E2-activated PDK2 activity was stimulated >/=3-fold by reductive acetylation of E2; stimulated PDK2 retained high sensitivity to inhibition by ADP and DCA. Thus, PDK3 is directly activated by the L2 domain, and fully activated PDK3 is relatively insensitive to feed-forward (pyruvate) and feed-back (acetylating) effectors. PDK2 was activated only by assembled E2, and this activated state beget high responsiveness to those effectors.  相似文献   

6.
Histidine modifying agents abolish pyruvate dehydrogenase kinase activity   总被引:3,自引:0,他引:3  
Pyruvate dehydrogenase kinase (PDK) specifically phosphorylates the E1alpha subunit of the pyruvate dehydrogenase complex (PDC). Sequence analysis of cloned PDKs led to the proposal that they are mechanistically related to prokaryotic 2-component His-kinases. The reaction mechanism of protein His-kinases involves autophosphorylation of a specific His residue followed by phosphotransfer to an Asp residue. Treatment of recombinant Arabidopsis thaliana PDK with the His-directed reagents diethyl pyrocarbonate (DEPC) and dichloro-(2,2':6', 2"-terpyridine)-platinum(II) dihydrate led to a marked inhibition of autophosphorylation. In addition, DEPC treatment abolished the ability of PDK to trans-phosphorylate and inactivate PDC. These results validate the prediction that PDKs require His residues for activity.  相似文献   

7.
Bao H  Kasten SA  Yan X  Roche TE 《Biochemistry》2004,43(42):13432-13441
Pyruvate dehydrogenase kinase 2 (PDK2) activity is enhanced by the dihydrolipoyl acetyltransferase core (E2 60mer) that binds PDK2 and a large number of its pyruvate dehydrogenase (E1) substrate. With E2-activated PDK2, K(+) at approximately 90 mM and Cl(-) at approximately 60 mM decreased the K(m) of PDK2 for ATP and competitive K(i) for ADP by approximately 3-fold and enhanced pyruvate inhibition. Comparing PDK2 catalysis +/- E2, E2 increased the K(m) of PDK2 for ATP by nearly 8-fold (from 5 to 39 microM), increased k(cat) by approximately 4-fold, and decreased the requirement for E1 by at least 400-fold. ATP binding, measured by a cold-trapping technique, occurred at two active sites with a K(d) of 5 microM, which equals the K(m) and K(d) of PDK2 for ATP measured in the absence of E2. During E2-aided catalysis, PDK2 had approximately 3 times more ADP than ATP bound at its active site, and the pyruvate analogue, dichloroacetate, led to 16-fold more ADP than ATP being bound (no added ADP). Pyruvate functioned as an uncompetitive inhibitor versus ATP, and inclusion of ADP transformed pyruvate inhibition to noncompetitive. At high pyruvate levels, pyruvate was a partial inhibitor but also induced substrate inhibition at high ATP levels. Our results indicate that, at physiological salt levels, ADP dissociation is a limiting step in E2-activated PDK2 catalysis, that PDK2.[ADP or ATP].pyruvate complexes form, and that PDK2.ATP.pyruvate.E1 reacts with PDK2.ADP.pyruvate accumulating.  相似文献   

8.
Pyruvate dehydrogenase kinase (PDK) is the primary regulator of flux through the mitochondrial pyruvate dehydrogenase complex (PDC). Analysis of the primary amino-acid sequences of PDK from various sources reveals that these enzymes include the five domains characteristic of prokaryotic two-component His-kinases, despite the fact that PDK exclusively phosphorylates Ser residues in the E1alpha subunit of the PDC. This seeming contradiction might be resolved if the PDK-catalyzed reaction employed a phospho-His intermediate. The results from pH-stability studies of autophosphorylated Arabidopsis thaliana PDK did not provide any support for a phospho-His intermediate. Furthermore, site-directed mutagenesis of the two most likely phosphotransfer His residues (H121 and H168) did not abolish either PDK autophosphorylation or the ability to transphosphorylate E1alpha. Thus, PDK is a unique type of protein kinase having a His-kinase-like sequence but Ser-kinase activity.  相似文献   

9.
The dihydrolipoyl acetyltransferase (E2) has an enormous impact on pyruvate dehydrogenase kinase (PDK) phosphorylation of the pyruvate dehydrogenase (E1) component by acting as a mobile binding framework and in facilitating and mediating regulation of PDK activity. Analytical ultracentrifugation (AUC) studies established that the soluble PDK2 isoform is a stable dimer. The interaction of PDK2 with the lipoyl domains of E2 (L1, L2) and the E3-binding protein (L3) were characterized by AUC. PDK2 interacted very weakly with L2 (Kd approximately 175 microM for 2 L2/PDK2) but much tighter with dimeric glutathione S-transferase (GST)-L2 (Kd approximately 3 microM), supporting the importance of bifunctional binding. Reduction of lipoyl groups resulted in approximately 8-fold tighter binding of PDK2 to GST-L2red, which was approximately 300-fold tighter than binding of 2 L2red and also much tighter than binding by GST-L1red and GST-L3red. The E2 60-mer bound approximately 18 PDK2 dimers with a Kd similar to GST-L2. E2.E1 bound more PDK2 (approximately 27.6) than E2 with approximately 2-fold tighter affinity. Lipoate reduction fostered somewhat tighter binding at more sites by E2 and severalfold tighter binding at the majority of sites on E2.E1. ATP and ADP decreased the affinity of PDK2 for E2 by 3-5-fold and adenosine 5'-(beta,gamma-imino)triphosphate or phosphorylation of E1 similarly reduced PDK2 binding to E2.E1. Reversible bifunctional binding to L2 with the mandatory singly held transition fits the proposed "hand-over-hand" movement of a kinase dimer to access E1 without dissociating from the complex. The gain in binding interactions upon lipoate reduction likely aids reduction-engendered stimulation of PDK2 activity; loosening of binding as a result of adenine nucleotides and phosphorylation may instigate movement of lipoyl domain-held kinase to a new E1 substrate.  相似文献   

10.
Activity of the mammalian pyruvate dehydrogenase complex is regulated by phosphorylation-dephosphorylation of three specific serine residues (site 1, Ser-264; site 2, Ser-271; site 3, Ser-203) of the alpha subunit of the pyruvate dehydrogenase (E1) component. Phosphorylation is carried out by four pyruvate dehydrogenase kinase (PDK) isoenzymes. Specificity of the four mammalian PDKs toward the three phosphorylation sites of E1 was investigated using the recombinant E1 mutant proteins with only one functional phosphorylation site present. All four PDKs phosphorylated site 1 and site 2, however, with different rates in phosphate buffer (for site 1, PDK2 > PDK4 approximately PDK1 > PDK3; for site 2, PDK3 > PDK4 > PDK2 > PDK1). Site 3 was phosphorylated by PDK1 only. The maximum activation by dihydrolipoamide acetyltransferase was demonstrated by PDK3. In the free form, all PDKs phosphorylated site 1, and PDK4 had the highest activity toward site 2. The activity of the four PDKs was stimulated to a different extent by the reduction and acetylation state of the lipoyl moieties of dihydrolipoamide acetyltransferase with the maximum stimulation of PDK2. Substitution of the site 1 serine with glutamate, which mimics phosphorylation-dependent inactivation of E1, did not affect phosphorylation of site 2 by four PDKs and of site 3 by PDK1. Site specificity for phosphorylation of four PDKs with unique tissue distribution could contribute to the tissue-specific regulation of the pyruvate dehydrogenase complex in normal and pathophysiological states.  相似文献   

11.
The mammalian pyruvate dehydrogenase complex (PDC) is a mitochondrial multienzyme complex that connects glycolysis to the tricarboxylic acid cycle by catalyzing pyruvate oxidation to produce acetyl-CoA, NADH, and CO2. This reaction is required to aerobically utilize glucose, a preferred metabolic fuel, and is composed of three core enzymes: pyruvate dehydrogenase (E1), dihydrolipoyl transacetylase (E2), and dihydrolipoyl dehydrogenase (E3). The pyruvate-dehydrogenase-specific kinase (PDK) and pyruvate-dehydrogenase-specific phosphatase (PDP) are considered the main control mechanism of mammalian PDC activity. However, PDK and PDP activity are allosterically regulated by several effectors fully overlapping PDC substrates and products. This collection of positive and negative feedback mechanisms confounds simple predictions of relative PDC flux, especially when all effectors are dynamically modulated during metabolic states that exist in physiologically realistic conditions, such as exercise. Here, we provide, to our knowledge, the first globally fitted, pH-dependent kinetic model of the PDC accounting for the PDC core reaction because it is regulated by PDK, PDP, metal binding equilibria, and numerous allosteric effectors. The model was used to compute PDH regulatory complex flux as a function of previously determined metabolic conditions used to simulate exercise and demonstrates increased flux with exercise. Our model reveals that PDC flux in physiological conditions is primarily inhibited by product inhibition (~60%), mostly NADH inhibition (~30–50%), rather than phosphorylation cycle inhibition (~40%), but the degree to which depends on the metabolic state and PDC tissue source.  相似文献   

12.
In human (h) pyruvate dehydrogenase complex (PDC) the pyruvate dehydrogenase (E1) is bound to the E1-binding domain of dihydrolipoamide acetyltransferase (E2). The C-terminal surface of the E1beta subunit was scanned for the negatively charged residues involved in binding with E2. betaD289 of hE1 interacts with K276 of hE2 in a manner similar to the corresponding interaction in Bacillus stearothermophilus PDC. In contrast to bacterial E1beta, the C-terminal residue of the hE1beta does not participate in the binding with positively charged residues of hE2. This latter finding shows species specificity in the interaction between hE1beta and hE2 in PDC.  相似文献   

13.
The mitochondrial pyruvate dehydrogenase complex (PDC) is down-regulated by phosphorylation catalyzed by pyruvate dehydrogenase kinase (PDK) isoforms 1–4. Overexpression of PDK isoforms and therefore reduced PDC activity prevails in cancer and diabetes. In the present study, we investigated the role of the invariant C-terminal DW-motif in inhibition of human PDK2 by dichloroacetate (DCA). Substitutions were made in the DW-motif (Asp-382 and Trp-383) and its interacting residues (Tyr-145 and Arg-149) in the other subunit of PDK2 homodimer. Single and double mutants show 20–60% residual activities that are not stimulated by the PDC core. The R149A and Y145F/R149A mutants show drastic increases in apparent IC50 values for DCA, whereas binding affinities for DCA are comparable with wild-type PDK2. Both R149A and Y145F variants exhibit increased similar affinities for ADP and ATP, mimicking the effects of DCA. The R149A and the DW-motif mutations (D382A/W383A) forestall binding of the lipoyl domain of PDC to these mutants, analogous to wild-type PDK2 in the presence of DCA and ADP. In contrast, the binding of a dihydrolipoamide mimetic AZD7545 is largely unaffected in these PDK2 variants. Our results illuminate the pivotal role of the DW-motif in mediating communications between the DCA-, the nucleotide-, and the lipoyl domain-binding sites. This signaling network locks PDK2 in the inactive closed conformation, which is in equilibrium with the active open conformation without DCA and ADP. These results implicate the DW-motif anchoring site as a drug target for the inhibition of aberrant PDK activity in cancer and diabetes.  相似文献   

14.
Pyruvate dehydrogenase kinase (PDK) isoforms are molecular switches that downregulate the pyruvate dehydrogenase complex (PDC) by reversible phosphorylation in mitochondria. We have determined structures of human PDK1 or PDK3 bound to the inhibitors AZD7545, dichloroacetate (DCA), and radicicol. We show that the trifluoromethylpropanamide end of AZD7545 projects into the lipoyl-binding pocket of PDK1. This interaction results in inhibition of PDK1 and PDK3 activities by aborting kinase binding to the PDC scaffold. Paradoxically, AZD7545 at saturating concentrations robustly increases scaffold-free PDK3 activity, similar to the inner lipoyl domain. Good DCA density is present in the helix bundle in the N-terminal domain of PDK1. Bound DCA promotes local conformational changes that are communicated to both nucleotide-binding and lipoyl-binding pockets of PDK1, leading to the inactivation of kinase activity. Finally, radicicol inhibits kinase activity by binding directly to the ATP-binding pocket of PDK3, similar to Hsp90 and Topo VI from the same ATPase/kinase superfamily.  相似文献   

15.
The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1?>?PDK4?~?PDK2?>?PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects.  相似文献   

16.
Regulation of heart muscle pyruvate dehydrogenase kinase   总被引:31,自引:25,他引:6       下载免费PDF全文
1. The activity of pig heart pyruvate dehydrogenase kinase was assayed by the incorporation of [(32)P]phosphate from [gamma-(32)P]ATP into the dehydrogenase complex. There was a very close correlation between this incorporation and the loss of pyruvate dehydrogenase activity with all preparations studied. 2. Nucleoside triphosphates other than ATP (at 100mum) and cyclic 3':5'-nucleotides (at 10mum) had no significant effect on kinase activity. 3. The K(m) for thiamin pyrophosphate in the pyruvate dehydrogenase reaction was 0.76mum. Sodium pyrophosphate, adenylyl imidodiphosphate, ADP and GTP were competitive inhibitors against thiamin pyrophosphate in the dehydrogenase reaction. 4. The K(m) for ATP of the intrinsic kinase assayed in three preparations of pig heart pyruvate dehydrogenase was in the range 13.9-25.4mum. Inhibition by ADP and adenylyl imidodiphosphate was predominantly competitive, but there was nevertheless a definite non-competitive element. Thiamin pyrophosphate and sodium pyrophosphate were uncompetitive inhibitors against ATP. It is suggested that ADP and adenylyl imidodiphosphate inhibit the kinase mainly by binding to the ATP site and that the adenosine moiety may be involved in this binding. It is suggested that thiamin pyrophosphate, sodium pyrophosphate, adenylyl imidodiphosphate and ADP may inhibit the kinase by binding through pyrophosphate or imidodiphosphate moieties at some site other than the ATP site. It is not known whether this is the coenzyme-binding site in the pyruvate dehydrogenase reaction. 5. The K(m) for pyruvate in the pyruvate dehydrogenase reaction was 35.5mum. 2-Oxobutyrate and 3-hydroxypyruvate but not glyoxylate were also substrates; all three compounds inhibited pyruvate oxidation. 6. In preparations of pig heart pyruvate dehydrogenase free of thiamin pyrophosphate, pyruvate inhibited the kinase reaction at all concentrations in the range 25-500mum. The inhibition was uncompetitive. In the presence of thiamin pyrophosphate (endogenous or added at 2 or 10mum) the kinase activity was enhanced by low concentrations of pyruvate (25-100mum) and inhibited by a high concentration (500mum). Activation of the kinase reaction was not seen when sodium pyrophosphate was substituted for thiamin pyrophosphate. 7. Under the conditions of the kinase assay, pig heart pyruvate dehydrogenase forms (14)CO(2) from [1-(14)C]pyruvate in the presence of thiamin pyrophosphate. Previous work suggests that the products may include acetoin. Acetoin activated the kinase reaction in the presence of thiamin pyrophosphate but not with sodium pyrophosphate. It is suggested that acetoin formation may contribute to activation of the kinase reaction by low pyruvate concentrations in the presence of thiamin pyrophosphate. 8. Pyruvate effected the conversion of pyruvate dehydrogenase phosphate into pyruvate dehydrogenase in rat heart mitochondria incubated with 5mm-2-oxoglutarate and 0.5mm-l-malate as respiratory substrates. It is suggested that this effect of pyruvate is due to inhibition of the pyruvate dehydrogenase kinase reaction in the mitochondrion. 9. Pyruvate dehydrogenase kinase activity was inhibited by high concentrations of Mg(2+) (15mm) and by Ca(2+) (10nm-10mum) at low Mg(2+) (0.15mm) but not at high Mg(2+) (15mm).  相似文献   

17.
18.
19.
Klyuyeva A  Tuganova A  Popov KM 《Biochemistry》2005,44(41):13573-13582
Pyruvate dehydrogenase kinase 2 (PDK2) is a prototypical mitochondrial protein kinase that regulates the activity of the pyruvate dehydrogenase complex. Recent structural studies have established that PDK2 consists of a catalytic core built of the B and K domains and the relatively long amino and carboxyl tails of unknown function. Here, we show that the carboxy-terminal truncation variants of PDK2 display a greatly diminished capacity for phosphorylation of holo-PDC. This effect is due largely to the inability of the transacetylase component of PDC to promote the phosphorylation reaction catalyzed by the truncated PDK2 variants. Furthermore, the truncated forms of PDK2 bind poorly to the lipoyl-bearing domain(s) provided by the transacetylase component. Taken together, these data strongly suggest that the carboxyl tails of PDK isozymes contribute to the lipoyl-bearing domain-binding site of the kinase molecule. We also show that the carboxyl tails derived from isozymes PDK1, PDK3, and PDK4 are capable of supporting the kinase activity of the kinase core derived from PDK2 as well as binding of the respective PDK2 chimeras to the lipoyl-bearing domain. Furthermore, the chimera carrying the carboxyl tail of PDK3 displays a stronger response to the addition of the transacetylase component along with a better binding to the lipoyl-bearing domain, suggesting that, at least in part, the differences in the amino acid sequences of the carboxyl tails account for the differences between PDK isozymes.  相似文献   

20.
The most common mutation in the alpha subunit of the pyruvate dehydrogenase (E1) component of the human pyruvate dehydrogenase complex (PDC) is arginine-234 to glycine and glutamine in 12 and 3 patients, respectively. Interestingly, these two mutations at the same amino acid position cause E1 (and hence PDC) deficiency by apparently different mechanisms. Recombinant human R234Q E1 had similar V(max) (25.7 +/- 4.4 units/mg E1) and apparent K(m) (101 +/- 4 nM) values for TPP as recombinant wild-type human E1, while R234G E1 had no significant change in V(max) (33.6 +/- 4.7 units/mg E1) but had a 7-fold increase in its apparent K(m) value for TPP (497 +/- 25 nM). Both of the R234 mutant proteins had similar apparent K(m) values for pyruvate. Both R234Q and R234G mutant proteins displayed similar phosphorylation rates of sites 1 and 2 by pyruvate dehydrogenase kinase 2 (PDK2) and site 3 by PDK1 compared to wild-type E1. Phosphorylated R234Q E1, R234G E1, and wild-type E1 also had similar dephosphorylation rates of sites 1 and 2 by phosphopyruvate dehydrogenase phosphatase 1. The rate of dephosphorylation of site 3 was about 50% for R234Q E1 and without a significant change for R234G E1 compared to the wild type. The data indicate that the patients with the R234G E1 mutation are symptomatic due to a decreased ability of this mutant protein to bind TPP, whereas the patients with the R234Q E1 mutation are symptomatic due to a decreased rate of dephosphorylation of site 3, hence keeping the enzyme in a phosphorylated/inactivated form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号