首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
3.
Xyloglucan endotransglucosylase/hydrolases (XTH) are enzymes that catalyze the hydrolysis and transglycosylation of xyloglucan polymers in plant cell walls. Previously, we isolated a cDNA from mycorrhizal roots of Medicago truncatula that is predicted to encode an XTH [van Buuren, M.L., Maldonado-Mendoza, I.E., Trieu, A.T., Blaylock, L.A., Harrison, M.J., 1999. Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis between M. truncatula and G. versiforme. Mol. Plant-Microb. Interact. 12, 171-181.]. Here, we identified the corresponding XTH gene, designated Mt-XTH1. The Mt-XTH1 gene contains four exons separated by three introns and resides on a 15-kb Xba1 fragment adjacent to a second XTH gene designated Mt-XTH2. Mt-XTH2 shares the same exon-intron structure as Mt-XTH1. Exons 2, 3 and 4 and introns 1 and 2 are identical to Mt-XTH1, while exon 1 and intron 3 are divergent, both in sequence and in length. Mt-XTH1 is induced following colonization of the roots by AM fungi but does not respond to changes in phosphate status. Analysis of transgenic roots expressing an Mt-XTH1 promoterColon, two colonsuidA fusion revealed that the Mt-XTH1 promoter directs expression in cells throughout the root system with significantly higher levels of activity in mycorrhizal roots. Mt-XTH1 expression is elevated not only in the regions of the roots colonized by the fungus, but also at sites distal to the infected regions. These expression patterns are consistent with activation in response to a systemic signal.  相似文献   

4.
5.
6.
Harrison MJ  Dewbre GR  Liu J 《The Plant cell》2002,14(10):2413-2429
Many plants have the capacity to obtain phosphate via a symbiotic association with arbuscular mycorrhizal (AM) fungi. In AM associations, the fungi release phosphate from differentiated hyphae called arbuscules, that develop within the cortical cells, and the plant transports the phosphate across a symbiotic membrane, called the periarbuscular membrane, into the cortical cell. In Medicago truncatula, a model legume used widely for studies of root symbioses, it is apparent that the phosphate transporters known to operate at the root-soil interface do not participate in symbiotic phosphate transport. EST database searches with short sequence motifs shared by known phosphate transporters enabled the identification of a novel phosphate transporter from M. truncatula, MtPT4. MtPT4 is significantly different from the plant root phosphate transporters cloned to date. Complementation of yeast phosphate transport mutants indicated that MtPT4 functions as a phosphate transporter, and estimates of the K(m) suggest a relatively low affinity for phosphate. MtPT4 is expressed only in mycorrhizal roots, and the MtPT4 promoter directs expression exclusively in cells containing arbuscules. MtPT4 is located in the membrane fraction of mycorrhizal roots, and immunolocalization revealed that MtPT4 colocalizes with the arbuscules, consistent with a location on the periarbuscular membrane. The transport properties and spatial expression patterns of MtPT4 are consistent with a role in the acquisition of phosphate released by the fungus in the AM symbiosis.  相似文献   

7.
8.
9.
10.
11.
The majority of vascular flowering plants are able to form symbiotic associations with arbuscular mycorrhizal fungi. These symbioses, termed arbuscular mycorrhizas, are mutually beneficial, and the fungus delivers phosphate to the plant while receiving carbon. In these symbioses, phosphate uptake by the arbuscular mycorrhizal fungus is the first step in the process of phosphate transport to the plant. Previously, we cloned a phosphate transporter gene involved in this process. Here, we analyze the expression and regulation of a phosphate transporter gene (GiPT) in the extra-radical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices during mycorrhizal association with carrot or Medicago truncatula roots. These analyses reveal that GiPT expression is regulated in response to phosphate concentrations in the environment surrounding the extra-radical hyphae and modulated by the overall phosphate status of the mycorrhiza. Phosphate concentrations, typical of those found in the soil solution, result in expression of GiPT. These data imply that G. intraradices can perceive phosphate levels in the external environment but also suggest the presence of an internal phosphate sensing mechanism.  相似文献   

12.
13.
14.
15.

This review highlights the key role that mycorrhizal fungi play in making phosphorus (Pi) more available to plants, including pathways of phosphorus absorption, phosphate transporters and plant-mycorrhizal fungus symbiosis, especially in conditions where the level of inorganic phosphorus (Pi) in the soil is low. Mycorrhizal fungi colonization involves a series of signaling where the plant root exudates strigolactones, while the mycorrhizal fungi release a mixture of chito-oligosaccharides and liposaccharides, that activate the symbiosis process through gene signaling pathways, and contact between the hyphae and the root. Once the symbiosis is established, the extraradical mycelium acts as an extension of the roots and increases the absorption of nutrients, particularly phosphorus by the phosphate transporters. Pi then moves along the hyphae to the plant root/fungus interface. The transfer of Pi occurs in the apoplectic space; in the case of arbuscular mycorrhizal fungi, Pi is discharged from the arbuscular to the plant’s root symplasm, in the membrane that surrounds the arbuscule. Pi is then absorbed through the plant periarbuscular membrane by plant phosphate transporters. Furthermore, plants can acquire Pi from soil as a direct absorption pathway. As a result of this review, several genes that codify for high-affinity Pi transporters were identified. In plants, the main family is Pht1 although it is possible to find others such as Pht2, Pht3, Pho1 and Pho2. As in plants, mycorrhizal fungi have genes belonging to the Pht1 subfamily. In arbuscular mycorrhizal fungi we found L1PT1, GiPT, MtPT1, MtPT2, MtPT4, HvPT8, ZmPht1, TaPTH1.2, GmosPT and LYCes. HcPT1, HcPT2 and BePT have been characterized in ectomycorrhizal fungi. Each gene has a different way of expressing itself. In this review, we present diagrams of the symbiotic relationship between mycorrhizal fungi and the plant. This knowledge allows us to design solutions to regional problems such as food production in soils with low levels of Pi.

  相似文献   

16.
17.
植物菌根共生磷酸盐转运蛋白   总被引:1,自引:0,他引:1  
大多数植物能和丛枝菌根(arbuscular mycorrhiza, AM)真菌形成菌根共生体。AM能够促进植物对土壤中矿质营养的吸收,尤其是磷的吸收。磷的吸收和转运由磷酸盐转运蛋白介导。总结了植物AM磷酸盐转运蛋白及其结构特征,分析其分类及系统进化,并综述了AM磷酸盐转运蛋白介导的磷的吸收和转运过程及其基因的表达调控。植物AM磷酸盐转运蛋白属于Pht1家族成员,它不仅对磷的吸收和转运是必需的,而且对AM共生也至关重要,为进一步了解菌根形成的分子机理及信号转导途径提供了理论基础。  相似文献   

18.
19.
Plant genes induced during early root colonization of Medicago truncatula Gaertn. J5 by a growth-promoting strain of Pseudomonas fluorescens (C7R12) have been identified by suppressive subtractive hybridization. Ten M. truncatula genes, coding proteins associated with a putative signal transduction pathway, showed an early and transient activation during initial interactions between M. truncatula and P. fluorescens, up to 8 d after root inoculation. Gene expression was not significantly enhanced, except for one gene, in P. fluorescens-inoculated roots of a Myc(-)Nod(-) genotype (TRV25) of M. truncatula mutated for the DMI3 (syn. MtSYM13) gene. This gene codes a Ca(2+) and calmodulin-dependent protein kinase, indicating a possible role of calcium in the cellular interactions between M. truncatula and P. fluorescens. When expression of the 10 plant genes was compared in early stages of root colonization by mycorrhizal and rhizobial microsymbionts, Glomus mosseae activated all 10 genes, whereas Sinorhizobium meliloti only activated one and inhibited four others. None of the genes responded to inoculation by either microsymbiont in roots of the TRV25 mutant. The similar response of the M. truncatula genes to P. fluorescens and G. mosseae points to common molecular pathways in the perception of the microbial signals by plant roots.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号