首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thioredoxin-interacting protein (TXNIP) has multiple functions, including tumor suppression and involvement in cell proliferation and apoptosis. However, its role in the inflammatory process remains unclear. In this report, we demonstrate that Txnip−/− mice are significantly more susceptible to lipopolysaccharide (LPS)-induced endotoxic shock. In response to LPS, Txnip−/− macrophages produced significantly higher levels of nitric oxide (NO) and inducible nitric oxide synthase (iNOS), and an iNOS inhibitor rescued Txnip−/− mice from endotoxic shock-induced death, demonstrating that NO is a major factor in TXNIP-mediated endotoxic shock. This susceptibility phenotype of Txnip−/− mice occurred despite reduced IL-1β secretion due to increased S-nitrosylation of NLRP3 compared to wild-type controls. Taken together, these data demonstrate that TXNIP is a novel molecule that links NO synthesis and NLRP3 inflammasome activation during endotoxic shock.  相似文献   

2.
Outer membrane particles from Gram-negative bacteria are attractive vaccine candidates as they present surface antigens in their natural context. We previously developed a high yield production process for genetically derived particles, called generalized modules for membrane antigens (GMMA), from Shigella. As GMMA are derived from the outer membrane, they contain immunostimulatory components, especially lipopolysaccharide (LPS). We examined ways of reducing their reactogenicity by modifying lipid A, the endotoxic part of LPS, through deletion of late acyltransferase genes, msbB or htrB, in GMMA-producing Shigella sonnei and Shigella flexneri strains. GMMA with resulting penta-acylated lipid A from the msbB mutants showed a 600-fold reduced ability, and GMMA from the S. sonnei ΔhtrB mutant showed a 60,000-fold reduced ability compared with GMMA with wild-type lipid A to stimulate human Toll-like receptor 4 (TLR4) in a reporter cell line. In human peripheral blood mononuclear cells, GMMA with penta-acylated lipid A showed a marked reduction in induction of inflammatory cytokines (S. sonnei ΔhtrB, 800-fold; ΔmsbB mutants, 300-fold). We found that the residual activity of these GMMA is largely due to non-lipid A-related TLR2 activation. In contrast, in the S. flexneri ΔhtrB mutant, a compensatory lipid A palmitoleoylation resulted in GMMA with hexa-acylated lipid A with ∼10-fold higher activity to stimulate peripheral blood mononuclear cells than GMMA with penta-acylated lipid A, mostly due to retained TLR4 activity. Thus, for use as vaccines, GMMA will likely require lipid A penta-acylation. The results identify the relative contributions of TLR4 and TLR2 activation by GMMA, which need to be taken into consideration for GMMA vaccine development.  相似文献   

3.

Background

Platelet-activating factor (PAF) has been long believed to be associated with many pathophysiological processes during septic shock. Here we present novel activities for PAF in protecting mice against LPS-mediated endotoxic shock.

Principal Findings

In vivo PAF treatment immediately after LPS challenge markedly improved the survival rate against mortality from endotoxic shock. Administration of PAF prominently attenuated LPS-induced organ injury, including profound hypotension, excessive polymorphonuclear neutrophil infiltration, and severe multiple organ failure. In addition, PAF treatment protects against LPS-induced lymphocytes apoptosis. These protective effects of PAF was correlated with significantly decreases in the production of the inflammatory mediators such as TNF-α, IL-1β, IL-12, and IFN-γ, while increasing production of the anti-inflammatory cytokine IL-10 in vivo and in vitro.

Conclusions

Taken together, these results suggest that PAF may protect mice against endotoxic shock via a complex mechanism involving modulation of inflammatory and anti-inflammatory mediators.  相似文献   

4.
The influence of low-intensity centimeter electromagnetic waves (sweep 8.15–18 GHz, 1 μW/cm2, 1 h daily for 10 days) on the production of TNFα; interleukins 1α, 1β, 2, 6, and 10; IFNγ, NO; and Hsp 27, 72, and 90α was assessed in mice before and after acute intoxication with E. coli lipopolysaccharide. Irradiation after the endotoxic shock had no beneficial effect, whereas preliminary exposure improved the indices of organismic defense.  相似文献   

5.
Progranulin (PGRN) is a crucial secreted growth factor involved in various kinds of physiologic and disease processes and often has a protective role in inflammatory diseases. This study was designed to investigate the protective effects of PGRN on endotoxic shock in a mouse model of PGRN deficiency. After lipopolysaccharide (LPS) injection to induce endotoxic shock in mice, PGRN levels were induced in wild‐type (WT) mice at 6 and 24 hrs. Survival rate analysis, haematoxylin and eosin staining, immunohistochemical staining, enzyme‐linked immunosorbent assay and in situ terminal deoxynucleotidyl transferase–mediated uridine triphosphate nick‐end labelling assay were used to reveal the susceptibility, lung injury, inflammatory cell infiltration, production of inflammatory mediators and lung cell death in mice after LPS injection. PGRN‐deficient (Grn −/−) mice were highly susceptible to LPS‐induced endotoxic shock, with decreased survival, severe lung injury, increased production of pro‐inflammatory mediators, and inflammatory cell infiltration and apoptotic death in the lung. Additionally, recombinant PGRN (rPGRN) administration before LPS stimulation ameliorated the survival of and abnormalities in both WT and Grn −/− mice. Altogether, these findings indicate that PGRN may be a novel biologic agent with therapeutic potential for endotoxic shock probably by inhibiting LPS‐induced systemic and local inflammation in mice for treating endotoxic shock.  相似文献   

6.
Shigella is the leading cause for dysentery worldwide. Together with several virulence factors employed for invasion, the presence and length of the O antigen (OAg) of the lipopolysaccharide (LPS) plays a key role in pathogenesis. S. flexneri 2a has a bimodal OAg chain length distribution regulated in a growth-dependent manner, whereas S. sonnei LPS comprises a monomodal OAg. Here we reveal that S. sonnei, but not S. flexneri 2a, possesses a high molecular weight, immunogenic group 4 capsule, characterized by structural similarity to LPS OAg. We found that a galU mutant of S. sonnei, that is unable to produce a complete LPS with OAg attached, can still assemble OAg material on the cell surface, but a galU mutant of S. flexneri 2a cannot. High molecular weight material not linked to the LPS was purified from S. sonnei and confirmed by NMR to contain the specific sugars of the S. sonnei OAg. Deletion of genes homologous to the group 4 capsule synthesis cluster, previously described in Escherichia coli, abolished the generation of the high molecular weight OAg material. This OAg capsule strongly affects the virulence of S. sonnei. Uncapsulated knockout bacteria were highly invasive in vitro and strongly inflammatory in the rabbit intestine. But, the lack of capsule reduced the ability of S. sonnei to resist complement-mediated killing and to spread from the gut to peripheral organs. In contrast, overexpression of the capsule decreased invasiveness in vitro and inflammation in vivo compared to the wild type. In conclusion, the data indicate that in S. sonnei expression of the capsule modulates bacterial pathogenesis resulting in balanced capabilities to invade and persist in the host environment.  相似文献   

7.
The main goal of the present study was to evaluate the comparative effectiveness of tetrapyrrol photosensitizers (protoporphyrine IX and chlorine e 6) in red (632.8 nm) and green (532.5) spectrum bands on rat blood free radical status, using the experimental model of endotoxic shock. Endotoxic shock was produced by intraperitoneal injection of lipopolysaccharide B. Irradiation effectiveness was estimated by leukocyte activation (measured with luminol-dependent chemiluminescence), superoxide dismutase activity of blood plasma (nitro blue tetrasolium assay) and lipid peroxidation (assay with cis-parinaric acid). It was found that laser irradiation has multidirectional effects on leukocyte activation, membrane lipid peroxidation and plasma SOD activity and all these effects were more pronounced in the case of endotoxic shock. Protoporphyrin was more effective in leukocyte activation and chlorine e 6 demonstrated maximal effects on blood SOD activity.  相似文献   

8.
脂多糖诱导小鼠脏器中胞间粘附分子-1的表达   总被引:5,自引:0,他引:5  
Yan WS  Kan WH  Hang QB  Jiang Y  Wang SW  Zhao KS 《生理学报》2002,54(1):71-74
为研究脂多糖(lipopolysaccharide,LPS)诱导的内毒素休克小鼠多种脏器中胞间粘附分子-1(intercellu-lar adhesion molecule-1,ICAM-1)表达的差异。用5mg/kgLPS腹腔注射小鼠后,分别采用Western blotting和RT-PCR法检测组织中ICAM-1蛋白和mRNA的表达情况,结果显示,在正常小鼠,ICAM-1蛋白和mRNA的表达在肺中最多,其次是脾脏,在肾脏和肠有少量表达,在肝脏和心脏中未能检出,LPS腹腔注射后6h可诱导小鼠发生内毒素休克,此时,ICAM-1蛋白表达仍以在肺中最多,在肝、脾、心、肾和肠依次减少;其中在肺,肾和脾分别比正常时增加4.5、3.0和1.5倍,而且在正常时不能检出的肝和心中呈现阳性,但在肠中则变化不大,脏器中ICAM-1mRNA亦相应显著增加,上述结果表明,在LPS诱导的内毒素休克小鼠的多种脏器中ICAM-1蛋白和mRNA表达显著增加,脏器间ICAM-1表达上调的差异可能带来内毒素休克时脏器的不同易伤性,抑制ICAM-1的表达可能对内毒素休克的防治有重要的意义。  相似文献   

9.
Host defense peptides are key components of the innate immune system, providing multi-facetted responses to invading pathogens. Here, we describe that the peptide GKS26 (GKSRIQRLNILNAKFAFNLYRVLKDQ), corresponding to the A domain of heparin cofactor II (HCII), ameliorates experimental septic shock. The peptide displays antimicrobial effects through direct membrane disruption, also at physiological salt concentration and in the presence of plasma and serum. Biophysical investigations of model lipid membranes showed the antimicrobial action of GKS26 to be mirrored by peptide incorporation into, and disordering of, bacterial lipid membranes. GKS26 furthermore binds extensively to bacterial lipopolysaccharide (LPS), as well as its endotoxic lipid A moiety, and displays potent anti-inflammatory effects, both in vitro and in vivo. Thus, for mice challenged with ip injection of LPS, GKS26 suppresses pro-inflammatory cytokines, reduces vascular leakage and infiltration in lung tissue, and normalizes coagulation. Together, these findings suggest that GKS26 may be of interest for further investigations as therapeutic against severe infections and septic shock.  相似文献   

10.
To investigate whether impaired endothelial function was related to alteration of nitric oxide (NO) formation during endotoxic shock, we studied the effects of supplementation of L-arginine (L-Arg), D-arginine (D-Arg), and N(G)-nitro-L-arginine methyl ester (L-NAME), on endothelial function and structure in a rabbit model. Endotoxic shock was induced by a single lipopolysaccharide bolus (0.5 mg/kg i.v., Escherichia coli endotoxin). Coagulation factors and expression of monocyte tissue factor were determined by functional assays. Endothelium-dependent vascular relaxation was assessed by in vitro vascular reactivity. Immunohistochemical staining (CD31) was performed to assess damaged endothelial cell surface of the abdominal aorta. These parameters were studied 5 days after the onset of endotoxic shock and were compared under three conditions: in absence of treatment, with L-Arg or D-Arg supplementation, or with L-NAME. Both L-Arg and D-Arg significantly improved endothelium-dependent relaxation and endothelial morphological injury. L-NAME did not alter endothelial histological injury induced by lipopolysaccharide. These data indicate that arginine supplementation nonspecifically prevents endothelial dysfunction and histological injury in rabbit endotoxic shock. Moreover, L-Arg has no effect on coagulation activation and expression of monocyte tissue factor induced by endotoxic shock.  相似文献   

11.
BackgroundAntimicrobial resistance is a major issue in the Shigellae, particularly as a specific multidrug-resistant (MDR) lineage of Shigella sonnei (lineage III) is becoming globally dominant. Ciprofloxacin is a recommended treatment for Shigella infections. However, ciprofloxacin-resistant S. sonnei are being increasingly isolated in Asia and sporadically reported on other continents. We hypothesized that Asia is a primary hub for the recent international spread of ciprofloxacin-resistant S. sonnei.ConclusionsThis study suggests that a single clone, which is widespread in South Asia, is likely driving the current intercontinental surge of ciprofloxacin-resistant S. sonnei and is capable of establishing endemic transmission in new locations. Despite being limited in geographical scope, our work has major implications for understanding the international transfer of antimicrobial-resistant pathogens, with S. sonnei acting as a tractable model for studying how antimicrobial-resistant Gram-negative bacteria spread globally.  相似文献   

12.
During inflammation, the covalent linking of the ubiquitous extracellular polysaccharide hyaluronan (HA) with the heavy chains (HC) of the serum protein inter alpha inhibitor (IαI) is exclusively mediated by the enzyme tumor necrosis factor α (TNFα)-stimulated-gene-6 (TSG-6). While significant advances have been made regarding how HC-modified HA (HC-HA) is an important regulator of inflammation, it remains unclear why HC-HA plays a critical role in promoting survival in intraperitoneal lipopolysaccharide (LPS)-induced endotoxemia while exerting only a modest role in the outcomes following intratracheal exposure to LPS. To address this gap, the two models of intraperitoneal LPS-induced endotoxic shock and intratracheal LPS-induced acute lung injury were directly compared in TSG-6 knockout mice and littermate controls. HC-HA formation, endogenous TSG-6 activity, and inflammatory markers were assessed in plasma and lung tissue. TSG-6 knockout mice exhibited accelerated mortality during endotoxic shock. While both intraperitoneal and intratracheal LPS induced HC-HA formation in lung parenchyma, only systemically-induced endotoxemia increased plasma TSG-6 levels and intravascular HC-HA formation. Cultured human lung microvascular endothelial cells secreted TSG-6 in response to both TNFα and IL1β stimulation, indicating that, in addition to inflammatory cells, the endothelium may secrete TSG-6 into circulation during systemic inflammation. These data show for the first time that LPS-induced systemic inflammation is uniquely characterized by significant vascular induction of TSG-6 and HC-HA, which may contribute to improved outcomes of endotoxemia.  相似文献   

13.
IntroductionShigellosis is endemic in low-and middle-income countries, causing approximately 125 million episodes of diarrhea and leading to approximately 160 .000 deaths annually one-third of which is associated with children.ObjectiveTo describe the characteristics and antimicrobial resistance profiles of Shigella species recovered in Colombia from 1997 to 2018.Materials and methodsWe received isolates from laboratories in 29 Colombian departments. We serotyped with specific antiserum and determined antimicrobial resistance and minimal inhibitory concentrations for ten antibiotics with Kirby-Bauer tests following the Clinical and Laboratory Standards Institute recommendations.ResultsWe analyzed 5,251 isolates of Shigella spp., most of them obtained from stools (96.4%); 2,511 (47.8%) were from children under five years of age. The two most common species were S. sonnei (55.1%) and S. flexneri (41.7%). The highest resistance rate was that of tetracycline (88.1%) followed by trimethoprim-sulfamethoxazole (79.3%) and ampicillin (65.5%); 50.8% of isolates were resistant to chloramphenicol, 43.6% to amoxicillin/clavulanic acid, and less than 1% to cefotaxime, ceftazidime, gentamicin, and ciprofloxacin. In S. sonnei, the most common resistance profile corresponded to trimethoprim-sulfamethoxazole (92%) whereas in S. flexneri the most common antibiotic profiles were multidrug resistance.ConclusionsIn Colombia, children under five years are affected by all Shigella species. These findings should guide funders and public health officials to make evidence-based decisions for protection and prevention measures. The antimicrobial resistance characteristics found in this study underline the importance of combating the dissemination of the most frequently isolated species, S. sonnei and S. flexneri.  相似文献   

14.

Background

We evaluated a dipstick test for rapid detection of Shigella sonnei on bacterial colonies, directly on stools and from rectal swabs because in actual field situations, most pathologic specimens for diagnosis correspond to stool samples or rectal swabs.

Methodology/Principal Findings

The test is based on the detection of S. sonnei lipopolysaccharide (LPS) O-side chains using phase I-specific monoclonal antibodies coupled to gold particles, and displayed on a one-step immunochromatographic dipstick. A concentration as low as 5 ng/ml of LPS was detected in distilled water and in reconstituted stools in 6 minutes. This is the optimal time for lecture to avoid errors of interpretation. In distilled water and in reconstituted stools, an unequivocal positive reaction was obtained with 4 x 106 CFU/ml of S. sonnei. The specificity was 100% when tested with a battery of Shigella and different unrelated strains. When tested on 342 rectal swabs in Chile, specificity (281/295) was 95.3% (95% CI: 92.9% - 97.7%) and sensitivity (47/47) was 100%. Stool cultures and the immunochromatographic test showed concordant results in 95.5 % of cases (328/342) in comparative studies. Positive and negative predictive values were 77% (95% CI: 65% - 86.5%) and 100% respectively. When tested on 219 stools in Chile, Vietnam, India and France, specificity (190/198) was 96% (95% CI 92%–98%) and sensitivity (21/21) was 100%. Stool cultures and the immunochromatographic test showed concordant results in 96.3 % of cases (211/219) in comparative studies. Positive and negative predictive values were 72.4% (95% CI 56.1%–88.6%) and 100 %, respectively.

Conclusion

This one-step dipstick test performed well for diagnosis of S. sonnei both on stools and on rectal swabs. These data confirm a preliminary study done in Chile.  相似文献   

15.
BackgroundSex plays a key role in an individual’s immune response against pathogenic challenges such that females fare better when infected with certain pathogens. It is thought that sex hormones impact gene expression in immune cells and lead to sexually dimorphic responses to pathogens. We predicted that, in the presence of E. coli gram-negative lipopolysaccharide (LPS), there would be a sexually dimorphic response in proinflammatory cytokine production and acute phase stress gene expression and that these responses might vary among different mouse strains and times in a pattern opposite to that of body temperature associated with LPS-induced shock.ResultsStatistical analysis using analyses of variance (ANOVAs) showed that the levels of the all six traits changed over time, generally peaking at 2 hours after LPS injection. Mt-1, Fgb, and IL-6 showed differences among strains, although these were time-specific. Sexual dimorphism was seen for Fgb and IL6, and was most pronounced at the latest time period (7 hours) where male levels exceeded those for females. Trends for all six cytokine/gene expression traits were negatively correlated with those for body temperatures.DiscussionThe higher levels of expression of Fgb and IL6 in males compared with females are consistent with the greater vulnerability of males to infection and subsequent inflammation. Temperature appears to be a useful proxy for mortality in endotoxic shock, but sexual dimorphism in cytokine and stress gene expression levels may persist after an LPS challenge even if temperatures in the two sexes are similar and have begun to stabilize.  相似文献   

16.
Lung infection by Burkholderia species, in particular Burkholderia cenocepacia, accelerates tissue damage and increases post-lung transplant mortality in cystic fibrosis patients. Host-microbe interplay largely depends on interactions between pathogen-specific molecules and innate immune receptors such as Toll-like receptor 4 (TLR4), which recognizes the lipid A moiety of the bacterial lipopolysaccharide (LPS). The human TLR4·myeloid differentiation factor 2 (MD-2) LPS receptor complex is strongly activated by hexa-acylated lipid A and poorly activated by underacylated lipid A. Here, we report that B. cenocepacia LPS strongly activates human TLR4·MD-2 despite its lipid A having only five acyl chains. Furthermore, we show that aminoarabinose residues in lipid A contribute to TLR4-lipid A interactions, and experiments in a mouse model of LPS-induced endotoxic shock confirmed the proinflammatory potential of B. cenocepacia penta-acylated lipid A. Molecular modeling combined with mutagenesis of TLR4-MD-2 interactive surfaces suggests that longer acyl chains and the aminoarabinose residues in the B. cenocepacia lipid A allow exposure of the fifth acyl chain on the surface of MD-2 enabling interactions with TLR4 and its dimerization. Our results provide a molecular model for activation of the human TLR4·MD-2 complex by penta-acylated lipid A explaining the ability of hypoacylated B. cenocepacia LPS to promote proinflammatory responses associated with the severe pathogenicity of this opportunistic bacterium.  相似文献   

17.
BackgroundHibiscus syriacus L. has been used as a medicinal plant in many Asian countries. However, anti-inflammatory activity of H. syriacus L. remains unknown.PurposeThis study was aimed to investigating the anti-inflammatory effect of anthocyanin fractions from the H. syriacus L. variety Pulsae (PS) on the lipopolysaccharide (LPS)-induced inflammation and endotoxic shock.Study design and methodsMTT assay and flow cytometry analysis were performed to determine cytotoxicity of PS. RT-PCR, western blotting, and ELISA were conducted to evaluate the expression of proinflammatory mediators and cytokines. Molecular docking study predicted the binding scores and sites of PS to TLR4/MD2 complex. Immunohistochemical assay was conducted to evaluate the binding capability of PS to TLR4/MD2 and nuclear translocation of NF-κB p65. A zebrafish endotoxic shock model was used to evaluate anti-inflammatory activity of PS in vivo.ResultsPS suppressed LPS-induced nitric oxide and prostaglandin E2 secretion concomitant with the downregulation of inducible nitric oxide synthase and cyclooxygenase-2 expression. Furthermore, PS inhibited the production of proinflammatory cytokines such as TNF-α, IL-6, and IL-12 in LPS-stimulated RAW 264.7 macrophages. Additionally, molecular docking data showed that PS mostly fit into the hydrophobic pocket of MD2 and bound to TLR4. In particular, apigenin-7-O-glucoside powerfully bound to MD2 and TLR4 via hydrogen bonding. Additionally, immunohistochemistry assay revealed that PS inhibited LPS-induced TLR4 dimerization or expression on the cell surface, which consequently decreased MyD88 recruitment and IRAK4 phosphorylation, resulting in the inhibition of NF-κB activity. PS also attenuated LPS-mediated mortality and abnormality in zebrafish larvae and diminished the recruitment of neutrophils and macrophages at the inflammatory site accompanied by the low levels of proinflammatory mediators and cytokines.ConclusionPS might be a novel immunomodulator for the effective treatment of LPS-mediated inflammatory diseases.  相似文献   

18.
Previously, the changes in phagocyte functions such as adherence, chemotaxis or TNFalpha production were found to be associated with oxidative stress in endotoxin-induced septic shock. However, in this type of oxidative stress the lymphocyte involvement has rarely been studied. In the present report, we analyzed the above functions in peritoneal lymphocytes from male and female BALB/c mice with a lethal endotoxic shock caused by intraperitoneal injection of E. coli lipopolysaccharide (LPS) (100 mg/kg), male and female Swiss mice with lethal endotoxic shock caused by intraperitoneal injection of LPS (150 and 250 mg/kg, respectively) or non-lethal endotoxic shock (100 mg/kg). In peritoneal lymphocytes obtained at 0, 2, 4, 12 or 24 h after LPS injection, the first two functions of these cells in the immune response, i.e. adherence to tissues and directed migration (chemotaxis), were studied. At 0, 0.5, 1, 1.5, 2, 4, 12 and 24 h after LPS injection, TNFalpha released by lymphocytes was also analyzed. The results show that endotoxic shock increases the adherence and TNFalpha release, and decreases the chemotaxis of peritoneal lymphocytes. These changes were more significant in mice with lethal than with non-lethal endotoxic shock, a fact that confirms the important role of lymphocytes during endotoxic shock.  相似文献   

19.
Acute sepsis can be induced by cytokines such as TNF-α and biological products such as LPS. All of these agents cause systemic inflammation, which is characterized by hemodynamic shock and liver toxicity. However, the outcomes of different septic shock models were totally opposite in transglutaminase 2 knockout (TGase 2?/?) mice. The aim of our study was to clarify the role of TGase 2 in liver injury. Therefore, we explored the role of TGase 2 in liver damage using two different stress models: LPS-induced endotoxic shock and TNF-α/actinomycin D (ActD)-induced sepsis. TNF-α-dependent septic shock resulted in increased liver damage in TGase 2?/? mice compared with wild-type (WT) mice, and was accompanied by increased levels of caspase 3 and cathepsin D (CTSD) in the damaged liver. Conversely, LPS-induced septic shock resulted in ablation of inflammatory endotoxic shock in TGase 2?/? mice and decreased liver injury. We found that TGase 2 protected liver tissue from TNF-α-dependent septic shock by reducing the expression of caspase 3 and CTSD. However, TGase 2 differently participated in increased the hemodynamic shock in LPS-induced septic shock through macrophage activation rather than protecting direct liver damage. Therefore, these findings demonstrate that septic shock caused by different agents may induce different results in TGase 2?/? mice depending on the primary target organs affected.  相似文献   

20.
Shigellosis is the major global cause of dysentery. Shigella sonnei, which has historically been more commonly isolated in developed countries, is undergoing an unprecedented expansion across industrializing regions in Asia, Latin America, and the Middle East. The precise reasons underpinning the epidemiological distribution of the various Shigella species and this global surge in S. sonnei are unclear but may be due to three major environmental pressures. First, natural passive immunization with the bacterium Plesiomonas shigelloides is hypothesized to protect populations with poor water supplies against S. sonnei. Improving the quality of drinking water supplies would, therefore, result in a reduction in P. shigelloides exposure and a subsequent reduction in environmental immunization against S. sonnei. Secondly, the ubiquitous amoeba species Acanthamoeba castellanii has been shown to phagocytize S. sonnei efficiently and symbiotically, thus allowing the bacteria access to a protected niche in which to withstand chlorination and other harsh environmental conditions in temperate countries. Finally, S. sonnei has emerged from Europe and begun to spread globally only relatively recently. A strong selective pressure from localized antimicrobial use additionally appears to have had a dramatic impact on the evolution of the S. sonnei population. We hypothesize that S. sonnei, which exhibits an exceptional ability to acquire antimicrobial resistance genes from commensal and pathogenic bacteria, has a competitive advantage over S. flexneri, particularly in areas with poorly regulated antimicrobial use. Continuing improvement in the quality of global drinking water supplies alongside the rapid development of antimicrobial resistance predicts the burden and international distribution of S. sonnei will only continue to grow. An effective vaccine against S. sonnei is overdue and may become one of our only weapons against this increasingly dominant and problematic gastrointestinal pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号