首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first stage in hemostasis is the binding of the platelet membrane receptor glycoprotein (GP) Ib-IX complex to the A1 domain of von Willebrand factor in the subendothelium. A bleeding disorder associated with this interaction is platelet-type von Willebrand disease, which results from gain-of-function (GOF) mutations in amino acid residues 233 or 239 of the GP Ibalpha subunit of GP Ib-IX. Using optical tweezers and a quadrant photodetector, we investigated the binding of A1 to GOF and loss-of-function mutants of GP Ibalpha with mutations in the region containing the two known naturally occurring mutations. By dynamically measuring unbinding force profiles at loading rates ranging from 200-20,000 pN/s, we found that the bond strengths between A1 and GP Ibalpha GOF mutants (233, 235, 237, and 239) were significantly greater than the A1/wild-type GP Ib-IX bond at all loading rates examined (p < 0.05). In addition, mutants 231 and 232 exhibited significantly lower bond strengths with A1 than the wild-type receptors (p < 0.05). We computed unloaded dissociation rate constant (k(off)(0)) values for interactions involving mutant and wild-type GP Ib-IX receptors with A1 and found the A1/wild-type GP Ib-IX k(off)(0) value of 5.47 +/- 0.25 s(-1) to be significantly greater than the GOF k(off)(0) values and significantly less than the loss-of-function k(off)(0) values. Our data illustrate the importance of the bond kinetics associated with the VWF/GP Ib-IX interaction in hemostasis and also demonstrate the drastic changes in binding that can occur when only a single amino acid of GP Ibalpha is altered.  相似文献   

2.
The interaction between platelet glycoprotein (GP) Ib-IX-V complex and von Willebrand factor (vWF) is the first step of the hemostatic response to vessel injury. In platelet-type von Willebrand disease, two mutations, G233V and M239V, have been described within the Cys209-Cys248 disulfide loop of GPIbalpha that compromise hemostasis by increasing the affinity for vWF. We have earlier shown that converting other residues in this region to valine alters the affinity of GPIbalpha for vWF, with mutations K237V and Q232V, respectively, showing the greatest increase and decrease in affinity. Here, we investigated further the effect of these two mutations on the kinetics of the GPIbalpha interaction with the vWF-A1 domain under dynamic flow conditions. We measured the cellular on- and off-rate constants of Chinese hamster ovary cells expressing GPIb-IX complexes containing wild-type or mutant GPIbalpha interacting with vWF-A1-coated surfaces at different shear stresses. We found that the gain-of-function mutant, K237V, rolled very slowly and continuously on vWF-A1 surface while the loss-of-function mutant, Q232V, showed fast, saltatory movement compared to the wild-type (WT). The off-rate constants, calculated based on the analysis of lifetimes of transient tethers formed on surfaces coated with limiting densities of vWF-A1, revealed that the Q232V and K237V dissociated 1.25-fold faster and 2.2-fold slower than the WT. The cellular on-rate constant of WT, measured in terms of tethering frequency, was threefold more and threefold less than Q232V and K237V, respectively. Thus, the gain- and loss-of-function mutations in GPIbalpha affect both the association and dissociation kinetics of the GPIbalpha-vWF-A1 bond. These findings are in contrast to the functionally similar selectin bonds where some of the mutations have been reported to affect only the dissociation rate.  相似文献   

3.
The interaction of the platelet glycoprotein (GP) Ib-IX-V complex with von Willebrand factor (VWF) is a critical step in the adhesion of platelets to the subendothelial matrix following endothelial cell damage, particularly under arterial flow conditions. In the human GP Ib-IX-V complex, the recognition of VWF appears to be mediated entirely by GP Ibalpha, the largest of four GP Ib-IX-V polypeptides. The goal of the present study was to investigate the involvement of the cytoplasmic domain of GP Ibalpha in the GP Ib-IX-VWF interaction under both static conditions and in the presence of high fluid shear stress. Using Chinese hamster ovary (CHO) cells that express GP Ibbeta, GP IX, and either wild-type GP Ibalpha or GP Ibalpha mutants missing various lengths of the cytoplasmic domain, we evaluated adhesion and flow-driven cell rolling on immobilized VWF in a parallel-plate flow chamber. Cells expressing GP Ibalpha polypeptides with truncations of 6-82 amino acids rolled faster than cells expressing wild-type GP Ibalpha. Cells that expressed polypeptides with intact actin-binding protein 280 binding sites (truncated to residue 582 of 610) rolled more slowly than those expressing GP Ibalpha with longer truncations. The rolling velocity of cells expressing truncated GP Ibalpha mutants increased with decreasing VWF coating density. In addition, a fraction of the truncated cells exhibited saltatory translocation at the lower VWF densities. Studies measuring the GP Ibalpha-VWF bond strength of three of the mutants using laser tweezers showed that progressive deletion of the cytoplasmic domain led to progressive weakening of the strength of individual GP Ibalpha-VWF bonds.  相似文献   

4.
We investigated the crucial hemostatic interaction between von Willebrand factor (VWF) and platelet glycoprotein (GP) Ibalpha. Recombinant VWF A1 domain (residues Glu(497)-Pro(705) of VWF) bound stoichiometrically to a GPIbalpha-calmodulin fusion protein (residues His(1)-Val(289) of GPIbalpha; GPIbalpha-CaM) immobilized on W-7-agarose with a K(d) of 3.3 microM. The variant VWF A1(R545A) bound to GPIbalpha-CaM 20-fold more tightly, mainly because the association rate constant k(on) increased from 1,100 to 8,800 M(-1) s(-1). The GPIbalpha mutations G233V and M239V cause platelet-type pseudo-von Willebrand disease, and VWF A1 bound to GPIbalpha(G233V)-CaM and GPIbalpha(M239V)-CaM with a K(d) of 1.0 and 0.63 microM, respectively. The increased affinity of VWF A1 for GPIbalpha(M239V)-CaM was explained by an increase in k(on) to 4,500 M(-1) s(-1). GPIbalpha-CaM bound with similar affinity to recombinant VWF A1, to multimeric plasma VWF, and to a fragment of dispase-digested plasma VWF (residues Leu(480)/Val(481)-Gly(718)). VWF A1 and A1(R545A) bound to platelets with affinities and rate constants similar to those for binding to GPIbalpha-CaM, and botrocetin had the expected positively cooperative effect on the binding of VWF A1 to GPIbalpha-CaM. Therefore, allosteric regulation by botrocetin of VWF A1 binding to GPIbalpha, and the increased binding affinity caused by mutations in VWF or GPIbalpha, are reproduced by isolated structural domains. The substantial increase in k(on) caused by mutations in either A1 or GPIbalpha suggests that productive interaction requires rate-limiting conformational changes in both binding sites. The exceptionally slow k(on) and k(off) provide important new constraints on models for rapid platelet tethering at high wall shear rates.  相似文献   

5.
Liposomes with covalently bound recombinant fragments of platelet membrane glycoprotein Ibalpha that retain the von Willebrand factor (vWf)-binding function (rGPIbalpha-liposomes) were prepared. Their interactions with an immobilized vWf surface under flow conditions were evaluated with a recirculating flow chamber, mounted on an epifluorescence microscope, which allows real-time visualization of fluorescence-labeled liposomes interacting with the surface. The interaction of rGPIbalpha-liposomes with the vWf surface was directly related to shear rate. At high densities of rGPIbalpha and vWf, rGPIbalpha-liposomes establishing contact with the vWf surface exhibited continuous displacement with decreased velocity relative to the hydrodynamic flow, depending on receptor density and matrix concentration. At lower densities of rGPIbalpha and vWf, rGPIbalpha-liposomes stopped only transiently, in the millisecond range, on the surface. This is the first study to demonstrate that the targeting of rGPIbalpha-liposomes is specific to the vWf surface under flow conditions.  相似文献   

6.
The adhesion of platelets to the subendothelium of blood vessels at sites of vascular injury under high shear conditions is mediated by a direct interaction between the platelet receptor glycoprotein Ibalpha (GpIbalpha) and the A1 domain of the von Willebrand factor (VWF). Here we report the 2.6-A crystal structure of a complex comprised of the extracellular domain of GpIbalpha and the wild-type A1 domain of VWF. A direct comparison of this structure to a GpIbalpha-A1 complex containing "gain-of-function" mutations, A1-R543Q and GpIbalpha-M239V, reveals specific structural differences between these complexes at sites near the two GpIbalpha-A1 binding interfaces. At the smaller interface, differences in interaction show that the alpha1-beta2 loop of A1 serves as a conformational switch, alternating between an open alpha1-beta2 isomer that allows faster dissociation of GpIbalpha-A1, as observed in the wild-type complex, and an extended isomer that favors tight association as seen in the complex containing A1 with a type 2B von Willebrand Disease (VWD) mutation associated with spontaneous binding to GpIbalpha. At the larger interface, differences in interaction associated with the GpIbalpha-M239V platelet-type VWD mutation are minor and localized but feature discrete gamma-turn conformers at the loop end of the beta-hairpin structure. The beta-hairpin, stabilized by a strong classic gamma-turn as seen in the mutant complex, relates to the increased affinity of A1 binding, and the beta-hairpin with a weak inverse gamma-turn observed in the wild-type complex corresponds to the lower affinity state of GpIbalpha. These findings provide important details that add to our understanding of how both type 2B and platelet-type VWD mutations affect GpIbalpha-A1 binding affinity.  相似文献   

7.
von Willebrand factor (vWf) is a multimeric adhesive glycoprotein that serves as a carrier for factor VIII in plasma. Although each vWf subunit displays a high affinity binding site for factor VIII in vitro, in plasma, only 2% of the vWf sites for factor VIII are occupied. We investigated whether interaction of plasma proteins with vWf or adhesion of vWf to collagen may alter the affinity or availability of factor VIII-binding sites on vWf. When vWf was immobilized on agarose-linked monoclonal antibody, factor VIII bound to vWf with high affinity, and neither the affinity nor binding site availability was influenced by the presence of 50% plasma. Therefore, plasma proteins do not alter the affinity or availability of factor VIII-binding sites. In contrast, when vWf was immobilized on agarose-linked collagen, its affinity for factor VIII was reduced 4-fold, with KD increasing from 0.9 to 3.8 nM. However, one factor VIII-binding site remained available on each vWf subunit. A comparable reduction in affinity for factor VIII was observed when vWf was a constituent of the subendothelial cell matrix and when it was bound to purified type VI collagen. In parallel with the decreased affinity for factor VIII, collagen-bound vWf displayed a 6-fold lower affinity for monoclonal antibody W5-6A, with an epitope composed of residues 78-96 within the factor VIII-binding motif of vWf. We conclude that collagen induces a conformational change within the factor VIII-binding motif of vWf that lowers the affinity for factor VIII.  相似文献   

8.
We have used recombinant von Willebrand factor (vWF) fragments to investigate the properties regulating A1 domain interaction with platelet glycoprotein (GP) Ibalpha. One fragment, rvWF508-704, represented the main portion of domain A1 (mature subunit residues 497-716) within the Cys509-Cys695 disulfide loop. The other, rvWF445-733, included the carboxyl-terminal region of domain D3, preceding A1, and corresponded to the proteolytic fragment originally identified as the GP Ibalpha-binding site (residues 449-728). Conformational changes were induced by reduction and alkylation of the Cys509-Cys695 bond and/or exposure to acidic pH. The cyclic rvWF445-733 fragment exhibited the function of native vWF A1 domain. When immobilized onto a surface, it tethered platelets at shear rates up to 6,300 s-1 mediating low velocity translocation but not stable attachment; in solution, it exhibited limited interaction with GP Ibalpha. In contrast, fragments with perturbed conformation could not tether platelets at high shear rates but promoted stable adhesion at lower shear and bound tightly to GP Ibalpha. Only in the presence of the exogenous modulator, botrocetin, did cyclic rvWF445-733 mediate irreversible adhesion. Thus, conformational transitions in the vWF A1 domain may influence differentially the efficiency of bond formation with GP Ibalpha and the stability of binding.  相似文献   

9.
Platelet glycoprotein (GP) Ibalpha is a component of the GPIb-IX receptor complex, which is involved in multiple physiological and pathological processes, including platelet adhesion at sites of vascular injury, thrombin binding, Bernard-Soulier syndrome, platelet-type von Willebrand disease, and immune-mediated thrombocytopenias. The amino-terminal domain of approximately 300 residues of GPIbalpha mediates both normal biological function (by providing the sites for direct ligand interaction) and aberrant function (through amino acid substitutions). To investigate the molecular interactions mediated by this region of GPIbalpha, we have developed a recombinant baculovirus to facilitate its expression as a calmodulin fusion protein from insect cells. By employing the calmodulin tag, the fusion protein could be obtained at >90% purity after a single isolation step at yields of 8 mg/L of insect cell medium (purified fusion protein). The recombinant GPIbalpha fragment was shown to be posttranslationally sulfated and glycosylated, although its glycosylation differed from that of the equivalent GPIbalpha fragment isolated from human platelets. The differential glycosylation, however, did not affect the function of the recombinant GPIbalpha fragment in either von Willebrand factor (vWf) or thrombin binding as these were both found to be identical to those of the same-length GPIbalpha fragment derived from human platelets. The calmodulin tag was also exploited in the development of assays to measure directly vWf and thrombin binding, since it did not interfere with either, demonstrating the feasibility for the use of this soluble receptor fusion protein in detailed biophysical assays to investigate the molecular mode of binding of platelet glycoprotein Ibalpha to these ligands.  相似文献   

10.
Glycoprotein I(b)alpha (GP I(b)alpha), the ligand binding subunit of the platelet glycoprotein Ib-IX-V complex, is sulfated on three tyrosine residues (Tyr-276, Tyr-278, and Tyr-279). This posttranslational modification is known to be critical for von Willebrand factor (vWF) binding; yet it remains unclear whether it provides a specific structure or merely contributes negative charges. To investigate this issue, we constructed cell lines expressing GP I(b)alpha polypeptides with the three tyrosine residues converted to either Glu or Phe and studied the ability of these mutants to bind vWF in the presence of modulators or shear stress. The mutants were expressed normally on the cell surface as GP Ib-IX complexes, with the conformation of the ligand-binding domain preserved, as judged by the binding of conformation-sensitive monoclonal antibodies. In contrast to their normal expression, both mutants were functionally abnormal. Cells expressing the Phe mutant failed to bind vWF in the presence of either ristocetin or botrocetin. These cells adhered to and rolled on immobilized vWF only when their surface receptor density was increased to twice the level that supported adhesion of cells expressing the wild-type receptor and even then only 20% as many rolled and rolled significantly faster than wild-type cells. Cells expressing the Glu mutant, on the other hand, were normal with respect to ristocetin-induced vWF binding and adhesion to immobilized vWF but were markedly defective in botrocetin-induced vWF binding. These results indicate that GP I(b)alpha tyrosine sulfation influences the interaction of this polypeptide with vWF primarily by contributing negative charges under physiological conditions and when the interaction is induced by ristocetin but contributes a specific structure to the botrocetin-induced interaction.  相似文献   

11.
The polypeptides of the platelet von Willebrand factor (vWf) receptor, the GP Ib-IX-V complex, each contain tandem repeats of a sequence that assigns them to the leucine-rich repeat protein family. Here, we studied the role of conserved Asn residues in the leucine-rich repeats of GP Ib alpha, the ligand-binding subunit of the complex. We replaced the Asn residue in the sixth position of the first or sixth leucine-rich repeat (of seven) either with a bulky, charged Lys residue or with a Ser residue (sometimes found in the same position of other leucine-rich repeats) and studied the effect of the mutations on complex expression, modulator-dependent vWf binding, and interactions with immobilized vWf under fluid shear stress. As predicted, the Lys substitutions yielded more severe phenotypes, producing proteins that either were rapidly degraded within the cell (mutant N158K) or failed to bind vWf in the presence of ristocetin or roll on immobilized vWf under fluid shear stress (mutant N41K). The binding of function-blocking GP Ib alpha antibodies to the N41K mutant was either significantly reduced (AK2 and SZ2) or abolished (AN51 and CLB-MB45). Ser mutations were tolerated much better, although both mutants demonstrated subtle defects in vWf binding. These results suggest a vital role for the conserved asparagine residues in the leucine-rich repeats of GP Ib alpha for the structure and functions of this polypeptide. The finding that mutations in the first leucine-rich repeat had a much more profound effect on vWf binding indicates that the more N-terminal repeats may be directly involved in this interaction.  相似文献   

12.
Factor XI binds to high affinity sites on the surface of stimulated platelets where it is efficiently activated by thrombin. Here, we provide evidence that the factor XI binding site on platelets is in the glycoprotein (GP) Ibalpha subunit of the GP Ib-IX-V complex as follows. 1) Bernard-Soulier platelets, lacking the complex, are deficient in factor XI binding; 2) two GP Ibalpha ligands, SZ-2 (a monoclonal antibody) and bovine von Willebrand factor, inhibit factor XI binding to platelets; 3) by surface plasmon resonance, factor XI bound specifically to glycocalicin (the extracellular domain of GP Ibalpha) in Zn(2+)-dependent fashion (K(d)( app) approximately 52 nm). We then investigated whether glycocalicin could promote factor XI activation by thrombin, another GP Ibalpha ligand. In the presence of high molecular weight kininogen (45 nm), Zn(2+) and Ca(2+) ions, thrombin activated factor XI in the presence of glycocalicin at rates comparable with those seen in the presence of dextran sulfate (1 microg/ml). With higher high molecular weight kininogen concentrations (360 nm), the rate of thrombin-catalyzed factor XI activation in the presence of glycocalicin was comparable with that on activated platelets. Thus, factor XI binds to the GP Ib-IX-V complex, promoting its activation by thrombin.  相似文献   

13.
Glycoprotein IIb-IIIa (alpha IIb beta 3) and the vitronectin receptor (alpha v beta 3), two integrins that share the common beta 3 subunit, have been reported to function as promiscuous receptors for the RGD-containing adhesive proteins fibrinogen, vitronectin, fibronectin, von Willebrand factor, and thrombospondin. The present study was designed to establish a cell system for the expression of either GP IIb-IIIa or the vitronectin receptor in an otherwise identical cellular environment and to compare the adhesive properties of these two integrins with those of native GP IIb-IIIa and the vitronectin receptor constitutively expressed in HEL cells or platelets. M21 human melanoma cells lack GP IIb-IIIa and use the vitronectin receptor to attach to vitronectin, fibrinogen, fibronectin, and von Willebrand factor. To study the functional properties of GP IIb-IIIa in these cells, we transfected GP IIb into M21-L cells, a variant of M21 cells (Cheresh, D.A., and R.C. Spiro. 1987. J. Biol. Chem. 262:17703-17711), which lack the expression of functional alpha v and are therefore unable to attach to vitronectin, fibrinogen, and von Willebrand factor. Transfectants expressing GP IIb were isolated by immunomagnetic beads and surface expression of the GP IIb-IIIa complex was documented by FACS analysis and immunoprecipitation experiments performed with 125I-labeled M21-L/GP IIb cells. Comparative functional studies demonstrated that GP IIb-IIIa expressed in M21-L/GPIIb cells as well as native GP IIb-IIIa constitutively expressed in HEL-5J20 cells (an HEL variant lacking alpha v beta 3) mediated cell attachment to immobilized fibrinogen, but not to vitronectin or von Willebrand factor, whereas the vitronectin receptor expressed in M21 cells and HEL-AD1 cells (an HEL variant expressing alpha v beta 3) mediated cell attachment to fibrinogen, vitronectin, and von Willebrand factor. Similarly, PGl2-treated resting platelets attached to immobilized fibrinogen but not to vitronectin or von Willebrand factor, and this attachment could be inhibited by mAb A2A9 (directed against a functional site on the GP IIb-IIIa complex). However, in contrast to platelets, which adhered to vitronectin and von Willebrand factor after stimulation by thrombin or PMA, activation of the protein kinase C pathway in M21-L/GP IIb or HEL cells did not induce cell adhesion to vitronectin or von Willebrand factor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Platelet participation in hemostasis and arterial thrombosis requires the binding of glycoprotein (GP) Ibalpha to von Willebrand factor (vWF). Hemodynamic forces enhance this interaction, an effect mimicked by the substitution I546V in the vWF A1 domain. A water molecule becomes internalized near the deleted Ile methyl group. The change in hydrophobicity of the local environment causes positional changes propagated over a distance of 27 A. As a consequence, a major reorientation of a peptide plane occurs in a surface loop involved in GP Ibalpha binding. This distinct vWF conformation shows increased platelet adhesion and provides a structural model for the initial regulation of thrombus formation.  相似文献   

15.
Factor VIII binds to phospholipid membranes and to von Willebrand factor (vWf) via its second C domain, which has lectin homology. The crystal structure of the C2 domain has prompted a model in which membrane binding is mediated by two hydrophobic spikes, each composed of a pair of residues displayed on a beta-hairpin turn, and also by net positive charge and specific interactions with phospho-l-serine. To test this model, we prepared 16 factor VIII mutants in which single or multiple amino acids were changed to alanine. Mutants at Arg(2215), Arg(2220), Lys(2227), Lys(2249), Gln(2213), Asn(2217), and Phe(2196)/Thr(2197) had specific activities that were >70% of the wild type. Mutants at Arg(2209), Lys(2227), Trp(2313), and Arg(2320) were degraded within the cell. Hydrophobic spike mutants at Met(2199)/Phe(2200), Leu(2251)/Leu(2252), and Met(2199)/Phe(2200)/Leu(2251)/Leu(2252) (4-Ala) exhibited 43, 59, and 91% reduction in specific activity in the activated partial thromboplastin time assay. In a phospholipid-limiting factor Xa activation assay, these mutants had a 65, 85, and 96% reduction in specific activity. Equilibrium binding of fluorescent, sonicated phospholipid vesicles to mutants immobilized on Superose beads was measured by flow cytometry. The affinities for phospholipid were reduced approximately 20-, 30-, and >35-fold for 2199/2200, 2251/2252, and 4-Ala, respectively. A dimeric form of mature vWf bound to immobilized factor VIII and the same mutants, but the affinities of the mutants were reduced approximately 5-, 10-, and >20-fold, respectively. In a competition, solution phase enzyme-linked immunosorbent assay, plasma vWf bound factor VIII and the same mutants with the affinities for the mutants reduced >5-, >5-, and >50-fold, respectively. We conclude that the two hydrophobic spikes are constituents of both the phospholipid-binding and vWf-binding motifs. In plasma, vWf apparently binds the inherently sticky membrane-binding motif, preventing nonspecific interactions.  相似文献   

16.
The A1 domain of von Willebrand factor (vWF) mediates platelet adhesion to sites of vascular injury by binding to the platelet receptor glycoprotein Ib (GpIb), an interaction that is regulated by hydrodynamic shear forces. The GpIb binding surface of A1 is distinct from a regulatory region, suggesting that ligand binding is controlled allosterically. Here we report the crystal structures of the "gain-of-function" mutant A1 domain (I546V) and its complex with the exogenous activator botrocetin. We show that botrocetin switches the mutant A1 back toward the wild-type conformation, suggesting that affinity is enhanced by augmenting the GpIb binding surface rather than through allosteric control. Functional studies of platelet adhesion under flow further suggest that the activation mechanism is distinct from that of the gain-of-function mutation.  相似文献   

17.
We have used proteolytic fragments and overlapping synthetic peptides to define the domain of von Willebrand factor (vWF) that forms a complex with botrocetin and modulates binding to platelet glycoprotein (GP) Ib. Both functions were inhibited by the dimeric 116-kDa tryptic fragment and by its constituent 52/48-kDa subunit, comprising residues 449-728 of mature vWF, but not by the dimeric fragment III-T2 which lacks amino acid residues 512-673. Three synthetic peptides, representing discrete discontinuous sequences within the region lacking in fragment III-T2, inhibited vWF-botrocetin complex formation; they corresponded to residues 539-553, 569-583, and 629-643. The 116-kDa domain, with intact disulfide bonds, exhibited greater affinity for botrocetin than did the reduced and alkylated 52/48-kDa molecule, and both fragments had significantly greater affinity than any of the inhibitory peptides. Thus, conformational attributes, though not strictly required for the interaction, contribute to the optimal functional assembly of the botrocetin-binding site. Accordingly, 125I-labeled botrocetin bound to vWF and to the 116-kDa fragment immobilized onto nitrocellulose but not to equivalent amounts of the reduced and alkylated 52/48-kDa fragment; it also bound to the peptide 539-553, but only when the peptide was immobilized onto nitrocellulose at a much greater concentration than vWF or the proteolytic fragments. These studies demonstrate that vWF interaction with GP Ib may be modulated by botrocetin binding to a discontinuous site located within residues 539-643. The finding that single point mutations in Type IIB von Willebrand disease are located in the same region of the molecule supports the concept that this domain may contain regulatory elements that modulate vWF affinity for platelets at sites of vascular injury.  相似文献   

18.
Soluble von Willebrand factor (VWF) has a low affinity for platelet glycoprotein (GP) Ibalpha and needs immobilization and/or high shear stress to enable binding of its A1 domain to the receptor. The previously described anti-VWF monoclonal antibody 1C1E7 enhances VWF/GPIbalpha binding and recognizes an epitope in the amino acids 764-1035 region in the N-terminal D'D3 domains. In this study we demonstrated that the D'D3 region negatively modulates the VWF/GPIb-IX-V interaction; (i) deletion of the D'D3 region in VWF augmented binding to GPIbalpha, suggesting an inhibitory role for this region, (ii) the isolated D'D3 region inhibited the GPIbalpha interaction of a VWF deletion mutant lacking this region, indicating that intramolecular interactions limit the accessibility of the A1 domain, (iii) using a panel of anti-VWF monoclonal antibodies, we next showed that the D'D3 region is in close proximity with the A1 domain in soluble VWF but not when VWF was immobilized; (iv) destroying the epitope of 1C1E7 resulted in a mutant VWF with an increased affinity for GPIbalpha. Our results support a model of domain translocation in VWF that allows interaction with GPIbalpha. The suggested shielding interaction of the A1 domain by the D'D3 region then becomes disrupted by VWF immobilization.  相似文献   

19.
Both type 2B and type 2M von Willebrand disease result in bleeding disorders; however, whereas type 2B has increased binding affinity between platelet glycoprotein Ibα and von Willebrand factor (vWF), type 2M has decreased binding affinity between these two molecules. We used R687E type 2B and G561S type 2M vWF-A1 mutations to study binding between flowing platelets and insolubilized vWF mutants. We measured rolling velocities, mean stop times, and mean go times at 37°C using high-speed video microscopy. The rolling velocities for wt-wt interactions first decrease, reach a minimum, and then increase with increasing shear stress, indicating a catch-slip transition. By changing the viscosity, we were able to quantify the effects of force versus shear rate for rolling velocities and mean stop times. Platelet interactions with loss-of-function vWF-A1 retain the catch-slip bond transition seen in wt-wt interactions, but at a higher shear stress compared with the wt-wt transition. The mean stop time for all vWF-A1 molecules reveals catch-slip transitions at different shear stresses (gain-of-function vWF-A1 < wt vWF-A1< loss-of-function vWF-A1). The shift in the catch-slip transition may indicate changes in how the different mutants become conformationally active, indicating different mechanisms leading to similar bleeding characteristics.  相似文献   

20.
Reconstitution into proteoliposomes is a powerful method for studying calcium transport in a chemically pure membrane environment. By use of this approach, we have studied the regulation of Ca(2+)-ATPase by phospholamban (PLB) as a function of calcium concentration and PLB mutation. Co-reconstitution of PLB and Ca(2+)-ATPase revealed the expected effects of PLB on the apparent calcium affinity of Ca(2+)-ATPase (K(Ca)) and unexpected effects of PLB on maximal activity (V(max)). Wild-type PLB, six loss-of-function mutants (L7A, R9E, I12A, N34A, I38A, L42A), and three gain-of-function mutants (N27A, L37A, and I40A) were evaluated for their effects on K(Ca) and V(max). With the loss-of-function mutants, their ability to shift K(Ca) correlated with their ability to increase V(max). A total loss-of-function mutant, N34A, had no effect on K(Ca) of the calcium pump and produced only a marginal increase in V(max). A near-wild-type mutant, I12A, significantly altered both K(Ca) and V(max) of the calcium pump. With the gain-of-function mutants, their ability to shift K(Ca) did not correlate with their ability to increase V(max). The "super-shifting" mutants N27A, L37A, and I40A produced a large shift in K(Ca) of the calcium pump; however, L37A decreased V(max), while N27A and I40A increased V(max). For wild-type PLB, phosphorylation completely reversed the effect on K(Ca), but had no effect on V(max). We conclude that PLB increases V(max) of Ca(2+)-ATPase, and that the magnitude of this effect is sensitive to mutation. The mutation sensitivity of PLB Asn(34) and Leu(37) identifies a region of the protein that is responsible for this regulatory property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号