首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
T antigen in extracts of cells infected with tsA mutants is 2 to 6 times more labile at 32°C or 41°C than the antigen in extracts of cells infected with wild-type SV40, as assayed by complement fixation. The stabilities of wild-type and mutant antigens are not altered by mixing the extracts, and thus the stability is an intrinsic property of each antigen and is not determined by another component of the extract. This observation indicates that T antigen is probably the virus-coded product of the A gene. In cells infected at the permissive temperature of 32°C with a high multiplicity of either wild-type or tsA mutant virus, the amounts of T antigen are approximately equivalent and increase logarithmically during the entire period of infection, up to 96 hr. Cells infected at 32°C for 96 hr with mixtures of wild-type and tsA virus produce T antigen with the stability of wild-type, even when the infection is carried out with up to a 5 fold excess of the mutant. The more stable wild-type antigen may repress, directly or indirectly, the synthesis of the more labile mutant antigen.  相似文献   

2.
Rescue of Temperature-sensitive Poliovirus   总被引:2,自引:1,他引:1  
A temperature-sensitive strain of type 1 poliovirus, LSc, was functionally rescued when infected cells were incubated at 40 C in the presence of Mahoney, a temperature-resistant strain of type 1 poliovirus. The rescue value was 9% of the mutant yield obtained under permissive conditions. Rescued virus underwent replication, because the progeny of (32)P-labeled LSc were not radiosensitive. Serum inactivation studies with Mahoney specific antiserum indicated that a small amount of phenotypic mixing occurred among the rescued particles. The temperature-sensitive event occurred between 2 and 4 hr postinfection in the developmental cycle of LSc. Neither viral polymerase activity nor virus-induced ribonucleic acid could be demonstrated in infected cells between 2 and 4 hr after infection at 40 C with the temperature-sensitive mutant.  相似文献   

3.
A comparison of the replication patterns in L cells and in chick embryo (CE) cell cultures was carried out with the Herts strain of Newcastle disease virus (NDV(o)) and with a mutant (NDV(pi)) isolated from persistently infected L cells. A significant amount of virus progeny, 11 plaque-forming units (PFU)/cell, was synthesized in L cells infected with NDV(o), but the infectivity remained cell-associated and disappeared without being detectable in the medium. In contrast, in L cells infected with NDV(pi), progeny virus (30 PFU/cell) was released efficiently upon maturation. It is suggested that the term "covert" rather than "abortive" be used to describe the infection of L cells with NDV(o). In both L and CE cells, the latent period of NDV(pi) was 2 to 4 hr longer than for NDV(o). The delay in synthesis of viral ribonucleic acid (RNA) in the case of NDV(pi) coincided with the delay in the inhibition of host RNA and protein synthesis. Although both NDV(o) and NDV(pi) produced more progeny and more severe cell damage in CE cells than in L cells, the shut-off of host functions was significantly less efficient in CE cells than in L cells. Paradoxically, no detectable interferon was produced in CE cells by either of the viruses, whereas in L cells most of the interferon appeared in the medium after more than 90% of host protein synthesis was inhibited. These results suggest that the absence of induction of interferon synthesis in CE cells infected with NDV is not related to the general shut-off of host cell synthetic mechanisms but rather to the failure of some more specific event to occur. In spite of the fact that NDV(pi) RNA synthesis commenced 2 to 4 hr later than that of NDV(o), interferon was first detected in the medium 8 hr after infection with both viruses. This finding suggests that there is no relation between viral RNA synthesis and the induction of interferon synthesis.  相似文献   

4.
Chick embryo fibroblasts brought into stationary phase of growth by maintenance in serum-free Eagle's MEM medium were infected with the Bryan strain of Rous sarcoma virus (B-RSV) and incubated for 18 hr in the presence of 5-bromo-deoxyuridine (BUdR). The cells were then allowed to resume growth and deoxyribonucleic acid (DNA) synthesis by addition of an enriched F12 medium containing serum and RSV antibody to prevent spread of viral infection. After 48 hr, the cultures were exposed for various periods to visible light, overlaid with solid culture medium, and observed for the appearance of foci of transformed cells. In cultures treated with BUdR at the time of infection, exposure to light resulted in a suppression of focus formation of from 50 to 90% in various experiments. Treatment with BUdR for 18 hr before infection or on the day after infection, followed by exposure to light, had no effect on focus formation. In cultures in which almost all cells were infected, treatment with BUdR followed by exposure to light did not result in cell death. This suggests that suppression of transformation is not due to selective killing of infected cells by this treatment but rather to the intracellular inactivation of the transforming ability of Rous sarcoma proviral DNA.  相似文献   

5.
Novikoff cells (strain N1S1-67) and L-67 cells, a nutritional mutant of the common strain of mouse L cells which grows in the same medium as N1S1-67 cells, were infected with mengovirus under identical experimental conditions. The synthesis of host-cell ribonucleic acid (RNA) by either type of cell was not affected quantitatively or qualitatively until about 2 hr after infection, when viral RNA synthesis rapidly displaced the synthesis of cellular RNA. The rate of synthesis of protein by both types of cells continued at the same rate as in uninfected cells until about 3 hr after infection, and a disintegration of polyribosomes occurred only towards the end of the replicative cycle, between 5 and 6 hr. The time courses and extent of synthesis of single-stranded and double-stranded viral RNA and of the production of virus were very similar in both types of cells, in spite of the fact that the normal rate of RNA synthesis and the growth rate of uninfected N1S1-67 cells are about three times greater than those of L-67 cells. In both cells, the commencement of viral RNA synthesis coincided with the induction of viral RNA polymerase, as measured in cell-free extracts. Viral RNA polymerase activity disappeared from infected L-67 cells during the period of production of mature virus, but there was a secondary increase in activity in both types of cells coincidental with virus-induced disintegration of the host cells. Infected L-67 cells, however, disintegrated and released progeny virus much more slowly than N1S1-67 cells. The two strains of cells also differed in that replication of the same strain of mengovirus was markedly inhibited by treating N1S1-67 cells with actinomycin D prior to infection; the same treatment did not affect replication in L-67 cells.  相似文献   

6.
Variation of Interferon Production During the Cell Cycle   总被引:1,自引:0,他引:1       下载免费PDF全文
The capacity of cells to produce interferon has been found to depend on the phase in the cell cycle at which virus infection took place. Monolayer cultures of L cells were synchronized by the double thymidine-block method. Such synchronously growing cultures were used to study the ability of cells to produce interferon when they were infected with ultraviolet-inactivated Newcastle disease virus (UV-NDV) at different phases of the cell cycle. In all instances, interferon was detected early and reached a maximum at about 16 hr after infection. However, the levels of interferon found in medium of cultures infected at early post-deoxyribonucleic acid (DNA) synthetic (G2) and to some extent at late G2 phases of the cell cycle were comparatively lower than those found in cultures infected at the early DNA synthetic (S) phase. There appeared also in these infected growing cultures a transient period when interferon production was apparently delayed. This period corresponded interestingly with the time of mitotic burst. Infection of thymidine- or 1-beta-d-arabino-furanosylcytosine-inhibited cultures with UV-NDV also led to similar interferon response as that observed in growing cultures infected at early S. However, no transient delay of interferon production was demonstrated in these cultures.  相似文献   

7.
The synthesis of viral ribonucleic acid (RNA) was detected within 2 hr after infection with LSc poliovirus at 35 C. This RNA eluted as a single peak with 0.9 m NaCl on methylated albumin celite columns, was sensitive to ribonuclease, precipitated in the presence of 2 m LiCl, and had an S(20) value at 34 +/- 2 in linear sucrose gradients. When cells were infected at 39 to 40 C, there was also early synthesis of RNA. However, 2 hr after infection this synthesis was drastically inhibited. The absence of net RNA synthesis at 39 to 40 C during the late stages of infection was not caused by rapid degradation of newly formed RNA, since the RNA produced between 1 and 2 hr at 39 to 40 C was still present 3.5 hr after infection. There was a 3 log(10) inhibition in the production of infectious virus when p-fluorophenylalanine was present in the medium at a concentration of 25 mug/ml. This concentration of analogue had little effect upon the production of viral polymerase and viral RNA. Virus grown in the presence of analogue at a concentration of 10 mug/ml exhibited increased heat sensitivity compared to control virus. However, viral polymerase exhibited no change in sensitivity to heat or manganese when cells were exposed to 25 mug of p-fluorophenylalanine per ml during infection. p-Fluorophenylalanine had a relatively selective effect on viral capsid protein but did not reverse the inhibition of synthesis of viral RNA at 39 to 40 C.  相似文献   

8.
Lactobacillus species in the female genital tract are thought to act as a barrier to infection. Several studies have demonstrated that lactobacilli can adhere to vaginal epithelial cells. However, little is known about how the adherence of lactobacilli to vaginal epithelial cells affects the acidity, cell viability, or proliferation of the lactobacilli themselves or those of vaginal epithelial cells. Lactobacillus acidophilus was co-cultured with immortalized human vaginal epithelial cells (MS74 cell line), and the growth of L. acidophilus and the acidity of the culture medium were measured. MS74 cell density and viability were also assessed by counting cell numbers and observing the cell attachment state. L. acidophilus showed exponential growth for the first 6 hr until 9 hr, and the pH was maintained close to 4.0-5.0 at 24 hr after culture, consistent with previous studies. The growth curve of L. acidophilus or the pH values were relatively unaffected by co-culture with MS74 cells, confirming that L. acidophilus maintains a low pH in the presence of MS74 cells. This co-culture model could therefore potentially be used to mimic vaginal conditions for future in vitro studies. On the other hand, MS74 cells co-cultured with L. acidophilus more firmly attached to the culture plate, and a higher number of cells were present compared to cells cultured in the absence of L. acidophilus. These results indicate that L. acidophilus increases MS74 cell proliferation and viability, suggesting that lactobacilli may contribute to the healthy environment for vaginal epithelial cells.  相似文献   

9.
10.
Infection of a chicken cell with avian sarcoma virus requires division of the infected cell before synthesis of infectious progeny is initiated. This requirement for a cell division for the complete expression of avian sarcoma virus has been examined further with chicken embryo fibroblasts infected with two distinct viruses. Chicken cells infected with and producing a mutant of Rous sarcoma virus temperature sensitive for transformation (tsLA24PR-A) were arrested in G0 by depletion of serum factors from growth medium. These stationary cells continued to produce infectious progeny in the absence of further cell division. Superinfection of the stationary cells with the wild-type Prague strain of Rous sarcoma virus (PR-RSV-C) produced a stable double infection in these cells. Progeny of the superinfecting PR-RSV-C, however, were not detected until these cells underwent division after stimulation with fresh serum-containing medium. The addition of colchicine to these serum-stimulated cells, although not affecting production of the tsLA24PR-A, inhibited the appearance of progeny of the superinfecting PR-RSV-C. These experiments indicate that each avian sarcoma virus infection of a chicken embryo fibroblast requires division of the infected cell for production of that virus regardless of whether or not the cell is already producing a similar virus. The results suggest, therefore, that the requirement for a cell division represents a requirement for an event that controls virus expression in a "cis-acting" fashion specific for the provirus.  相似文献   

11.
Effect of cell physiological state on infection by rat virus   总被引:20,自引:18,他引:2       下载免费PDF全文
Infection by rat virus has been studied in cultures of rat embryo cells to evaluate the Margolis-Kilham hypothesis that the virus preferentially infects tissues with actively dividing cells. An enhancement of infection was seen in cultures infected 10 hr after fresh medium was added as compared to infection of stationary cultures (infected before addition of fresh medium). Since addition of fresh medium stimulates deoxyribonucleic acid (DNA) synthesis, the number of cells per culture synthesizing DNA at the time of infection was compared with the proportion of cells which synthesized viral protein. Cells were infected before the medium change and 10 or 24 hr after the medium change and were pulse-labeled with 3H-thymidine at the time virus was added. The cells were allowed to initiate viral protein synthesis before they were fixed and stained with fluorescein-conjugated anti-rat virus serum. Fluorescence microscopy permitted both labels to be counted simultaneouly and showed that the greatest proportion of cells synthesizing viral protein were those which had incorporated 3H-thymidine at the time of infection.  相似文献   

12.
Competence-Inducing Factor of Bacillus stearothermophilus   总被引:3,自引:0,他引:3       下载免费PDF全文
An incompetent mutant (4S Com(-)) does not release competence-inducing factor (CF) into the culture medium and is not infected with TP-1C phage deoxyribonucleic acid (DNA) unless CF is added to the transfection assay. A TP-1C phage-resistant mutant (4S Ton-r) releases relatively large amounts of CF into the culture medium but is not infected with TP-1C phage DNA, even in the presence of CF. The production of CF by the wild type or Ton-r mutant and the ability of the wild type or Com(-) mutant to react with CF does not occur after these cultures have grown at 67 C for 1 hr or longer. A preliminary characterization of the CF is described. The autolytic enzyme or the temperate phage of the wild type and the Ton-r and Com(-) mutants do not have competence-inducing activity.  相似文献   

13.
Northern (RNA) blot analysis has been used to show that synthesis of early mRNA species is similar in monkey cells productively or abortively infected with human adenovirus. mRNA species from all five major early regions (1A, 1B, 2, 3, 4) are identical in size and comparable in abundance whether isolated from monkey cells infected with adenovirus type 2 or with the host range mutant Ad2hr400 or coinfected with adenovirus type 2 plus simian virus 40. The mRNA species isolated from monkey cells are identical in size to those isolated from human cells. Production of virus-associated RNA is also identical in productive and abortive infections of monkey cells. Synthesis of virus-associated RNA is, however, significantly greater in HeLa cells than in CV1 cells at late times after infection regardless of which virus is used in the infection.  相似文献   

14.
When mouse L cells are infected for 22 hr with vesicular stomatitis virus (VSV), a ribonucleic acid-containing enveloped virus, greater than 70% of the major histocompatibility antigen (H-2), is no longer detectable by the method of inhibition of immune cytolysis. Infected cells prelabeled with (14)C-glucosamine also show a correspondingly greater loss of trichloroacetic acid-insoluble radioactivity than uninfected cells. The loss of H-2 antigenic activity is not due to the viral inhibition of host cell protein synthesis since cells cultured for 18 hr in the presence of cycloheximide have the same amount of H-2 activity as untreated controls. Also, cells infected with encephalomyocarditis virus, a picornavirus, show no loss of H-2 activity at a time when host cell protein synthesis is completely inhibited. VSV structural proteins associated in vitro with uninfected L-cell plasma membranes do not render H-2 sites inaccessible to the assay. Although antibodies may not combine with all the H-2 antigenic sites on the plasma membrane, anti-H-2 serum reacted with L cells before infection does not prevent a normal infection with VSV. H-2 activity can be detected in virus samples purified from the medium of infected L cells; this virus purified after being mixed with L-cell homogenates shows greater H-2 activity than virus purified after being mixed with HeLa cell homogenates. However, VSV made in HeLa cells shows no H-2 activity when mixed with L-cell homogenates.  相似文献   

15.
In order to develop an efficient process for large-scale production of recombinant protein, various factors were studied which affect the productivity of Sf-9 (Spodoptera frugiperda) insect cells when using the baculovirus expression system. It was shown that upon infection with the Bac-BRV6L recombinant baculovirus, the level per cell of VP6 (a bovine rotavirus nucleocapsid protein) would drop 10-fold when host cell density at the time of infection increased from 2 x 10(6) to 3 x 10(6) cells/mL. The decrease was found to be totally reversible by culture medium renewal after infection, even when cells were infected at the stationary phase. Recombinant protein production was 4-6 times higher using TNMFH medium supplemented with 10% fetal bovine serum (FBS) than in IPL/41 serum-free medium. Fine-tuning of infection parameters in a 4-L surface-aerated bioreactor resulted in the production of typically 350 mg/L of VP6 protein, representing more than 25% of total cell proteins.  相似文献   

16.
Lipophosphoglycan (LPG) is a major glycolipid present on the membrane of Leishmania promastigotes and amastigotes. We have previously shown that preincubation of peripheral blood monocytes with purified LPG inhibits IL-1 production, chemotactic locomotion, and luminol-dependent chemiluminescence (LDCL). In the present study we tested the effect of LPG present on live parasites on monocyte activity. For this purpose, we used two mutant strains deficient in LPG and two LPG-containing strains. One pair was Leishmania major and the other Leishmania donovani. Monocytes in suspension were infected with the different parasite strains and tested for chemotactic locomotion and LDCL at different times between 1 and 72 hr after infection. In parallel, the percentage of infected monocytes was measured in stained cytospin preparations. The results obtained showed that at 1 hr of incubation only the LPG-containing strains inhibited chemotaxis, while the mutant strains showed a normal response. From 4 hr of incubation onwards, the mutant strains also inhibited monocyte chemotactic locomotion. LDCL was only slightly inhibited by the LPG-containing strains after 1 hr, because of a high level of spontaneous stimulation, probably due to phagocytosis. At 24 and 72 hr all strains inhibited LDCL. These results suggest that LPG is responsible for early inhibition of macrophage activity, but that other factors are responsible for inhibition at later stages of in vitro infection. The model described here might represent a useful tool to further analyze the mechanisms involved in immune evasion of Leishmania parasites.  相似文献   

17.
Cultures of L cells were synchronized with respect to deoxyribonucleic acid (DNA) synthesis with thymidine and 5-fluoro-2'-deoxyuridine (FUdR) and infected with Newcastle disease virus (NDV), mengovirus, or reovirus 3. Inhibition of incorporation of (3)H-cytidine into the DNA of synchronized cells is partially inhibited 2 hr after infection with NDV or mengovirus and nearly completely suppressed 4 hr after infection. With NDV and mengovirus, no evidence was obtained of differences in sensitivity of cells during early S phase as compared to later stages in DNA synthesis. When cells were infected with reovirus at the time of release from FUdR block, inhibition of cellular DNA synthesis was evident at 2 to 3 hr, and it was complete at 4 to 5 hr after infection. However, when cells were infected several hours prerelease, synthesis of DNA occurred in early S phase in spite of the fact that the cells had been infected for up to 6 hr. The results indicate that DNA synthesis in early S phase is relatively insensitive to the inhibitory function of reovirus. Colorimetric determinations (diphenylamine reaction) of the amounts of DNA produced in synchronized cells have substantiated the inhibition of DNA synthesis observed by isotope incorporation techniques.  相似文献   

18.
We have studied the ability of adenovirus type 12 (Ad12) to complement the Ad5 transformation-defective host rang (hr) mutants during infection of human cells (HeLa) or hamster cells (BHK-21). The group I mutant hr3 (mapped within 1.3 to 3.7 map units), which is incapable of synthesizing viral DNA, was complemented for both DNA synthesis and infectious virus production in nonpermissive HeLa cells during coinfection with Ad12. Similarly, the group II mutant hr6 (6.1 to 9.4 map units), which does synthesize DNA, was also shown to be complemented for virus production. When the host cells were BHK-21, an established hamster cell line that is permissive for Ad5 but nonpermissive for Ad12 DNA synthesis and virus production, coinfection with Ad5 and Ad12 did not overcome the block to Ad12 DNA synthesis. Coinfection of BHK-21 cells with Ad12 and either hr3 or hr6 leads to the complementation of only the group I mutant (hr3). The inability of Ad12 to complement hr6 in BHK-21 cells may be due to the failure of Ad12 to express an early gene product from the region corresponding to early region 1B (4.5 to 11 map units) Ad5 where hr6 and the other group II mutations are located.  相似文献   

19.
20.
Biological and morphological aspects of the growth of equine abortion virus   总被引:9,自引:0,他引:9  
Darlington, R. W. (St. Jude Children's Research Hospital, Memphis, Tenn.), and C. James. Biological and morphological aspects of the growth of equine abortion virus. J. Bacteriol. 92:250-257. 1966.-The growth of equine abortion virus (EAV) was studied by bioassay and electron microscopy in L-cell monolayer and suspension cultures, and in HeLa and BHK 21/13 cell monolayers. Results of virus assay (plaque-forming units) indicated that production of cell-associated virus (CAV) began at 6 to 9 hr after infection in all of the cell strains used. Virus release occurred 1 to 2 hr later. By 15 to 20 hr after infection, the amount of released virus (RV) equaled or surpassed that of CAV in all cells other than the HeLa cells, where the amount of RV did not equal CAV until 48 hr after infection. Electron microscopy of infected cells revealed no differences in the morphology of virus development in any of the cells used. Developing virus particles were first detected in cell nuclei at 9 hr after infection. At 12 hr, virus particles could be seen budding from the inner nuclear envelope. Budding into cytoplasmic vacuoles was not seen. Budding virus, virus in cytoplasmic vacuoles, and extracellular virus were all approximately 145 mmu in diameter, and were indistinguishable morphologically. These results indicated that EAV is quite similar to herpes simplex virus with respect to growth and morphology, and that the inner nuclear membrane is the principal site of virus envelopment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号