首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conventional acetone–butanol–ethanol (ABE) fermentation is severely limited by low solvent titer and productivities. Thus, this study aims at developing an improved Clostridium acetobutylicum strain possessing enhanced ABE production capability followed by process optimization for high ABE productivity. Random mutagenesis of C. acetobutylicum PJC4BK was performed by screening cells on fluoroacetate plates to isolate a mutant strain, BKM19, which exhibited the total solvent production capability 30.5% higher than the parent strain. The BKM19 produced 32.5 g L?1 of ABE (17.6 g L?1 butanol, 10.5 g L?1 ethanol, and 4.4 g L?1 acetone) from 85.2 g L?1 glucose in batch fermentation. A high cell density continuous ABE fermentation of the BKM19 in membrane cell‐recycle bioreactor was studied and optimized for improved solvent volumetric productivity. Different dilution rates were examined to find the optimal condition giving highest butanol and ABE productivities. The maximum butanol and ABE productivities of 9.6 and 20.0 g L?1 h?1, respectively, could be achieved at the dilution rate of 0.85 h?1. Further cell recycling experiments were carried out with controlled cell‐bleeding at two different bleeding rates. The maximum solvent productivities were obtained when the fermenter was operated at a dilution rate of 0.86 h?1 with the bleeding rate of 0.04 h?1. Under the optimal operational condition, butanol and ABE could be produced with the volumetric productivities of 10.7 and 21.1 g L?1 h?1, and the yields of 0.17 and 0.34 g g?1, respectively. The obtained butanol and ABE volumetric productivities are the highest reported productivities obtained from all known‐processes. Biotechnol. Bioeng. 2013; 110: 1646–1653. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
An experimental method for producing ethanol continuously was designed and tested with a cell-recycling two-tank system, which was composed of two fermentors, each of which was individually equipped with a settler for recycling flocculent yeast. This system was effective for the continuous fermentation of ethanol from sucrose at high cell-recycling (r = 0.8–0.9) and dilution (up to 0.48 h?1) rates. The system has several advantages; the high cell concentration in the fermentors and relief of substrate and product inhibition. Thus, the enhanced productivity using this continuous fermentation with the two-tank cell-recycling system was significantly higher compared with that of the batch fermentation. The results indicate that increased recycling ratios caused an increase in biomass concentration and subsequently, product concentration in the tank. The ethanol productivity increased with the dilution rate, but higher dilution rates could render increasing amounts of sugar unconverted. Continuous fermentation with the sugar feed concentration of 160 g/l at r = 0.9 and dilution rate of 0.2 h?1 achieved the highest productivity with less than 2% of the unconverted sugar in the product steam. Under the same cell recycling ratios a productivity range of 6.9–7.5 g/l h?1 could be achieved with feeding concentrations of 80–200 g/l, while batch fermentation at these sugar concentrations led to productivities of 3.85–4.48 g/l h?1.  相似文献   

3.
A clonal derivative of a transfectant of the SP2/0 myeloma cell line producing a chimeric monoclonal antibody was cultivated in both continuous open and continuous partially-closed bioreactors. Using an open system for the determination of kinetic parameters, we showed that the production of this chimeric mAb was growth associated. As such, the volumetric productivity increased linearly with increasing dilution rate up to the maximum dilution rate. Three continuous cultivations employing partial cell retention were conducted. In agreement with mathematical predictions, the product titer and volumetric productivity were independent of the degree of cell retention when the total dilution was held constant. When cells were maintained at a low specific growth rate, the product titer was independent of dilution rate and the volumetric productivity increased with increasing dilution rate, again in agreement with mathematical predictions. Since the partially-closed bioreactor could be operated at dilution rates in excess of the maximum specific cellular growth rate, volumetric productivities were greater than those achievable in the open bioreactor. However, when cells were maintained at a high specific growth rate, cell accumulation was limited and product titers decreased at high dilution rates. Therefore, the volumetric productivity in this latter case did not increase at higher dilution rates.  相似文献   

4.
Summary The influence of oxygen on growth and production of 2,3-butanediol and acetoin by Enterobacter aerogenes was studied in continuous culture. At all dilution rates (D) studied cell mass increased steadily with increasing oxygen uptake rate (OUR), hence the micro-aerobic cultivation was energy-limited. The biomass yield on oxygen increased with D which suggests that cells need more energy for maintenance functions at lower D. At each D an optimal OUR giving highest volumetric productivity for the sum of butanediol and acetoin was found. The optimal OUR increased with D. The occurrence of optimal OURs results from the various effects of O2 on growth and specific productivity. The latter was found to be a linear function of the specific OUR irrespective of D. At optimal OUR the cells proved to have equal specific OURs and equal specific productivities representing a fixed relationship between fermentative and respiratory metabolism. The product yield based on glucose and corrected for biomass formation was 80%. A product concentration as high as 43 g/l was obtained at D =0.1 h–1 while the volumetric productivity was the highest at D =0.28 h–1 (5.6 g/l and hour). The findings further indicate that growth and product generation are obviously non-associated phenomena. Hence, high productivities may be achievable by cell recycling and cell immobilisation systems. Offprint requests to: W.-D. Deckwer  相似文献   

5.
Due to the lack of suitable in-process sensors, on-line monitoring of fermentation processes is restricted almost exclusively to the measurement of physical parameters only indirectly related to key process variables, i.e., substrate, product, and biomass concentration. This obstacle can be overcome by near infrared (NIR) spectroscopy, which allows not only real-time process monitoring, but also automated process control, provided that NIR-generated information is fed to a suitable computerized bioreactor control system. Once the relevant calibrations have been obtained, substrate, biomass and product concentration can be evaluated on-line and used by the bioreactor control system to manage the fermentation. In this work, an NIR-based control system allowed the full automation of a small-scale pilot plant for lactic acid production and provided an excellent tool for process optimization. The growth-inhibiting effect of lactic acid present in the culture broth is enhanced when the growth-limiting substrate, glucose, is also present at relatively high concentrations. Both combined factors can result in a severe reduction of the performance of the lactate production process. A dedicated software enabling on-line NIR data acquisition and reduction, and automated process management through feed addition, culture removal and/or product recovery by microfiltration was developed in order to allow the implementation of continuous fermentation processes with recycling of culture medium and cell recycling. Both operation modes were tested at different dilution rates and the respective cultivation parameters observed were compared with those obtained in a conventional continuous fermentation. Steady states were obtained in both modes with high performance on lactate production. The highest lactate volumetric productivity, 138 g L(-1) h(-1), was obtained in continuous fermentation with cell recycling.  相似文献   

6.
The effect of dissolved oxygen on citric acid production and oxygen uptake by Candida lipolytica Y 1095 was evaluated in cell recycle and fed-batch fermentation systems. The maximum observed volumetric productivity, which occurred at a dilution rate of 0.06 h(-1), a dissolved oxygen concentration of 80%, and a biomass concentration of 5% w/v, in the cell recycle system, was 1.32 g citric acid/L . h. At these same conditions, the citric acid yield was 0.65 g/g and the specific citric acid productivity was 24.9 mg citric acid/g cell . h. In the cell recycle system, citric acid yields ranged from 0.45 to 0.72 g/g. Both the volumetric and specific citric acid productivities were dependent on the dilution rate and the concentration of dissolved oxygen in the fermentor. Similar productivities (1.29 g citric acid/L . h) were obtained in the fed-batch system operated at a cycle time of 36 h, a dissolved oxygen concentration of 80%, and 60 g total biomass. Citric acid yields in the fed-batch fermentor were consistently lower than those obtained in the cell recycle system and ranged from 0.40 to 0.59 g/g. Although citric acid yields in the fed-batch fermentor were lower than those obtained in the cell recycle system, higher citric:isocitric acid ratios were obtained in the fed-batch fermentor. As in the cell recycle system, both the volumetric and specific citric acid productivities in the fed-batch fermentor were dependent on the cycle time and dissolved oxygen concentration. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
The potential use of spin filter device to retainPropionibacterium acidipropionici in the bioreactor under continuous mode of fermentation and improve propionic acid productivity, was examined. The yield of propionic acid based on lactose concentration was 51% in batch and 54% in continuous (dilution rate=0.05 h−1) operation. The yield in continuous fermentation with cell retention using spin filter of 10 micron size (dilution rate=0.05 h−1) was even higher at 70% (w/w). The volumetric productivity under batch and continuous mode of operation were 0.312 g L−1 h−1 and 0.718 g L−1 h−1 respectively. Continuous fermentation with cell retention demonstrated even higher volumetric productivities at 0.98 g L−1 h−1 with out clogging problems It could be used for utilization of cheese whey to produce propionic acid at higher yield and productivities.  相似文献   

8.
The effects of dilution rate and substrate feed concentration on continuous glycerol fermentation by Clostridium butyricum VPI 3266, a natural 1,3-propanediol producer, were evaluated in this work. A high and constant 1,3-propanediol yield (around 0.65 mol/mol), close to the theoretical value, was obtained irrespective of substrate feed concentration or dilution rate. Improvement of 1,3-propanediol volumetric productivity was achieved by increasing the dilution rate, at a fixed feed substrate concentration of 30, 60 or 70 g l−1. Higher 1,3-propanediol final concentrations and volumetric productivities were also obtained when glycerol feed concentration was increased from 30 to 60 g l−1, at D=0.05–0.3 h−1, and from 60–70 g l−1, at D=0.05 and 0.1 h−1·30 g l−1 of 1,3-propanediol and the highest reported value of productivity, 10.3 g l−1 h−1, was achieved at D=0.30 h−1 and 60 g l−1 of feed glycerol. A switch to an acetate/butyrate ratio higher than one was observed for 60 g l−1 of feed glycerol and a dilution rate higher than 0.10 h−1; moreover, at D=0.30 h−1 3-hydroxypropionaldehyde accumulation was observed for the first time in the fermentation broth of C. butyricum.  相似文献   

9.
Summary Experiments were conducted with Zymomonas mobilis in an attached film expanded bed (AFEB) fermentor at different dilution rates, using a feed glucose concentration of 100 gm/l. Vermiculite was used as the bed material for attachment of the bacterial film. Ethanol volumetric productivities were maximum at a dilution rate of 3.6hr-1. The productivities were 105 gm/l-hr and 210 gm/l-hr based on total fermentor volume and bed volume, respectively.  相似文献   

10.
Summary A method for the continuous production of extracellular alpha amylase by surface immobilized cells of Bacillus amyloliquefaciens NRC 2147 has been developed. A large-pore, macroreticular anionic exchange resin was capable of initially immobilizing an effective cell concentration of 17.5 g DW/1 (based on a total reactor volume of 160 ml). The reactor was operated continuously with a nutrient medium containing 15 g/l soluble starch, as well as yeast extract and salts. Aeration was achieved by sparging oxygen enriched air into the column inlet. Fermentor plugging by cells was avoided by periodically substituting the nutrient medium with medium lacking in both soluble starch and yeast extract. This fermentor was operated for over 200 h and obtained a steady state enzyme concentration of 18700 amylase activity units per litre (18.7 kU/l), and an enzyme volumetric productivity of 9700 amylase activity units per litre per hour (9.7 kU/l-h). Parallel fermentations were performed using a 2 l stirred vessel fermentor capable of operation in batch and continuous mode. All fermentation conditions employed were identical to those of the immobilized cell experiments in order to assess the performance of the immobilized cell reactor. Batch stirred tank operation yielded a maximum amylase activity of 150 kU/l and a volumetric productivity of 2.45 kU/l-h. The maximum cell concentration obtained was 5.85 g DW/l. Continuous stirred tank fermentation obtained a maximum effluent amylase activity of 6.9 kU/l and a maximum enzyme volumetric productivity of 2.73 kU/l-h. Both of these maximum values were observed at a dilution rate of 0.345 l/h. The immobilized cell reactor was observed to achieve larger volumetric productivities than either mode of stirred tank fermentation, but achieved an enzyme activity concentration lower than that of the batch stirred tank fermentor.  相似文献   

11.
Extracellular human granulocyte-macrophage colony stimulating factor (hGM-CSF) expression was studied under the control of the GAP promoter in recombinant Pichia pastoris in a series of continuous culture runs (dilution rates from 0.025 to 0.2 h−1). The inlet feed concentration was also varied and the steady state biomass concentration increased proportionally demonstrating efficient substrate utilization and constancy of the biomass yield coefficient (Yx/s) for a given dilution rate. The specific product formation rate (qP) showed a strong correlation with dilution rates demonstrating growth associated product formation of hGM-CSF. The volumetric product concentration achieved at the highest feed concentration (4×) and a dilution rate of 0.2 h−1 was 82 mg l−1 which was 5-fold higher compared to the continuous culture run with 1× feed concentration at the lowest dilution rate thus translating to a 40 fold increase in the volumetric productivity. The specific product yield (YP/X) increased slightly from 2 to 2.5 mg g−1, with increasing dilution rates, while it remained fairly invariant, for all feed concentrations demonstrating negligible product degradation or feed back inhibition. The robust nature of this expression system would make it easily amenable to scale up for industrial production.  相似文献   

12.
Lactococcus lactis 65.1 was cultivated in a batch culture, which underwent starvation for 3 days, continuous culture and continuous culture with complete cell recycling. The objective was to study the product formation and intracellular protein pattern. Changes from homofermentative to heterofermentative metabolism were observed in continuous culture at the lower dilution rates as well as continuous cultures with complete cell recycling at a fixed dilution rate (D=0.4 h–1). Changes in intracellular protein pattern were observed when starving the cells in a batch culture and also when recycling the cells in a continuous culture. Some changes were the same in these two cases. The data collected from these experiments show how the fermentation technique can affect the products of the microorganism being cultured and gives some interesting information on the complete cell recycling technique, which is of great interest in fermentation processes.  相似文献   

13.
Batch and continuous cultures of a newly isolated Clostridium butyricum strain were carried out on industrial glycerol, the major by-product of the bio-diesel production process. For both types of cultures, the conversion yield obtained was around 0.55 g of 1,3-propanediol formed per 1 g of glycerol consumed whereas the highest 1,3-propanediol concentration, achieved during the single-stage continuous cultures was 35-48 g l-1. Moreover, the strain presented a strong tolerance at the inhibitory effect of the 1,3-propanediol, even at high concentrations of this substance at the chemostat (e.g. 80 g l-1). 1,3-Propanediol was associated with cell growth whereas acetate and butyrate seemed non growth-associated products. At low and medium dilution rates (until 0.1 h-1), butyrate production was favoured, whereas at higher rates acetate production increased. The maximum 1,3-propanediol volumetric productivity obtained was 5.5 g l-1 h-1. A two-stage continuous fermentation was also carried out. The first stage presented high 1,3-propanediol volumetric productivity, whereas the second stage (with a lower dilution rate) served to further increase the final product concentration. High 1,3-propanediol concentrations were achieved (41-46 g l-1), with a maximum volumetric productivity of 3.4 g l-1 h-1. A cell concentration decrease was reported between the second and the first fermentor.  相似文献   

14.
15.
Xylitol was produced a in two-substrate, batch fermentation with cell recycling of Candida tropicalis ATCC 13803. A series of cell-recycle experiments showed that the feeding of xylose, glucose and yeast extract in the xylitol production phase was most effective in enhancing xylitol productivity. The optimized cell recycle fermentation resulted in 0.82 g xylitol/g xylose yield, 4.94 g xylitol l–1 h–1 productivity, and final xylitol concentration of 189 g l–1. These results were 1.3 times higher in volumetric xylitol productivity and 2.2 times higher in final product concentration compared with the corresponding values of the optimized two-substrate batch culture.  相似文献   

16.
Summary A novel column cellulose hydrolysis reactor with constant enzyme recycling was operated under various conditions to determine the effects of retention time, temperature, cellulase concentration and exogenously added cellobiase on the concentration of the product stream and the productivities of the reactor. Short term (7 days) hydrolysis was best at 42°C while longer term (14 days) hydrolysis was better at 37°C. A retention time of 11 h and reactor cellulase concentration of 30 filter paper units per gram of cellulose gave the best compromise for efficient operation by minimizing product inhibition, maximizing product concentration and minimizing enzyme consumption. The addition of cellobiase to the reactor increased cellulose hydrolysis and raised the proportion of monomeric sugars in the hydrolysate. Continuous cellulose hydrolyses were maintained for 7 and 14 days at 42°C and 37°C, respectively, resulting in volumetric productivities of 6.82 and 4.84 g/l/h and average sugar concentrations of 7.3% and 6.0% (w/v), respectively. Greater than 95% (w/w) of the sugars produced were in the monomeric state. Average cellulase used for the two runs were 8.4 and 5.3 filter paper units per gram of sugar produced, respectively.  相似文献   

17.
Summary Pseudomonas cepacia ATCC 29351 was cultivated on salicylate as sole carbon source in a system with complete cell recycling by means of a hollow fiber microfilter. Comparisons with batch cultures and continuous cultures are made with respect to cell densities, yield coefficients, specific enzyme activities and volumetric productivities. In batch cultures the toxicity of the salicylate limits the cell densities to below 1 g/l. In a recycling cultivation, a cell concentration of 15.1 g/l was obtained and the volumetric productivity of the cell mass was increased by a factor of 3. No serious effects on the cells were noted.  相似文献   

18.
Summary The production of a flocculent strain ofLactobacillus plantarum was performed in a high cell density reactor: a fluidized bed reactor (FBR) with a settler and an external cell recirculation. Two variables were assessed, the recirculation rate (R) and the dilution rate (D). The effect of the latter is much more important than the effect of the former in ensuring a quick start up in the flocculation process. The cell volumetric productivities obtained with this system increase directly with dilution rate and recirculation rate. The values of cell volumetric productivities obtained are considerably higher than those obtained in continuous stirred tank reactors (CSTR) and much higher than in batch reactors.  相似文献   

19.
Lactobacillus delbrueckii subsp. bulgaricus NCFB 2483, when grown on lactose in continuous culture, showed increasing specific yields and volumetric productivities of exopolysaccharide (EPS) with increasing dilution rate. Specific and volumetric productivities of lactate and galactose, as extracellular metabolites, increased in response to the incremental changes in the dilution rate up to 0.4 h–1. Elevated Yp/s values determined for EPS (0.025 g EPSg lactose–1) at the dilution rates of 0.3 h–1–0.4 h–1, relative to those determined at lower dilution rates, suggest a diversion of carbon flux towards EPS being associated with the higher rates of growth.  相似文献   

20.
To survey the potential for production of extracellular hydrolytic enzymes by mycorrhizal mushrooms, productivities of these exo-enzymes from mycelia on potato-dextrose liquid medium were determined.Tricholoma matsutake produced relatively high levels of CM-cellulase and avicelase activities in all test strains. It also produced higher activity of acid proteinase than neutral proteinase. Its xylanase activities seemed to be higher than those of the other carbohydrases. The productivities ofLyophyllum shimeji strains were at similar levels to those ofT. matsutake strains. CM-cellulase and avicelase activities ofL. shimeji were higher than those ofT. matsutake. Neutral proteinase inL. shimeji strains showed higher activity levels than acid proteinase. The relative productivities of hydrolytic enzymes between the groups of mycorrhizal mushrooms and wood-rotting mushrooms were also examined.T. matsutake andL. shimeji both produce many kinds of hydrolytic enzymes in their culture broth, and the potential for production of hydrolytic enzymes by mycorrhizal mushrooms was judged to be relatively high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号