首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Hyaluronan (HA) is a large glycosaminoglycan that is not only a structural component of extracellular matrices, but also interacts with cell surface receptors to promote cell proliferation, migration, and intracellular signaling. HA is a major component of the extracellular matrix of the distal subapical mesenchymal cells of the developing limb bud that are undergoing proliferation, directed migration, and patterning in response to the apical ectodermal ridge (AER), and has the functional potential to be involved in these processes. Here we show that the HA synthase Has2 is abundantly expressed by the distal subridge mesodermal cells of the chick limb bud and also by the AER itself. Has2 expression and HA production are downregulated in the proximal central core of the limb bud during the formation of the precartilage condensations of the skeletal elements, suggesting that downregulation of HA may be necessary for the close juxtaposition of cells and the resulting cell-cell interactions that trigger cartilage differentiation during condensation. Overexpression of Has2 in the mesoderm of the chick limb bud in vivo results in the formation of shortened and severely malformed limbs that lack one or more skeletal elements. Skeletal elements that do form in limbs overexpressing Has2 are reduced in length, exhibit abnormal morphology, and are positioned inappropriately. We also demonstrate that sustained HA production in micromass cultures of limb mesenchymal cells inhibits formation of precartilage condensations and subsequent chondrogenesis, indicating that downregulation of HA is indeed necessary for formation of the precartilage condensations that trigger cartilage differentiation. Taken together these results suggest involvement of HA in various aspects of limb morphogenesis.  相似文献   

4.
Chick embryos are good models for vertebrate development. The principles that underlie chick wing development have been discovered and there is increasing knowledge about the molecules involved. The importance of identifying molecules is that this provides a direct link to understanding the genetic basis of diversity in form. Chick wing development will be compared with limb development in other vertebrates. Possible mechanisms that could lead to variations in form, including limb reductions and limblessness, differences between fore- and hindlimbs, limb proportions, and interdigital webbing can be suggested.  相似文献   

5.
6.
The existence of multipotent cells in the adult tissues and organs of those vertebrates that are capable of regeneration has been accepted for decades. Although studies of vertebrate limb regeneration have yet to identify many of the specific molecules involved in regeneration, numerous tissue grafting experiments and studies of cell lineage have contributed significantly to an understanding of the origin, activation, proliferation and cell-cell interactions of these progenitor cells. This has allowed the development of ideas about the regulation of pattern formation to restore the structure and function of lost tissues and organs. An understanding of the molecular mechanisms controlling these processes has lagged behind the dramatic advances achieved with other model organisms. However, given the intense, new research interest in stem cells over the past few years, there is good reason to be encouraged that insights about the biology of mammalian stem cells will accelerate progress in understanding the biology of regeneration in organisms that can regenerate. Advances in regeneration research will then feed back in terms of devising new strategies for therapies to induce regeneration in organisms such as humans that have traditionally been viewed as incapable of regeneration.  相似文献   

7.
The formation of supernumerary limbs and limb structures was studied by juxtaposing normally nonadjacent embryonic chick limb bud tissue. A “wedge” (ectoderm and mesoderm) of anterior or mid donor right wing bud (stage 21) was inserted in a slit made in a host right limb bud (stage 21) at the same position as its position of origin or to a more posterior position. The AER of the donor tissue and host wing bud were aligned with each other. Donor tissue was grafted with its dorsalventral polarity the same as the host's limb bud or reversed to that of the host's. Depending on the position of origin of the donor limb bud tissue and the position to which it was transplanted in a host, supernumerary wings or wing structures formed. Furthermore, depending on the orientation of the graft in the host, supernumerary limbs with either left or right asymmetry developed. The results of experiments performed here are considered in light of two current models which have been used to describe supernumerary limb formation: one based on local, short-range, cell-cell interactions and the other based on long-range positional signaling via a diffusible morphogen.  相似文献   

8.
Tomoregulin-1 (TMEFF1) was first identified as a gene implicated in pituitary secretion in Xenopus laevis. The predicted structure of TMEFF1 is that of a transmembrane protein with a highly conserved cytoplasmic tail, two follistatin domains and one modified EGF domain in its extracellular region. We report the cloning of the newt orthologue, and show that the expression of TMEFF1 is upregulated in the blastema during limb regeneration, and is also expressed in mouse embryonic limb development.  相似文献   

9.
The secreted protein encoded by the Sonic hedgehog (Shh) gene is localized to the posterior margin of vertebrate limb buds and is thought to be a key signal in establishing anterior-posterior limb polarity. In the Shh(-/-) mutant mouse, the development of many embryonic structures, including the limb, is severely compromised. In this study, we report the analysis of Shh(-/-) mutant limbs in detail. Each mutant embryo has four limbs with recognizable humerus/femur bones that have anterior-posterior polarity. Distal to the elbow/knee joints, skeletal elements representing the zeugopod form but lack identifiable anterior-posterior polarity. Therefore, Shh specifically becomes necessary for normal limb development at or just distal to the stylopod/zeugopod junction (elbow/knee joints) during mouse limb development. The forelimb autopod is represented by a single distal cartilage element, while the hindlimb autopod is invariably composed of a single digit with well-formed interphalangeal joints and a dorsal nail bed at the terminal phalanx. Analysis of GDF5 and Hoxd11-13 expression in the hindlimb autopod suggests that the forming digit has a digit-one identity. This finding is corroborated by the formation of only two phalangeal elements which are unique to digit one on the foot. The apical ectodermal ridge (AER) is induced in the Shh(-/-) mutant buds with relatively normal morphology. We report that the architecture of the Shh(-/-) AER is gradually disrupted over developmental time in parallel with a reduction of Fgf8 expression in the ridge. Concomitantly, abnormal cell death in the Shh(-/-) limb bud occurs in the anterior mesenchyme of both fore- and hindlimb. It is notable that the AER changes and mesodermal cell death occur earlier in the Shh(-/-) forelimb than the hindlimb bud. This provides an explanation for the hindlimb-specific competence to form autopodial structures in the mutant. Finally, unlike the wild-type mouse limb bud, the Shh(-/-) mutant posterior limb bud mesoderm does not cause digit duplications when grafted to the anterior border of chick limb buds, and therefore lacks polarizing activity. We propose that a prepattern exists in the limb field for the three axes of the emerging limb bud as well as specific limb skeletal elements. According to this model, the limb bud signaling centers, including the zone of polarizing activity (ZPA) acting through Shh, are required to elaborate upon the axial information provided by the native limb field prepattern.  相似文献   

10.
Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species.  相似文献   

11.
Morphogens in chick limb development   总被引:4,自引:0,他引:4  
Retinoic acid is a good candidate for a morphogen in chick limb bud development. The challenge now is to determine how retinoic acid interacts with limb bud cells and how the retinoic acid signal is integrated with other signals to mould and pattern the developing limb.  相似文献   

12.
《Organogenesis》2013,9(2):109-115
Secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development of a wide range of taxa from Hydra to humans. The most extensively studied Wnt signaling pathway is the canonical Wnt pathway, which controls gene expression by stabilizing β-catenin, and regulates a multitude of developmental processes. More recently, noncanonical Wnt pathways, which are β-catenin-independent, have been found to be important developmental regulators. Understanding the mechanisms of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. Limb development is a paradigm to study the principles of Wnt signaling in various developmental contexts. In the developing vertebrate limb, Wnt signaling has been shown to have important functions during limb bud initiation, limb outgrowth, early limb patterning, and later limb morphogenesis events. This review provides a brief overview on the diversity of Wnt-dependent signaling events during embryonic development of the vertebrate limb.  相似文献   

13.
Secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development of a wide range of taxa from Hydra to humans. The most extensively studied Wnt signaling pathway is the canonical Wnt pathway, which controls gene expression by stabilizing β-catenin, and regulates a multitude of developmental processes. More recently, noncanonical Wnt pathways, which are β-catenin-independent, have been found to be important developmental regulators. Understanding the mechanisms of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. Limb development is a paradigm to study the principles of Wnt signaling in various developmental contexts. In the developing vertebrate limb, Wnt signaling has been shown to have important functions during limb bud initiation, limb outgrowth, early limb patterning, and later limb morphogenesis events. This review provides a brief overview on the diversity of Wnt-dependent signaling events during embryonic development of the vertebrate limb.Key words: Wnts, limb initiation, outgrowth, patterning, morphogenesis  相似文献   

14.
In both Drosophila wings and vertebrate limbs, signaling between dorsal and ventral cells establishes an organizer that promotes limb formation. Significant progress has been made recently towards characterizing the signaling interactions that occur at the dorsal—ventral limb border. Studies of chicks have indicated that, as in Drosophila, this signaling process requires the participation of Fringe. Studies of Drosophila have indicated that Fringe functions by inhibiting the ability of Notch to be activated by one ligand, Serrate, while potentiating the ability of Notch to be activated by another ligand, Delta. Recent studies of both Drosophila and vertebrates have also shed new light on the signaling activity of the dorsal—ventral boundary limb organizer, and have highlighted how this organizer is maintained by feedback mechanisms with neighboring cells.  相似文献   

15.
16.
Several advances have been made in our understanding of the control of the growth and patterning of embryonic limbs. Development of the vertebrate limb is dependent on reciprocal interactions between the ectoderm and mesoderm that regulate the structure and function of the apical ectodermal ridge. One key component of this regulatory program appears to be the precise control of signaling by members of the bone morphogenetic protein family via multiple antagonistic interactions.  相似文献   

17.
18.
The limbs have an essential function in all vertebrates. In animals, the key genes that are involved in the growth and patterning of the limb buds, and of the development of the complex extremities, have been identified and their interactions recognized. Aided by these discoveries, human genetics has also been able to identify, or at least localize, certain genes responsible for anomalies of the limbs. These malformations are isolated or associated with anomalies of other developmental fields, according to the expression domain of the gene involved. Increasing knowledge of the embryology and genes involved has lead to a regrouping of malformation manifestations in genetics terms. Clear genotype-phenotype correlations are difficult to establish owing to the interlinking network of genetic signals underlying limb development.  相似文献   

19.
Review of drug-induced limb defects in mammals   总被引:1,自引:0,他引:1  
The objective of this paper was to illustrate the spectrum of possible limb malformations in mammals resulting from drug exposure. A bibliography of 171 papers from 20 journals was generated from which pertinent data (drug used, limb defects reported, predominant defect location) were tabulated. These data should provide a basis for predictions about types of defects that might be expected in further studies and for judging postulated drug-induced human limb defects. However, direct extrapolation to humans is inappropriate. The following trends were observed: 1) Distal limb defects (autopod) are almost twice as common as proximal limb defects (stylopod and zygopod). 2) Ectrodactyly is the single most common type of limb defect, accounting for over half of the autopod defects. 3) Ectrodactyly is almost twice as common in the hindlimb as in the forelimb. 4) Postaxial ectrodactyly is over twice as common as preaxial ectrodactyly in the forelimb, but preaxial ectrodactyly is four times more common in the hindlimbs. 5) Polydactyly occurs with approximately equal frequency in forelimbs and hindlimbs, and preaxial polydactyly is most common in both fore and hindlimbs. 6) Polymelia (supernumerary limbs) occurred in one case, and may have been a spurious result. 7) Either transverse hemimelia is greatly underreported in teratology studies or it essentially does not occur. We have concluded that, at least in some cases, acetazolamide, adenine, 1,7-dimethylxanthine, and xanthine derivative aminophylline, retinoic acid, acetoxy-methyl-methylnitrosamine, aspirin, and cadmium can all cause unilateral defects.  相似文献   

20.
The apical ectodermal ridge plays a central role in limb development through its interactions with the underlying mesenchyme. Removal of the AER results in cessation of limb outgrowth and leads to truncation of the limb along the proximo-distal axis. The many functions attributed to the ridge include maintenance of the progress zone mesenchyme. Here, cells are stimulated to proliferate, are maintained in an undifferentiated state, and are assigned progressively more distal positional values as the limb grows. The AER also functions to maintain the activity of the polarizing region, a region of mesenchyme which is thought to provide the primary signal for patterning along the antero-posterior axis. We have begun to explore the function of fibroblast growth factor-4 (FGF-4) during limb development. FGF-4, which encodes an efficiently secreted protein, is expressed in the AER. We have previously demonstrated that FGF-4 protein can stimulate limb mesenchyme proliferation and can induce the expression of a downstream homeobox gene, Evx-1 (homologue of the Drosophila even-skipped gene), that is normally regulated by a signal from the AER. To determine to what extent FGF-4 protein can substitute for the AER to allow normal limb outgrowth, we performed experiments on the developing chick limb in ovo. Remarkably, we find that after AER removal, the FGF-4 protein can provide all the signals required for virtually normal outgrowth and patterning of the limb. Further studies indicate that proliferation of progress zone cells is not sufficient, and that an additional signal is produced by the posterior mesenchyme in response to FGF-4 which enables progress zone cells to acquire progressively more distal fates. Thus FGF-4 maintains progress zone activity through a combination of at least two signals—one that acts directly on progress zone cells to stimulate their proliferation, and one that acts indirectly by maintaining the production of patterning signal(s) by the posterior mesenchyme. We further show that failure of the posterior mesenchyme to produce this signal correlates with failure to maintain polarizing activity. This raises the possibility that the signal produced by the posterior mesenchyme and required for progressive proximo-distal limb patterning is identical to the polarizing activity. Further experiments demonstrate that retinoic acid, which mimics the activity of the polarizing region, can supply this signal. In conclusion, the finding that a single growth factor can serve as both the direct and indirect signals required to maintain progress zone activity provides a simple mechanism for ensuring that growth and pattern formation are linked in the developing limb. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号