首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Sheet preparations of the stratum granulosum from the epithelium of the ventral surface of mouse tongue permit examination of cell replacement of this maturation compartment of the tissue. the cell transit rate/day is related to the cell desquamation rate and the cell production rate. the latter is approximately 6500-8000 cells/mm2/day, suggesting a 4-5-fold greater turnover compared with mouse dorsal skin epithelium. the use of [3H]IUdR and [3H]TdR at different times of day provides evidence for a reutilization of label from [3H]TdR released during nuclear degradation in the stratum granulosum. Flooding with unlabelled thymidine is not effective in suppressing this reutilization.  相似文献   

2.
Mouse tongue epithelium is characterized by a circadian variation in the number of DNA-synthesizing cells (labelling index, LI). Cells undergoing DNA synthesis were labelled with tritiated thymidine [( 3H]TdR) at 0300 (peak LI) or 1200 h (low LI). The fate of these cells was assessed by injecting animals with bromodeoxyuridine (BrdU) at intervals from 12-48 h after [3H]TdR, to follow them from one cell cycle to the next. Labelling was revealed by combining [3H]TdR autoradiography with immunoperoxidase detection of BrdU in the same sections. A single peak in the appearance of double-labelled cells was seen at 44 h, if [3H]TdR was given at 1200 h; following [3H]TdR at 0300 h, a peak of double labelling was seen at 48 h with the possibility of smaller peaks at 24 h and 36 h. These results show that the 24 h periodicity in LI in this tissue is associated with a predominant cell cycle duration of 44-48 h, but that a few cells cycle more quickly. Double labelling with [3H]TdR and BrdU provides a useful method for establishing cell cycle duration by labelling S-phase cells in successive cell cycles.  相似文献   

3.
We describe a reproducible method for combining tritiated thymidine ([H]TdR) autoradiography with immunoperoxidase detection of bromodeoxyuridine (BrdU) in paraffin-embedded tissues. The technique has been used to examine, in mouse tongue epithelium, the inhibition of incorporation into DNA of [3H]TdR by a simultaneous injection of BrdU in the doses that both compounds are likely to be used in cell proliferation studies. The significance that this inhibition has on prolongation of autoradiograph exposure times, to ensure that all cells that incorporate [3H]TdR are scored as positive, in particular the most lightly labelled cells, has been quantified. The inhibition of uptake into DNA of [3H]TdR from 0.23 to 1.85 MBq (6.25 to 50 mu Ci) per animal, produced by a simultaneous injection of 2.5 mg BrdU shows a linear, dose-dependent relationship. Provided the injected dose (in mu Ci per animal) multiplied by the autoradiographic exposure time (in days) is greater than a value of 700, then all cells that are labelled after incorporation of [3H]TdR alone are also labelled after simultaneous double labelling, despite the latter producing a lower average grain count.  相似文献   

4.
The proportion of Langerhans' cells in DNA synthesis in normal mouse skin was assessed by combining tritiated thymidine [3H]TdR autoradiography with enzyme histochemistry. After injection of [3H]TdR, ear skin was treated in two ways. Epithelial sheet preparations were stained for the presence of non-specific esterase and cytospin preparations of epithelial cell suspensions were stained for beta-glucuronidase activity. The labelling index (+/- SE mean) for cytospins, 40 min after injecting [3H]TdR, was 1.6 +/- 0.15%, doubling to 3-4% from 7-17 days after injection. The sheet preparations showed the proportion of label attributable to paired Langerhans' cells rising from 18% at 40 min after injection, to approximately 45%, on days 1-4 after injection. These results suggest that the proliferation of Langerhans' cells in normal mouse skin might be higher than was previously thought to be the case.  相似文献   

5.
Abstract Mouse tongue epithelium is characterized by a circadian variation in the number of DNA-synthesizing cells (labelling index, LI). Cells undergoing DNA synthesis were labelled with tritiated thymidine ([3H]TdR) at 0300 (peak LI) or 1200 h (low LI). The fate of these cells was assessed by injecting animals with bromodeoxyuridine (BrdU) at intervals from 12–48 h after [3H]TdR, to follow them from one cell cycle to the next. Labelling was revealed by combining [3H]TdR autoradiography with immunoperoxidase detection of BrdU in the same sections.
A single peak in the appearance of double-labelled cells was seen at 44 h, if [3H]TdR was given at 1200 h; following [3H]TdR at 0300 h, a peak of double labelling was seen at 48 h with the possibility of smaller peaks at 24 h and 36 h.
These results show that the 24 h periodicity in LI in this tissue is associated with a predominant cell cycle duration of 44–48 h, but that a few cells cycle more quickly. Double labelling with [3H]TdR and BrdU provides a useful method for establishing cell cycle duration by labelling S-phase cells in successive cell cycles.  相似文献   

6.
Summary The adaptation of normal human esophageal explants to organ culture for the first 33 d of in vitro growth was evaluated using histomorphology and [3H]TdR autoradiography combined with mitotic blockade. On the 3rd d in culture, extensive desquamation of superficial cells reduced the epithelium to about four cell layers. Thereafter, the epithelium remained atrophic, with a relative increase in basal and suprabasal cells. The percentage of cells synthesizing DNA was greatest from Day 4 through 8, just after desquamation, and reached a maximum on Day 4 (24 h [3H]TdR labeling index of 62%). The labeling index (LI) fluctuated, thereafter, but remained high (26% on Day 33). During the last 6 h of each [3H]TdR labeling interval, mitosis was blocked by colcemid. The 6 h mitotic rate (MR) was a reasonably constant fraction of the LI (maximum at 4 d: MR=1.44%), but was much lower than predicted by [3H]TdR labeling indicating the loss of large numbers of cells after DNA synthesis but before or during mitosis. Unlabeled mitotic figures appeared between Days 1 to 3 and 6 to 33, suggesting that the epithelium initially contained a considerable population of cells arrested or delayed in G2 and continued to generate cells that remained in premitosis longer than 24 h. These results indicate that the atrophy observed in vitro is characterized by a relative increase in the basal and suprabasal cell category, a high replication rate, initial recruitment of cells arrested in premitosis, and rapid cell turnover with significant loss of cells at the premitotic or mitotic step, or both. Thus it seems that human esophageal epithelium grown in organ culture is a satisfactory substrate for experimentation (for example, in vitro carcinogenesis) that requires cell replication. However, there are major differences between the kinetics of esophageal epithelium in vivo and in vitro. Supported in part by Contract NOI-CP-75909 and NOI-CP-25604-59 from the National Cancer Institute, Bethesda, MD.  相似文献   

7.
The proportion of haematopoietic stem cells (CFU-s) engaged in DNA synthesis was determined by means of the [3H]-thymidine [( 3H]TdR) suicide technique during recovery of bone marrow from the damage caused by a sublethal total body irradiation. In contrast with previous reports the [3H]TdR suicide rate was not permanently increased. It was observed that CFU-s passed through S phase in synchronous waves, following a dose of irradiation of 1.5 Gy. After a dose of 2.6 Gy, there was only one initial wave of increased CFU-s sensitivity to the action of [3H]TdR. Following the depression occurring 26 hr after the irradiation with 2.6 Gy, the proportion of CFU-s killed by the [3H]TdR was permanently increased until 5-6 days after irradiation. Thereafter large differences in the [3H]TdR suicide data were observed among individual mice. Evidence was obtained that individual mice, which had been irradiated by a dose of 2.6 Gy 8-9 days before, had identical values of the CFU-s [3H]TdR suicide rate in the bone marrow from different bones of the lower extremities. The recurrence of the synchronous waves in CFU-s passage through the cell cycle was recorded when the CFU-s population regenerated to only about 10% of its normal value. These waves were obviously not related to a particular time of the day and, consequently, they did not represent the circadian rhythm. It is concluded that the synchronous waves in which CFU-s proliferation occurred reflected the action of the control mechanism on CFU-s proliferation. This mechanism should be endowed with an important systemic component besides locally operating factors.  相似文献   

8.
DNA synthesis rate changes during the S phase in mouse epidermis   总被引:1,自引:0,他引:1  
The in vivo DNA synthesis rate throughout the S phase of mouse epidermal cells was investigated. Epidermal basal cells were isolated at various times of the day from normal animals injected with [3H]TdR 30 min before sacrifice, and from pulse-labelled animals with regenerating and growth-inhibited epidermis. The cells were analysed by DNA flow cytometry combined with cell sorting. Cells from successive fractions of the S phase were sorted on glass slides and subjected to quantitative [3H]TdR autoradiography. The results confirmed the presence of unlabelled (slowly replicating) cells in the S phase, the proportion of which was circadian stage-dependent with minimum values at midnight and in the early morning. The DNA synthesis rate throughout the S phase showed a general trend with high values in the mid-fractions, a pattern which was similar in normal and in growth perturbed epidermis. In the early morning the DNA synthesis rate pattern was bimodal with maxima both in the first and second half of the S phase, with a corresponding trough in mid-S. At this time of day the cell progression rate through S is at its maximum, indicating a relationship between the overall DNA synthesis rate and the rate distribution pattern through S.  相似文献   

9.
Localization of sites of lipid biosynthesis in mammalian epidermis   总被引:4,自引:0,他引:4  
The end-product of epidermal differentiation is a stratified layer of corneocytes whose extracellular lipid bilayers provide a permeability barrier. It is generally accepted that the epidermis synthesizes most if not all of the lipids found in this tissue and that extra-epidermal tissues contribute very little to this lipid content. Moreover, the individual epidermal strata in which epidermal lipid biosynthesis occurs are not known. To address this question, we examined [3H]H2O incorporation into nonsaponifiable and saponifiable lipids in individual epidermal cell layers 3 hr after intraperitoneal injection into neonatal mice, and compared this to protein and DNA synthesis using intraperitoneal [3H]leucine and [3H]thymidine incorporation, respectively. Lipid biosynthesis was also assessed by [14C]acetate incorporation into lipid fractions in organ cultured skin and in epidermal subpopulations. The in vivo studies demonstrated that the biosynthetic activity of both saponifiable and nonsaponifiable lipids was comparable to, if not greater, in the stratum granulosum (SG) than in basal/spinous (SB + SS) layer, despite significantly lower levels of both protein and DNA synthesis in the SG. On a mass basis, the SG accounts for about four times the biosynthetic activity of the combined SB + SS layers. The lipid biosynthetic activity in vitro also was two- to fivefold higher in the SG, regardless of whether the epidermis was separated into individual cell layers before or after incubations with radiolabel. Moreover, this difference could not be ascribed to increased acetate pools or to elevated metabolism in the SG versus the SB + SS since the rates of CO2 production were much lower in the SG fraction. The increase in lipid biosynthesis in SG over SB + SS was greatest for phospholipids, followed by glycosphingolipids, and free sterols but was observed in almost all lipid classes. These studies show not only that mammalian epidermis is an active site of de novo lipid biosynthesis, but also that this activity remains high in the stratum granulosum, while other forms of metabolic activity are diminishing. These observations are consistent with the knowledge that lipids extruded from the stratum granulosum layer provide the hydrophobic permeability barrier, and further suggest that elevated synthetic activity in the stratum granulosum would allow rapid replenishment in the event that the barrier is damaged.  相似文献   

10.
The in vivo DNA synthesis rate throughout the S phase of mouse epidermal cells was investigated. Epidermal basal cells were isolated at various times of the day from normal animals injected with [3H]TdR 30 min before sacrifice, and from pulse-labelled animals with regenerating and growth-inhibited epidermis. the cells were analysed by DNA flow cytometry combined with cell sorting. Cells from successive fractions of the S phase were sorted on glass slides and subjected to quantitative [3H]TdR autoradiography. The results confirmed the presence of unlabelled (slowly replicating) cells in the S phase, the proportion of which was circadian stage-dependent with minimum values at midnight and in the early morning. the DNA synthesis rate throughout the S phase showed a general trend with high values in the mid-fractions, a pattern which was similar in normal and in growth perturbed epidermis. In the early morning the DNA synthesis rate pattern was bimodal with maxima both in the first and second half of the S phase, with a corresponding trough in mid-S. At this time of day the cell progression rate through S is at its maximum, indicating a relationship between the overall DNA synthesis rate and the rate distribution pattern through S.  相似文献   

11.
Earlier studies from this laboratory suggested that embryonic chick bones in organ culture released into the culture medium a specific inhibitor of bone cell proliferation as defined by inhibition of [3H]TdR incorporation into DNA. Dialysis and membrane ultrafiltration experiments suggested that the inhibitory substance (IS) had a molecular weight between 6000 and 14,000. However, subsequent studies on the purification of IS have revealed that the inhibitory activity in bone-conditioned medium is of lower molecular weight and has several properties in common with thymidine (TdR): (1) IS coeluted with [3H]TdR upon gel filtration chromatography on Sephadex G-10. (2) IS bound to charcoal but not to cation or anion exchange resins. (3) Bone-conditioned medium decreased incorporation of [3H]TdR into the free [3H]TdR pool of cells in monolayer culture. (4) Conditioned medium inhibited [3H]TdR incorporation into [3H]thymidine monophosphate in a reaction catalyzed by thymidine kinase. The equivalent concentration of TdR in conditioned medium as estimated by thymidine kinase assay was sufficient to account for the reduction in [3H]TdR incorporation into bone cell DNA. No evidence was found for a specific inhibitor of bone cell proliferation other than TdR. Hence we conclude that the inhibitory effect of IS is due to dilution of [3H]TdR by nonradioactive TdR. Furthermore, media conditioned by several tumor cell lines also contained a low-molecular-weight component which inhibited [3H]TdR incorporation. The results suggest that organ- and cell-conditioned media can contain significant concentrations of TdR which can artifactually inhibit [3H]TdR incorporation in cell proliferation assays.  相似文献   

12.
Abstract We describe a reproducible method for combining tritiated thymidine ([3H]TdR) autoradiography with immunoperoxidase detection of bromodeoxyuridine (BrdU) in paraffin-embedded tissues. The technique has been used to examine, in mouse tongue epithelium, the inhibition of incorporation into DNA of [3H]TdR by a simultaneous injection of BrdU in the doses that both compounds are likely to be used in cell proliferation studies. The significance that this inhibition has on prolongation of autoradiograph exposure times, to ensure that all cells that incorporate [3H]TdR are scored as positive, in particular the most lightly labelled cells, has been quantified.
The inhibition of uptake into DNA of [3H]TdR from 0.23 to 1.85 MBq (6.25 to 50 μCi) per animal, produced by a simultaneous injection of 2.5 mg BrdU shows a linear, dose-dependent relationship. Provided the injected dose (in μCi per animal) multiplied by the autoradiographic exposure time (in days) is greater than a value of 700, then all cells that are labelled after incorporation of [3H]TdR alone are also labelled after simultaneous double labelling, despite the latter producing a lower average grain count.  相似文献   

13.
The present experiments with [14C]-thymidine (TdR) and [3H]-bromodeoxyuridine (BrdU) using mouse jejunal crypt cells show that the upper limit of the tracer dose of TdR is about 0.5 microgram g body weight-1 and that of BrdU is about 5.0 micrograms g body weight-1. Applying these doses, the proportions of the endogenous DNA synthesis attributed to the exogenous DNA precursor are 2% and 9% respectively. For [3H]-TdR doses commonly used in cell kinetic studies this proportion is only 0.1-1.0%, a negligible quantity that does not influence the endogenous DNA synthesis. The maximum availability time of tracer doses of TdR as well as BrdU is 40 to 60 min, the majority of the precursors being incorporated after 20 min. The availability time is the same for TdR doses exceeding the tracer dose by a factor of 80, whereas it is prolonged in the case of BrdU doses exceeding the tracer dose by a factor of 50. BrdU is suitable to replace radioactively labelled TdR in short term cell kinetic studies, i.e. determination of the labelling index or of the S phase duration by double labelling. However, more studies are needed to elucidate how far BrdU can replace TdR in long term studies as shown by differences between the fraction of labelled mitoses (FLM) curves of a human renal cell carcinoma measured with BrdU and [3H]-TdR.  相似文献   

14.
The colony-forming efficiency of 9L rat gliosarcoma cells was unaffected by treatment with 0.1 μCi/ml of [3H]TdR. However, when cells were treated with 1 or 10 μCi/ml of [3H]Tdr, cell growth was reduced and cell survival decreased. When monolayer 9L cells were treated with 1 μCi/ml of [3H]TdR for up to 72 hr, approximately 5% survived, which is closely related to the percentage of non-cycling cells in this system. When cells were treated with 10 μCi/ml of [3H]TdR for 72 hr, less survival was observed. the additional cell kill observed may be induced by [3H]TdR released from doomed cells into petri dishes during the incubation period of the colony-formation assay.  相似文献   

15.
Mice were injected intravenously and intraperitoneally with preparations of intestinal nucleoprotein, spleen nuclei, mouse thymus cells, or human kidney T cells whose DNA had been labeled with both [3H]thymidine (TdR) and [125I]-iododeoxyuridine (IUdR). Since free TdR is reutilized more efficiently than free IUdR produced by enzymic hydrolysis of the exogenous DNA, the ratio of [3H]TdR/[125I]IUdR in the DNA fraction of the tissues of the recipient mice provides a measure of the amount of intact exogenous DNA in the tissue. In most instances, the doubly labeled exogenous DNA was almost completely hydrolyzed within 1 day injection, but survival of the DNA from whole cells could be demonstrated in some cases.  相似文献   

16.
Monocarboxylate-H+ cotransporters, such as monocarboxylate transporter (MCT) SLC16A, have been suggested to mediate transruminal fluxes of short-chain fatty acids, ketone bodies, and lactate. Using an RT-PCR approach, we demonstrate expression of MCT1 (SLC16A1) and MCT2 (SLC16A7) mRNA in isolated bovine rumen epithelium. cDNA sequence from these PCR products combined with overlapping expressed sequence tag data allowed compilation of the complete open reading frames for MCT1 and MCT2. Immunohistochemical localization of MCT1 shows plasma membrane staining in cells of the stratum basale, with intense staining of the basal aspects of the cells. Immunostaining decreased in the cell layers toward the rumen lumen, with weak staining in the stratum spinsoum. Immunostaining in the stratum granulosum and stratum corneum was essentially negative. Since monocarboxylate transport will load the cytosol with acid, expression and location of Na+/H+ exchanger (NHE) family members within the rumen epithelium were determined. RT-PCR demonstrates expression of multiple NHE family members, including NHE1, NHE2, NHE3, and NHE8. In contrast to MCT1, immunostaining showed that NHE1 was predominantly localized to the stratum granulosum, with a progressive decrease toward the stratum basale. NHE2 immunostaining was observed mainly at an intracellular location in the stratum basale, stratum spinosum, and stratum granulosum. Given the anatomic localization of MCT1, NHE1, and NHE2, the mechanism of transruminal short-chain fatty acid, ketone body, and lactate transfer is discussed in relation to a functional model of the rumen epithelium comprising an apical permeability barrier at the stratum granulosum, with a cell syncitium linking the stratum granulosum to the blood-facing stratum basale.  相似文献   

17.
Information on the cell cycle of progenitor cells in haemopoietic tissue is useful for understanding population control under physiological and abnormal conditions. Unfortunately, methods that have been developed for measuring cell cycle parameters are applicable only to cells of homogenous populations and not to morphologically non-recognizable progenitor cells such as colony forming units (CFU) that are present at low frequency in a heterogenous population. to circumvent this difficulty, a method was developed to measure CFU cell cycle parameters based on specific killing of cells in S phase by [3H]thymidine ([3H]TdR). This was done by estimating the number of CFU killed following exposure of the cell suspension to [3H]TdR for various time periods. Since cycling CFU are continuously entering S phase, a linear curve relating the percentage CFU-kill to the length of exposure of the cells to [3H]TdR in culture can be obtained. the slope of the curve (percentage kill/hr) indicates the rate that CFU enter the S phase and travel through the cell cycle. the inverse of this value will then represent a time period for CFU to move through a complete cell cycle (generation time). the length of S phase can then be obtained by multiplying generation time by the fraction of cells in S phase at time zero. This method has been used to measure generation time and length of S phase of three kinds of haemopoietic progenitor cells: mouse granulocyte-macrophage CFU, human T lymphocyte CFU and CFU from regenerating mouse spleens. This method should be applicable to any normal or neoplastic clonogenic cell populations and the latter could be either of haematological or of solid tumour origin.  相似文献   

18.
The aim of this work was to investigate some aspects of the thyroid epithelial cell kinetics during the iodide-induced involution of a hyperplastic goitre in the rat. Rats were made iodine-deficient for 6 months, and propylthiouracil (PTU) (0.15%) was added to the diet during the last 2 months. Thereafter, rats were refed with iodide and PTU was removed (day 0). Forty-eight hours previously, all the rats were injected with tritiated thymidine ([3H]TdR) (1 microCi/g). Some animals were killed 1 hr or 24 hr after [3H]TdR injection (i.e. on day -2 and -1, day 0 corresponding to the restoration of a normal iodine diet); the other animals were killed after different delay periods and following [3H]TdR injection. Autoradiography of thyroid sections, iodine determination of plasma iodide and protein-bound iodine (PBI), and RIA of plasma thyroid stimulatory hormone (TSH) were performed. Plasma TSH concentration was very high on day 0 of iodide refeeding (3000 +/- 330 ng/ml) and remained at this level until day 8. Plasma PBI was very low on day 0, remained so until day 4 and greatly increased on day 8. Plasma iodide was also very low on day 0, but markedly increased on day 1, then did not vary significantly until day 43 of iodine refeeding. Thyroid weight, elevated on day 0, decreased relatively quickly until day 30, then more slowly until day 73. The [3H]TdR labelling index (LI) of the thyroid epithelial cells (TEC) was high on day 0 (56 +/- 3 labelled cells/10,000 cells), and 24 hr thereafter increased to 104 +/- 3, by division of the labelled cells. On day 1 of iodine refeeding, the LI had abruptly decreased to about half this value and then remained stable for 3 more days. Between day 4 and day 16, a progressive decline in the LI, (by about 3-4 per day), was observed. The LI showed no further modification, up to day 73, the longest period investigated. The decrease in LI occurred without any significant changes in the labelling intensity (grain count) of the remaining labelled cells between day 1 and 16, this indicates that no cell division took place during this period. The data are therefore interpreted as showing a biphasic elimination after iodide refeeding, of cells that were actively proliferating during the goitrous state.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The simultaneous immunohistochemical detection of bromodeoxyuridine (BrdU) and [3H]-thymidine ([3H]TdR), by conventional autoradiography, was performed on the mouse small intestine (ileum). Proliferation was studied under normal conditions as well as after 3 Gy of gamma-rays. The BrdU method in conjunction with [3H]TdR autoradiography appears to be reliable and useful for the study of cell kinetics especially in disturbed states, on condition that [3H]TdR is delivered to the animals before BrdU. It has been found that cells in the crypt are delayed by irradiation in their progression through the cell cycle predominantly in late S phase. The cells at the bottom of the crypt are more affected than the more differentiated but proliferating cells in the upper part of the crypt.  相似文献   

20.
The central zone of the rat lens epithelium, extending half way from the centre to the periphery of a whole mount preparation, normally has less than 1% of the cells in the cell cycle at any given time. Mechanical wounding initiates a burst of proliferation in the central zone. DNA synthesis begins 14 hr after wounding followed by mitosis 10 hr later. When [3H]TdR was applied at 2 hr prior to S phase, some moderately heavy and some light labelling was observed after the onset of S phase. When [3H]TdR was applied 5 hr before S phase (9 hr after wounding), all the cells were lightly labelled. Only small amounts of the label were available to these cells 5 hr after application. It is significant that there was labelling in this group because it indicates the persistence of relatively small intracellular pools of [3H]TdR for several hours after the initial 'pulse' labelling of cells. Determinations of the duration of S phase were based on the assumption that pulse labelling may be affected by the persistence of the pools of [3H]TdR and consequent light labelling of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号