首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Muscleblind proteins regulate alternative splicing   总被引:18,自引:0,他引:18       下载免费PDF全文
Although the muscleblind (MBNL) protein family has been implicated in myotonic dystrophy (DM), a specific function for these proteins has not been reported. A key feature of the RNA-mediated pathogenesis model for DM is the disrupted splicing of specific pre-mRNA targets. Here we demonstrate that MBNL proteins regulate alternative splicing of two pre-mRNAs that are misregulated in DM, cardiac troponin T (cTNT) and insulin receptor (IR). Alternative cTNT and IR exons are also regulated by CELF proteins, which were previously implicated in DM pathogenesis. MBNL proteins promote opposite splicing patterns for cTNT and IR alternative exons, both of which are antagonized by CELF proteins. CELF- and MBNL-binding sites are distinct and regulation by MBNL does not require the CELF-binding site. The results are consistent with a mechanism for DM pathogenesis in which expanded repeats cause a loss of MBNL and/or gain of CELF activities, leading to misregulation of alternative splicing of specific pre-mRNA targets.  相似文献   

2.
3.
4.
Some members of the inhibitor of apoptosis (IAP) family suppress apoptosis by neutralizing caspases. The current model suggests that all caspase-regulatory IAPs function as direct enzyme inhibitors, blocking effector caspases by binding to their catalytically active pockets. Here we show that IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. Whereas XIAP binds directly to the active-site pockets of effector caspases, we find that regulation of effector caspases by Drosophila IAP1 (DIAP1) requires an evolutionarily conserved IAP-binding motif (IBM) at the neo-amino terminus of the large caspase subunit. Remarkably, unlike XIAP, DIAP1-sequestered effector caspases remain catalytically active, suggesting that DIAP1 does not function as a bona fide enzyme inhibitor. Moreover, we demonstrate that the mammalian IAP c-IAP1 interacts with caspase-7 in an exclusively IBM-dependent, but active site pocket-independent, manner that is mechanistically similar to DIAP1. The importance of IBM-mediated regulation of effector-caspases in vivo is substantiated by the enhanced apoptotic potency of IBM-mutant versions of drICE, DCP-1 and caspase-7.  相似文献   

5.
6.
RNA sequence elements involved in the regulation of pre-mRNA splicing have previously been identified in vertebrate genomes by computational methods. Here, we apply such approaches to predict splicing regulatory elements in Drosophila melanogaster and compare them with elements previously found in the human, mouse, and pufferfish genomes. We identified 99 putative exonic splicing enhancers (ESEs) and 231 putative intronic splicing enhancers (ISEs) enriched near weak 5' and 3' splice sites of constitutively spliced introns, distinguishing between those found near short and long introns. We found that a significant proportion (58%) of fly enhancer sequences were previously reported in at least one of the vertebrates. Furthermore, 20% of putative fly ESEs were previously identified as ESEs in human, mouse, and pufferfish; while only two fly ISEs, CTCTCT and TTATAA, were identified as ISEs in all three vertebrate species. Several putative enhancer sequences are similar to characterized binding-site motifs for Drosophila and mammalian splicing regulators. To provide additional evidence for the function of putative ISEs, we separately identified 298 intronic hexamers significantly enriched within sequences phylogenetically conserved among 15 insect species. We found that 73 putative ISEs were among those enriched in conserved regions of the D. melanogaster genome. The functions of nine enhancer sequences were verified in a heterologous splicing reporter, demonstrating that these sequences are sufficient to enhance splicing in vivo. Taken together, these data identify a set of predicted positive-acting splicing regulatory motifs in the Drosophila genome and reveal regulatory sequences that are present in distant metazoan genomes.  相似文献   

7.
CCL27的不同剪切机制及其功能差异   总被引:1,自引:0,他引:1  
邵先安  熊思东 《生命科学》2005,17(4):308-310
CCL27是一种CC型趋化因子,其配体为CCR10。由于mRNA剪切的不同,CCL27形成两种不同的分子,即经典CCL27和其变异体PESKY,前者含分泌肽,对活化CD4+T细胞有趋化作用,是皮肤炎症反应中扮演主要角色的趋化因子;后者含有核内定位序列,调控细胞骨架结构的重排,这一特性为该趋化因子所独有,可能预示着趋化因子家族的新功能。  相似文献   

8.
9.
10.
Filamin c is the predominantly expressed filamin isoform in striated muscles. It is localized in myofibrillar Z-discs, where it binds FATZ and myotilin, and in myotendinous junctions and intercalated discs. Here, we identify Xin, the protein encoded by the human gene 'cardiomyopathy associated 1' (CMYA1) as filamin c binding partner at these specialized structures where the ends of myofibrils are attached to the sarcolemma. Xin directly binds the EVH1 domain proteins Mena and VASP. In the adult heart, Xin and Mena/VASP colocalize with filamin c in intercalated discs. In cultured cardiomyocytes, the proteins also localize in the nonstriated part of myofibrils, where sarcomeres are assembled and an extensive reorganization of the actin cytoskeleton occurs. Unusual intraexonic splicing events result in the existence of three Xin isoforms that associate differentially with its ligands. The identification of the complex filamin c-Xin-Mena/VASP provides a first glance on the role of Xin in the molecular mechanisms involved in developmental and adaptive remodeling of the actin cytoskeleton during cardiac morphogenesis and sarcomere assembly.  相似文献   

11.
12.
13.
14.
15.
16.
《Cell》2023,186(1):80-97.e26
  1. Download : Download high-res image (158KB)
  2. Download : Download full-size image
  相似文献   

17.
Zhong D  Yu W  Liu Y  Liu J  Li J 《Immunogenetics》2004,56(9):650-656
The biosynthesis of distinct forms of the invariant chain (Ii) protein from a unique gene as the result of differential splicing patterns has been observed in humans and mice. However, there have been no reports on the existence of Ii isoforms in avian species. In the present study, we identified two chicken Ii cDNAs by RT-PCR and RACE, and examined the Ii gene copy number, mRNA expression and protein expression by Southern blotting, Northern blotting and immunofluorescence confocal microscopy, respectively. One of the Ii cDNAs, named Ii-1, was 1,151 bp in length, and had an open reading frame (ORF) of 672 nucleotides, in agreement with a previously identified chicken Ii sequence; the other, named Ii-2, was 1,337 bp long and had an ORF of 861 nucleotides. Southern blotting confirmed that these cDNAs were derived from a single copy gene. Northern blotting performed with total RNA from various tissues of 6-week-old chickens revealed high levels of Ii-1 and Ii-2 mRNA expression in the spleen and bursa of Fabricius, and low levels of Ii-1 expression in the thymus, heart and liver, while Ii-2 was not expressed in these tissues. High levels of expression of both Ii isoforms were detected in the spleen and bursa of Fabricius during late embryogenesis. Immunofluorescence staining showed that Ii proteins were expressed in the cell membranes of the splenocytes. These data suggest that chicken Ii exists in two isoforms resulting from alternative splicing, and is strongly expressed in the major immune organs.  相似文献   

18.
ARD1 protein is a mammalian gene product homologous to a yeast Ard1p (Arrest defective 1 protein) acetyltransferase. Although two alternative splicing products of ARD1, ARD1(235) and ARD1(225), were reported in mouse, only ARD1(235) orthologue was reported in humans. Here we show that ARD1(225) is not expressed in humans, suggesting that factors regulating alternative splicing of ARD1 may have evolved differently between species. In human cells, hARD1(235) is shown to be present in both nucleus and cytoplasm. However, in mouse cells, mARD1(235) and mARD1(225) proteins are localized to the nucleus and cytoplasm, respectively. Moreover, during apoptosis, ARD1(235) and ARD1(225) isoforms are destabilized by different mechanisms in a species-specific manner and dependent on destabilizing reagents. These results indicate that ARD1(235) and ARD1(225) isoforms may have different activities and function in different subcellular compartments of mammalian cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号