首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Actin cytoskeletal reorganization is essential for tumor cell migration, adhesion, and invasion. Cofilin and actin-depolymerizing factor (ADF) act as key regulators of actin cytoskeletal dynamics by stimulating depolymerization and severing of actin filaments. Cofilin/ADF are inactivated by phosphorylation of Ser-3 by LIM kinase-1 (LIMK1) and reactivated by dephosphorylation by Slingshot-1 (SSH1) and -2 (SSH2) protein phosphatases. In this study, we examined the roles of cofilin/ADF, LIMK1, and SSH1/SSH2 in tumor cell invasion, using an in vitro transcellular migration assay. In this assay, rat ascites hepatoma (MM1) cells were overlaid on a primary-cultured rat mesothelial cell monolayer and the number of cell foci that transmigrated underneath the monolayer in the presence of lysophosphatidic acid (LPA) was counted. The knockdown of cofilin/ADF, LIMK1, or SSH1/SSH2 expression by small interfering RNAs (siRNAs) significantly decreased the LPA-induced transcellular migration of MM1 cells and their motility in two-dimensional culture. Knockdown of LIMK1 also suppressed fibronectin-mediated cell attachment and focal adhesion formation. Our results suggest that both LIMK1-mediated phosphorylation and SSH1/SSH2-mediated dephosphorylation of cofilin/ADF are critical for the migration and invasion of tumor cells and that LIMK1 is involved in the transcellular migration of tumor cells by enhancing both adhesion and motility of the cells.  相似文献   

2.
Integrin receptors localize to focal contact sites and interact with the cytoskeleton via the beta 1 cytoplasmic domain. To study the role of this domain in adhesion, we have expressed in NIH 3T3 cells a cDNA consisting of the interleukin 2 receptor alpha subunit extracellular and transmembrane domains, connected to the integrin beta 1 cytoplasmic domain (IL2R-beta 1). Since the extracellular domain of the chimeric protein has no role in adhesion, this protein could uncouple adhesion from intracellular events. As expected, in a cell line expressing IL2R-beta 1, this chimera was directed to focal contact sites. Unexpectedly, the cells exhibited normal adhesion to fibronectin (FN). However, when a rapid reorganization of the cytoskeleton was induced using lysophosphatidic acid (LPA), IL2R-beta 1 cells detached from FN in contrast to wild-type cells. The detachment in response to LPA could be prevented with cytochalasin D, an inhibitor of actin polymerization. These results imply that a beta 1 cytoplasmic domain, which is uncoupled from adhesion, can compete with the cytoplasmic domain of native integrin beta 1 for cytoskeletal proteins. As a consequence, the IL2R-beta 1 protein acts as a dominant negative effector of adhesion by disrupting the integrin-cytoskeleton connection.  相似文献   

3.
Lysophosphatidic acid (LPA) is a potent lipid mediator with actions on many cell types. Morphological changes involving actin polymerization are mediated by at least two cognate G protein-coupled receptors, LPA(1)/EDG-2 or LPA(2)/EDG-4. Herein, we show that LPA can also induce actin depolymerization preceding actin polymerization within single TR mouse immortalized neuroblasts. Actin depolymerization resulted in immediate loss of membrane ruffling, whereas actin polymerization resulted in process retraction. Each pathway was found to be independent: depolymerization mediated by intracellular calcium mobilization, and alpha-actinin activity and polymerization mediated by the activation of the small Rho GTPase. alpha-Actinin-mediated depolymerization seems to be involved in growth cone collapse of primary neurons, indicating a physiological significance of LPA-induced actin depolymerization. Further evidence for dual regulation of actin rearrangement was found by heterologous retroviral transduction of either lpa(1) or lpa(2) in B103 cells that neither express LPA receptors nor respond to LPA, to confer both forms of LPA-induced actin rearrangements. These results suggest that diverging intracellular signals from a single type of LPA receptor could regulate actin depolymerization, as well as polymerization, within a single cell. This dual actin rearrangement may play a novel, important role in regulation of the neuronal morphology and motility during brain development.  相似文献   

4.
In injured tissues, the fibrin-fibronectin (FN) provisional matrix provides a framework for cell adhesion, migration, and repair. Effective repair and remodeling require a proper balance between extracellular matrix (ECM) deposition, contraction, and turnover. We utilized a three-dimensional (3D) fibrin-FN provisional matrix model to determine the contributions of the FN-binding integrin receptors alpha5beta1 and alpha4beta1 to matrix contraction. CHOalpha5 cells expressing alpha5beta1, a receptor for FN's RGD cell-binding domain, were highly contractile, and cells were well spread on a 3D fibrin-FN matrix. In contrast, CHOalpha4 cells expressing the alpha4beta1 receptor for FN's alternatively spliced V region attached less efficiently to FN and were deficient in fibrin-FN matrix contraction. Surprisingly, cell adhesion and matrix contraction by CHOalpha4 cells were dramatically enhanced, to levels equivalent to CHOalpha5 cells, when proteolyzed FN was used in place of intact FN in the fibrin-FN matrix. Similar enhancement was observed when ligand binding by alpha4beta1 integrins was activated by treatment with Mn(++), but not by stimulation of actin organization with LPA. Therefore, alpha4beta1-dependent cell responses to the provisional matrix are modulated by cleavage of matrix components.  相似文献   

5.
Cyclic phosphatidic acid (1-acyl-sn-glycerol-2,3-cyclic phosphate; cPA) is a naturally occurring analog of lysophosphatidic acid (LPA) with a variety of distinctly different biological activities from those of LPA. In contrast to LPA, a potent inducer of tumor cell invasion, palmitoyl-cPA inhibits FBS- and LPA-induced transcellular migration and metastasis. To prevent the conversion of cPA to LPA we synthesized cPA derivatives by stabilizing the cyclic phosphate ring; to prevent the cleavage of the fatty acid we generated alkyl ether analogs of cPA. Both sets of compounds were tested for inhibitory activity on transcellular tumor cell migration. Carba derivatives, in which the phosphate oxygen was replaced with a methylene group at either the sn-2 or the sn-3 position, showed much more potent inhibitory effects on MM1 tumor cell transcellular migration and the pulmonary metastasis of B16-F0 melanoma than the natural pal-cPA. The antimetastatic effect of carba-cPA was accompanied by the inhibition of RhoA activation and was not due to inhibition of the activation of LPA receptors.  相似文献   

6.
Lysophosphatidic acid (LPA), one of the naturally occurring phospholipids, stimulates cell motility through the activation of Rho family members, but the signaling mechanisms remain to be elucidated. In the present study, we investigated the roles of p21-activated kinase 1 (PAK1) on LPA-induced focal adhesion kinase (FAK) phosphorylation and cell motility. Treatment of human melanoma cells A2058 with LPA increased phosphorylation and activation of PAK1, which was blocked by treatment with pertussis toxin and by inhibition of phosphoinositide 3-kinase (PI3K) with an inhibitor LY294002 or by overexpression of catalytically inactive mutant of PI3Kgamma, indicating that LPA-induced PAK1 activation was mediated via a Gi protein and the PI3Kgamma signaling pathway. In addition, we demonstrated that Rac1/Cdc42 signals acted as upstream effector molecules of LPA-induced PAK activation. However, Rho-associated kinase, MAP kinase kinase 1/2 or phospholipase C might not be involved in LPA-induced PAK1 activation or cell motility stimulation. Furthermore, PAK1 was necessary for FAK phosphorylation by LPA, which might cause cell migration, as transfection of the kinase deficient mutant of PAK1 or PAK auto-inhibitory domain significantly abrogated LPA-induced FAK phosphorylation. Taken together, these findings strongly indicated that PAK1 activation was necessary for LPA-induced cell motility and FAK phosphorylation that might be mediated by sequential activation of Gi protein, PI3Kgamma and Rac1/Cdc42.  相似文献   

7.
BACKGROUND: Cell adhesion and motility are accomplished through a functional linkage of the extracellular matrix with the actin cytoskeleton via adhesion complexes composed of integrin receptors and associated proteins. To determine whether this linkage is attained actively or passively, we isolated integrin complexes from nonadherent hematopoietic cells and determined their influence on the polymerization of actin. RESULTS: We observed that alpha(V)beta3 complexes are capable of dramatically accelerating the rate of actin assembly, resulting in actin fibers tethered at their growing ends by clustered integrins. The ability to enhance actin polymerization was dependent upon Arg-Gly-Asp-ligand-induced beta3 tyrosine phosphorylation, agonist-induced cellular activation, sequestration of Diaphanous formins, and clustering of the receptor. CONCLUSIONS: These results suggest that adhesion complexes actively promote actin assembly from their cytosolic face in order to establish a mechanical linkage with the extracellular matrix.  相似文献   

8.
Lysophosphatidic acid (LPA) mediates diverse biological responses, including cell migration, through the activation of G-protein-coupled receptors. Recently, we have shown that LPA stimulates p21-activated kinase (PAK) that is critical for focal adhesion kinase (FAK) phosphorylation and cell motility. Here, we provide the direct evidence that p85 beta-PIX is required for cell motility of NIH-3T3 cells by LPA through FAK and p38 MAP kinase phosphorylations. LPA induced p85 beta-PIX binding to FAK in NIH-3T3 cells that was inhibited by pretreatment of the cells with phosphoinositide 3-kinase inhibitor, LY294002. Furthermore, the similar inhibition of the complex formation was also observed, when the cells were transfected with either p85 beta-PIX mutant that cannot bind GIT or dominant negative mutants of Rac1 (N17Rac1) and PAK (PAK-PID). Transfection of the cells with specific p85 beta-PIX siRNA led to drastic inhibition of LPA-induced FAK phosphorylation, peripheral redistribution of p85 beta-PIX with FAK and GIT1, and cell motility. p85 beta-PIX was also required for p38 MAP kinase phosphorylation induced by LPA. Finally, dominant negative mutant of Rho (N19Rho)-transfected cells did not affect PAK activation, while the cells stably transfected with p85 beta-PIX siRNA or N17Rac1 showed the reduction of LPA-induced PAK activation. Taken together, the present data suggest that p85 beta-PIX, located downstream of Rac1, is a key regulator for the activations of FAK or p38 MAP kinase and plays a pivotal role in focal complex formation and cell motility induced by LPA.  相似文献   

9.
1-Oleoyl lysophosphatidic acid (LPA) induces transmonolayer migration (in vitro invasion) of rat ascites hepatoma MM1 cells and their morphological changes leading to the migration. We have previously shown that an LPA analog, palmitoyl cyclic phosphatidic acid (Pal-cPA), suppresses transmonolayer migration of MM1 cells by rapidly increasing the intracellular cyclic AMP (cAMP) concentration. We report here that various cAMP-elevating agents, including dibutyryl cAMP, forskolin, cholera toxin and 3-isobutyl-1-methylxanthine, consistently inhibited LPA-induced transmonolayer migration of MM1 cells. Moreover, pull-down assays for GTP-bound, active RhoA demonstrated that the blockage by cAMP-elevating agents of morphological changes leading to the migration was probably mediated through inhibiting RhoA activation.  相似文献   

10.
The LIM domain-containing TRIP6 (Thyroid Hormone Receptor-interacting Protein 6) is a focal adhesion molecule known to regulate lysophosphatidic acid (LPA)-induced cell migration through interaction with the LPA2 receptor. LPA stimulation targets TRIP6 to the focal adhesion complexes and promotes c-Src-dependent phosphorylation of TRIP6 at Tyr-55, which creates a docking site for the Crk Src homology 2 domain, thereby promoting LPA-induced morphological changes and cell migration. Here we further demonstrate that a switch from c-Src-mediated phosphorylation to PTPL1/Fas-associated phosphatase-1-dependent dephosphorylation serves as an inhibitory feedback control mechanism of TRIP6 function in LPA-induced cell migration. PTPL1 dephosphorylates phosphotyrosine 55 of TRIP6 in vitro and inhibits LPA-induced tyrosine phosphorylation of TRIP6 in cells. This negative regulation requires a direct protein-protein interaction between these two molecules and the phosphatase activity of PTPL1. In contrast to c-Src, PTPL1 prevents TRIP6 turnover at the sites of adhesions. As a result, LPA-induced association of TRIP6 with Crk and the function of TRIP6 to promote LPA-induced morphological changes and cell migration are inhibited by PTPL1. Together, these results reveal a novel mechanism by which PTPL1 phosphatase plays a counteracting role in regulating TRIP6 function in LPA-induced cell migration.  相似文献   

11.
Integrin-ligand binding regulates tumor cell motility and invasion. Cell migration also involves the Rho GTPases that control the interplay between adhesion receptors and the cytoskeleton. We evaluated how specific extracellular matrix ligands modulate Rho GTPases and control motility of human squamous cell carcinoma cells. On laminin-5 substrates, the epithelial cells rapidly spread and migrated, but on type I collagen the cells spread slowly and showed reduced motility. We found that RhoA activity was suppressed in cells attached to laminin-5 through the alpha3 integrin receptor. In contrast, RhoA was strongly activated in cells bound to type I collagen and this was mediated by the alpha2 integrin. Inhibiting the RhoA pathway by expression of a dominant-negative RhoA mutant or by directly inhibiting ROCK, reduced focal adhesion formation and enhanced cell migration on type I collagen. Cdc42 and Rac and their downstream target PAK1 were activated following adhesion to laminin-5. PAK1 activation induced by laminin-5 was suppressed by expression of a dominant-negative Cdc42. Moreover, constitutively active PAK1 stimulated migration on collagen I substrates. Our results indicate that in squamous epithelial cells, collagen-alpha2beta1 integrin binding activates RhoA, slowing cell locomotion, whereas laminin-5-alpha3beta1 integrin interaction inhibits RhoA and activates PAK1, stimulating cell migration. The data demonstrate that specific ligand-integrin pairs regulate cell motility differentially by selectively modulating activities of Rho GTPases and their effectors.  相似文献   

12.
Cells attach and interact with the extracellular matrix (ECM) through heterodimeric alphabeta integrin receptors. Specifically, the promiscuous alphavbeta3 integrin and the alpha2beta1 integrin receptors engage numerous matrix components to influence cell adhesion, cell motility, and matrix organization. However, the role of alphav integrin mediating cell-collagen interactions is not clear. In the in vitro cell populated collagen lattice (PCL), a model of cell-matrix interaction, integrin receptors play a role in lattice contraction. To elucidate alphav integrins' effects on cell-collagen interactions, human osteosarcoma (HOS) cells were transfected with alphav integrin (alphav-pcDNA 3.1+). Control HOS cells were transfected with pcDNA 3.1+ vector alone. HOS-alphav cell PCLs contracted to a greater degree than control HOS cell PCLs (P < or = 0.0001). RT-PCR revealed that HOS-alphav cells express both beta1 and beta3 integrins, indicating that alphav has the potential to form a partnership with either beta1 or beta3 integrin. The alphavbeta3 specific inhibitory antibody LM609 significantly retarded HOS-alphav cell PCL contraction (P < or = 0.001), suggesting that alphavbeta3 promotes enhanced HOS-alphav cell PCL contraction. When plated on plastic, control HOS cells show greater elongation compared to HOS-alphav cells. In addition, HOS-alphav cells migrated faster and to a greater degree than control HOS cells (P < or = 0.0001). The possibility that enhanced HOS-alphav cell migration and HOS-alphav cell PCL contraction was caused by increased myosin ATPase activity was examined. HOS-alphav cells showed less myosin ATPase activity than control HOS cells, by an ATP cell contraction bioassay. The enhancement of HOS-alphav cell migration and lattice contraction appears unrelated to increased myosin ATPase activity.  相似文献   

13.
In multiple myeloma (MM), migration is necessary for the homing of tumor cells to bone marrow (BM), for expansion within the BM microenvironment, and for egress into the peripheral blood. In the present study we characterize the role of vascular endothelial growth factor (VEGF) and beta(1) integrin (CD29) in MM cell migration. We show that protein kinase C (PKC) alpha is translocated to the plasma membrane and activated by adhesion of MM cells to fibronectin and VEGF. We identify beta(1) integrin modulating VEGF-triggered MM cell migration on fibronectin. We show that transient enhancement of MM cell adhesion to fibronectin triggered by VEGF is dependent on the activity of both PKC and beta(1) integrin. Moreover, we demonstrate that PKC alpha is constitutively associated with beta(1) integrin. These data are consistent with PKC alpha-dependent exocytosis of activated beta(1) integrin to the plasma membrane, where its increased surface expression mediates binding to fibronectin; conversely, catalytically active PKC alpha-driven internalization of beta(1) integrin results in MM cell de-adhesion. We show that the regulatory subunit of phosphatidylinositol (PI) 3-kinase (p85) is constitutively associated with FMS-like tyrosine kinase-1 (Flt-1). VEGF stimulates activation of PI 3-kinase, and both MM cell adhesion and migration are PI 3-kinase-dependent. Moreover, both VEGF-induced PI 3-kinase activation and beta(1) integrin-mediated binding to fibronectin are required for the recruitment and activation of PKC alpha. Time-lapse phase contrast video microscopy (TLVM) studies confirm the importance of these signaling components in VEGF-triggered MM cell migration on fibronectin.  相似文献   

14.
Lysophosphatidic acid (LPA) induces actin rearrangement, focal adhesion assembly, and cell migration through the activation of small G protein Rho and its downstream effectors. These diverse cellular responses are mediated by its associated G protein-coupled receptors. However, the mechanisms and specificity by which these LPA receptors mediate LPA actions are still poorly understood. Here we show that LPA stimulation promotes the interaction of the LPA(2) receptor with a focal adhesion molecule, TRIP6 (thyroid receptor interacting protein 6)/ZRP-1 (zyxin-related protein 1). TRIP6 directly binds to the carboxyl-terminal tail of the LPA(2) receptor through its LIM domains. LPA-dependent recruitment of TRIP6 to the plasma membrane promotes its targeting to focal adhesions and co-localization with actin stress fibers. In addition, TRIP6 associates with the components of focal complexes including paxillin, focal adhesion kinase, c-Src, and p130(cas) in an agonist-dependent manner. Overexpression of TRIP6 augments LPA-induced cell migration; in contrast, suppression of endogenous TRIP6 expression by a TRIP6-specific small interfering RNA reduces it in SKOV3 ovarian cancer cells. Strikingly, the association with TRIP6 is specific to the LPA(2) receptor but not LPA(1) or LPA(3) receptor, indicating a specific role for TRIP6 in regulating LPA(2) receptor-mediated signaling. Taken together, our results suggest that TRIP6 functions at a point of convergence between the activated LPA(2) receptor and downstream signals involved in cell adhesion and migration.  相似文献   

15.
Autotaxin (ATX) is a potent tumor cell motogen that can produce lysophosphatidic acid (LPA) from lysophosphatidylcholine. LPA is a lipid mediator that has also been shown to modulate tumor cell invasion. Autotaxin mRNA is expressed at significant levels in the intestine. Likewise, LPA2 receptor levels have been shown to be elevated in colon cancers. The molecular mechanism of ATX/LPA-induced increase in intestinal cell migration however, remains poorly understood. Villin is an intestinal and renal epithelial cell specific actin regulatory protein that modifies epithelial cell migration. In this study we demonstrate that both Caco-2 (endogenous villin) and MDCK (exogenous villin) cells, which express primarily LPA2 receptors, show enhanced cell migration in response to ATX/LPA. ATX and LPA treatment results in the rapid formation of lamellipodia and redistribution of villin to these cell surface structures, suggesting a role for villin in regulating this initial event of cell locomotion. The LPA-induced increase in cell migration required activation of c-src kinase and downstream tyrosine phosphorylation of villin by c-src kinase. LPA stimulated cell motility was determined to be insensitive to pertussis toxin, but was regulated by activation of PLC-gamma 1. Together, our results show that in epithelial cells ATX and LPA act as strong stimulators of cell migration by recruiting PLC-gamma 1 and villin, both of which participate in the initiation of protrusion.  相似文献   

16.
Interactions between integrins and tyrosine kinase receptors can modulate a variety of cell functions. We observed a cooperative interaction between the beta(1) integrin and vascular endothelial growth factor receptor-3 (VEGFR-3 or Flt4) that appeared to be required for cell migration. By using VEGFR-3-transfected 293 cells (293/VEGFR-3) or primary dermal microvascular endothelial cells (DMEC), we found that stimulation with either soluble or immobilized extracellular matrix (ECM) proteins, collagen or fibronectin (FN), resulted in the increased tyrosine phosphorylation of VEGFR-3 in the absence of a cognate ligand. This increased tyrosine phosphorylation of VEGFR-3 was diminished by pretreatment with a blocking antibody against the beta(1) integrin. Cross-linking with anti-beta(1) integrin antibody induced a similar degree of tyrosine phosphorylation of VEGFR-3. Stimulation with collagen or FN induced an association between beta(1) integrin and VEGFR-3 in both 293/VEGFR-3 and primary DMEC cells. Collagen or FN-induced tyrosine phosphorylation of VEGFR-3 was inhibited by treatment with cytochalasin D, an inhibitor of actin polymerization. Collagen or FN was able to induce the migration of 293/VEGFR-3 or DMEC cells to a limited extent. However, migration was dramatically enhanced when a gradient of the cognate ligand, VEGF-D, was added. VEGF-D failed to induce cell migration in the absence of ECM proteins. Introducing a mutation at the kinase domain of VEGFR-3 or treatment with blocking antibody against either VEGFR-3 or beta(1) integrin inhibited cell migration induced by ECM and VEGF-D, indicating that signals from both beta(1) integrin and VEGFR-3 are required for this cell function.  相似文献   

17.
Action mechanism of lipopolysaccharide (LPS), interleukin-1β (IL-1β), and lysophosphatidic acid (LPA) to regulate motility, an important process of astrogliosis, was investigated in rat astrocytes. While LPA exerted no significant effect on the cell migration, the prior treatment of the cells with LPS or IL-1β resulted in the appearance of migration activity in response to LPA. The LPS induction of the migration response to LPA was associated with the production of IL-1β precursor protein and inhibited by the IL-1 receptor antagonist. The IL-1β treatment also allowed LPA to activate Rac1. The LPA-induced Rac1 activation and migration were inhibited by pertussis toxin, a small interfering RNA specific to LPA(1) receptors, and LPA(1) receptor antagonists, including Ki16425. However, the IL-1β treatment had no appreciable effect on LPA(1) receptor mRNA expression and LPA-induced activation of ERK, Akt, and proliferation. The induction of the migration response to LPA by IL-1β was inhibited by a constitutively active RhoA. Moreover, LPA significantly activated RhoA through the LPA(1) receptor in the control cells but not in the IL-1β-treated cells. These results suggest that IL-1β inhibits the LPA(1) receptor-mediated Rho signaling through the IL-1 receptor, thereby disclosing the LPA(1) receptor-mediated G(i) protein/Rac/migration pathway.  相似文献   

18.
Cell adhesion and migration on fibronectin (FN) extracellular matrix are mediated by integrin receptors. Integrins alpha5beta1 and alphavbeta3 require the RGD cell-binding sequence in FN, but alpha5beta1 also requires the nearby synergy site for maximal binding. In this study, we investigated how differences in the numbers of RGD or synergy sites within a three-dimensional (3D) FN-rich matrix influence cell adhesion and migration. CHO cell adhesion, spreading, and migration were reduced on 3D chimeric matrix containing FN lacking RGD (FN(RGD-)). Incorporation of FN with mutation of the synergy site (FN(syn-)), however, resulted in selective usage of integrins. CHO cells expressing alpha5beta1 showed decreased interactions with FN(syn-) chimeric matrix. In contrast, the presence of FN(syn-) had no effect on CHOalphavbeta3 cell migration. Interestingly, CHOalpha5/alphavbeta3 cells expressing both integrins selectively used alpha5beta1 for migration on wild type FN matrix but preferred alphavbeta3 for migration on FN(syn-) chimeric matrix. Thus sequestration or exposure of the FN synergy site within a 3D matrix may represent a novel mechanism for regulating cell functions through differential usage of integrin receptors. [Supplementary materials are available for this article. Go to the publisher's online edition of Cell Communication and Adhesion for the following free supplemental resource: a video recording shows migration of HT1080 cells on 3D matrix. HT1080 cells were allowed to attach to the matrix in serum-free DMEM for 2 h. FBS was then added to the medium to a final concentration of 10% and video recording was started. Images were taken every 5 min for 2 h. The video plays at 6 frames/s.].  相似文献   

19.
Extracellular matrix receptors on ductus arteriosus smooth muscle cells (SMC) must enable the cells to migrate through both interstitial and basement membrane matrices to form intimal mounds during postnatal ductus closure. We examined the role of beta 1 and beta 3 integrin receptors on SMC adhesion and migration. Using a new assay to measure cell migration, we found that lamb ductus arteriosus SMC attach to and migrate over surfaces coated with fibronectin (FN), laminin (LN), vitronectin (VN), and collagens I (I) and IV (IV). Blocking antibodies, specific to different integrin complexes, showed that SMC adhesion to FN, LN, I, and IV depended exclusively on functioning beta 1 integrins with little, if any, contribution by the alpha V beta 3 integrin; on the other hand, cell migration over these substrates depended to a large extent on the alpha V beta 3 receptor. Immunofluorescent staining demonstrated that during the early phase of SMC migration, the beta 1 integrins organized rapidly into focal plaques that, with time, gradually covered the cell's basal surface; on the other hand, the beta 3 receptor remained concentrated at all times at the cell's margins. Ligand affinity chromatography and immunoprecipitation techniques identified a unique series of beta 1 integrins binding to each matrix component: FN (alpha 5 beta 1, alpha 3 beta 1, alpha V beta 1), LN (alpha 1 beta 1, alpha 7 beta 1), VN (alpha V beta 1), I (alpha 1 beta 1, alpha 2 beta 1), and IV (alpha 1 beta 1). In contrast, the beta 3 integrin, alpha V beta 3, bound to all the substrates tested: FN, LN, VN, I, and IV. The results indicate that beta 1 and beta 3 integrins may play different roles in attachment and migration as SMC move through the vascular extracellular matrix to produce obliteration of the ductus arteriosus lumen.  相似文献   

20.
The proteolytic processing of laminin-5 at the short arm of the gamma2 chain (gamma2sa) is known to convert this laminin from a cell adhesion type to a motility type. Here, we studied this mechanism by analyzing the functions of gamma2sa. In some immortalized or tumorigenic human cell lines, a recombinant gamma2sa, in either soluble or insoluble (coated) form, promoted the adhesion of these cells to the processed laminin-5 (Pr-LN5), and it suppressed their migration stimulated by serum or epidermal growth factor (EGF). Gamma2sa also suppressed EGF-induced tyrosine phosphorylation of integrin beta4 and resultant disruption of hemidesmosome-like structures in keratinocytes. Gamma2sa bound to syndecan-1, and this binding, as well as its cell adhesion activity, was blocked by heparin. By analyzing the activities of three different gamma2sa fragments, the active site of gamma2sa was localized to the NH(2)-terminal EGF-like sequence (domain V or LEa). Suppression of syndecan-1 expression by the RNA interference effectively blocked the activities of domain V capable of promoting cell adhesion and inhibiting the integrin beta4 phosphorylation. These results demonstrate that domain V of the gamma2 chain negatively regulates the integrin beta4 phosphorylation, probably through a syndecan-1-mediated signaling, leading to enhanced cell adhesion and suppressed cell motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号