首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Administration of phorbol 12-myristate 13-acetate (PMA) to rats in vivo resulted in the induction of ornithine decarboxylase activity in the liver which could be blocked by preinjection of indomethacin, a cyclooxygenase inhibitor. In vitro administration of PMA to primary cultures of rat parenchymal cells did not lead to an induction of ornithine decarboxylase activity. It was investigated to what extent non-parenchymal liver cells could play an intermediary role in the expression of the PMA effect on ornithine decarboxylase activity in parenchymal liver cells. Addition of conditioned medium from PMA-activated Kupffer cells to cultured parenchymal cells led to the induction of ornithine decarboxylase activity in parenchymal cells. This effect was not observed with conditioned medium from untreated Kupffer cells or from Kupffer cells treated with PMA plus indomethacin. Conditioned media from PMA-treated or untreated endothelial liver cells were ineffective in the induction of ornithine decarboxylase activity in parenchymal liver cells. Prostaglandin D2, the main eicosanoid produced by Kupffer cells, was able to stimulate the synthesis of ornithine decarboxylase in parenchymal liver cells (up to 40-fold) in a dose-dependent way. Prostaglandin (PG) D2 appeared to be a more potent inducer of ornithine decarboxylase activity in parenchymal cells than PGE1 and PGE2. It is concluded that intercellular communication inside the liver mediated by prostaglandins derived from activated Kupffer cells may form a mechanism to induce synthesis of specific proteins in parenchymal cells.  相似文献   

2.
Some in vitro and in vivo studies suggest that adesosine 3′,5′-cyclic monophosphate (cyclic AMP) may be one of the important factors in determining the radiosensitivity of certain mammalian cells; however, the role of guanosine 3',5'-cyclic monophosphate (cyclic GMP) in radiosensitivity of mammalian cells is completely unknown. Recent data also suggest that the mechanism of radiation protection afforded by moderate hypoxia and SH-containing compounds may involve an alteration in the intracellular level of cyclic AMP. At least one in vivo study shows that cyclic AMP protects hair follicles and gut epithelial cells against radiation damage; however, it does not protect lymphosarcoma and breast carcinoma in mice. If a similar phenomenon is found in humans, an elevation of the intracellular level of cyclic AMP during radiation exposure may improve the effectiveness of radiation therapy in those cases where the radiation damage of normal tissue becomes the limiting factor for a continuation of the therapy program. More in vitro and in vivo studies on normal and cancer cells are needed to substantiate the role of cyclic nucleotides in radiosensitivity.  相似文献   

3.
Kupffer cells are known to participate in the early events of liver injury involving lipid peroxidation. 4-Hydroxy-2,3-(E)-nonenal (4-HNE), a major aldehydic product of lipid peroxidation, has been shown to modulate numerous cellular systems and is implicated in the pathogenesis of chemically induced liver damage. The purpose of this study was to characterize the metabolic ability of Kupffer cells to detoxify 4-HNE through oxidative (aldehyde dehydrogenase; ALDH), reductive (alcohol dehydrogenase; ADH), and conjugative (glutathione S-transferase; GST) pathways. Aldehyde dehydrogenase and GST activity was observed, while ADH activity was not detectable in isolated Kupffer cells. Additionally, immunoblots demonstrated that Kupffer cells contain ALDH 1 and ALDH 2 isoforms as well as GST A4-4, P1-1, Ya, and Yb. The cytotoxicity of 4-HNE on Kupffer cells was assessed and the TD50 value of 32.5+/-2.2 microM for 4-HNE was determined. HPLC measurement of 4-HNE metabolism using suspensions of Kupffer cells incubated with 25 microLM 4-HNE indicated a loss of 4-HNE over the 30-min time period. Subsequent production of 4-hydroxy-2-nonenoic acid (HNA) suggested the involvement of the ALDH enzyme system and formation of the 4-HNE-glutathione conjugate implicated GST-mediated catalysis. The basal level of glutathione in Kupffer cells (1.33+/-0.3 nmol of glutathione per 10(6) cells) decreased significantly during incubation with 4-HNE concurrent with formation of the 4-HNE-glutathione conjugate. These data demonstrate that oxidative and conjugative pathways are primarily responsible for the metabolism of 4-HNE in Kupffer cells. However, this cell type is characterized by a relatively low capacity to metabolize 4-HNE in comparison to other liver cell types. Collectively, these data suggest that Kupffer cells are potentially vulnerable to the increased concentrations of 4-HNE occurring during oxidative stress.  相似文献   

4.
Rabbits immunized against cyclic AMP or cyclic GMP produce antibodies which are fully saturated by their respective endogenous cyclic nucleotides. This was proved a) in comparing radioimmunological measurements of cyclic nucleotides in antiserum and the binding site concentration determined by equilibrium dialysis, b) in showing the ineffectiveness of serum phosphodiesterase to hydrolyze the cyclic AMP present in the anti-cyclic AMP antiserum. Immunological and radioimmunological implications of this phenomenon are discussed.  相似文献   

5.
6.
Cadmium metabolism by rat liver endothelial and Kupffer cells.   总被引:1,自引:0,他引:1  
The metabolism of cadmium was investigated in Wistar-rat liver non-parenchymal cells. Kupffer and endothelial cells, the major cell populations lining the sinusoidal tracts, were isolated by collagenase dispersion and purified by centrifugal elutriation. At 20 h after subcutaneous injection of the metal salt (1.5 mg of Cd/kg body weight), endothelial cells accumulated 2-fold higher concentrations of Cd than did Kupffer or parenchymal cells. Most of the Cd in non-parenchymal cells was associated with cytosolic metallothionein (MT), the low-Mr heavy-metal-binding protein(s). When MT was quantified in cytosols from cells isolated from control rats by a 203Hg competitive-binding assay, low levels were found to be present in Kupffer, endothelial and parenchymal cells. Cd injection significantly increased MT levels in all three cell types. The induction of MT synthesis was investigated in vitro by using primary monolayer cultures. The incorporation of [35S]cysteine into MT increased 47% over constitutive levels in endothelial-cell cultures after the addition of 0.8 microM-Cd2+ to the medium for 10 h. MT synthesis in Kupffer cells was not observed. The lack of MT synthesis by monolayer cultures of Kupffer cells in vitro was associated with a decreased capacity of these cells to accumulate heavy metals from the extracellular medium. This apparent decreased ability to transport metals did not reflect a general defect in either cellular function or metabolic activity, since isolated Kupffer cells incorporated [3H]leucine into protein at rates comparable with those shown by liver parenchymal cells and readily phagocytosed particles.  相似文献   

7.
Superoxide release by zymosan-stimulated rat Kupffer cells in vitro   总被引:9,自引:0,他引:9  
Kupffer cells were isolated from pronase-perfused rat livers and were maintained as a monolayer culture in a state of high purity and viability. Immediately after contact with zymosan particles, O2 uptake of the Kupffer cells increased fivefold; about 50% of the net oxygen consumed was accounted for as superoxide released into the medium. Concomitantly, a transient burst of luminol-dependent chemiluminescence, an increased activity of NAD(P)H oxidase and a stimulation of the flow of glucose through the hexose monophosphate shunt were observed. Chemiluminescence and O2- production were almost completely inhibited by superoxide dismutase and iodoacetate. Zymosan-induced chemiluminescence was not inhibited in the presence of the non-penetrating thiol reagents, 5,5'-dithio-bis-2-nitrobenzoate and iodoacetyl-sepharose. Iodoacetate acted on the cytosolic glucose-6-phosphate dehydrogenase rather than on NAD(P)H oxidase of the cell membrane.  相似文献   

8.
Isolated rat Kupffer cells produced and released prostaglandin (PG) E2, 6-keto-PGF1 alpha, and thromboxane B2 (TXB2) in response to lipopolysaccharide (LPS) stimulation. This elevation of PGE2, 6-keto-PGF1 alpha and TXB2 in the medium was not observed when cells were cultured in the absence of extracellular calcium or in the presence of an extracellular calcium chelator, EGTA. An intracellular calcium antagonist, TMB-8, also suppressed the production of PGE2, 6-keto-PGF1 alpha and TXB2 in a concentration-dependent manner. The intra-cellular calcium concentration of Kupffer cells elevated early after the addition of LPS determined by the use of fura-2 and a fluorescence microscopy. Moreover, calmodulin inhibitors, W-7 and W-13, apparently inhibited the production of PGF2, 6-keto-PGF1 alpha and TXB2. All these results suggest that LPS-induced PG production by stimulated rat Kupffer cells may be regulated by a calcium-calmodulin pathway.  相似文献   

9.
Kupffer cells in primary culture bind and endocytose rapidly added rat liver mitochondria. Using phase contrast microscopy various stages of the uptake and digestion of these organelles were documented. Activities of mitochondrial enzymes within the Kupffer cells increased during the early phase of phagocytosis; they later declined, reaching the endogenous level of the Kupffer cell mitochondria after 3 to 4 h. The uptake was enhanced in the presence of heparin or rat serum, while iodoacetate, cytochalasin B or anti-fibronectin antisera were inhibitory. The transient presence of enzymatically active hepatocyte mitochondria renders Kupffer cells capable of producing urea. This mechanism partially explains earlier observations of urea formation in non-parenchymal rat liver cells.  相似文献   

10.
11.
Various complexes of phagocytes with adsorbed (I) and entrapped (J) particles are formed during phagocytosis. Method of stereological reconstruction is proposed that allows to demonstrate the actual distribution of these complexes on the basis of morphometric analysis of their ultrathin sections. The principle of the method lies on the probability simulation of section distribution for a given distribution of complexes and on the solution of the reverse problem by stepwise determination of the relative quantity of each complex type (from the most complicated to the most simple one, when I = 0 and J = 0). The stereological analysis of phagocytosing murine peritoneal macrophages revealed an absolutely different and more adequate kinetical picture of phagocytosis, as compared to the morphometric data.  相似文献   

12.
The mouse neuroblastoma cell line N18TG2 synthesizes and secretes a VIP-like immunoreactive material. The majority of this VIP-like material from both cell and media extracts elutes on HPLC in the same position as porcine or rat VIP. Several additional peaks which appear in the media extracts may represent variant forms or degradation products of VIP. The synthesis and release of VIP was significantly enhanced by agents which elevate cAMP levels directly (dbcAMP and forskolin) or through a receptor mediated process (secretin). These agents are also known to promote differentiation of these cells. The synthesis and release of VIP was also enhanced by ascorbate (thought to be a co-factor for the enzyme which amidates the carboxyl-terminal of VIP) [11]. In the presence of forskolin, ascorbate had a synergistic effect on the release of VIP, suggesting that forskolin and ascorbate are elevating VIP levels by different mechanisms; forskolin through a possible effect on VIP mRNA synthesis or translation, and ascorbate by increasing the rate of VIP processing. These results suggest that VIP synthesis and release is controlled by more than one process, whose rate can be altered with pharmacological agents.  相似文献   

13.
14.
Phagocytosis was studied in rat Kupffer cells in vitro by using opsonized sheep red cells as objects and inducing attachment and ingestion through the Fc and C3 receptors. The Fc receptors functioned by and large in the same manner as in the peritoneal macrophages. When the red cells were opsonized with IgM and complement, there was attachment but little ingestion in a serum-free medium. Newborn calf serum was found to trigger ingestion. Our experiments provided no conclusive evidence as to the nature of this triggering mechanism. The limiting factor in phagocytosis was the cytoplasmic volume of the phagocyte rather than the availability of surface receptors. The expression of surface receptors on cells in culture depended on length of culture and degree of spreading. We confirmed the available information on the energy requirements of phagocytosis as studied in peritoneal macrophages. As judged by isotope release, digestion of the red cells was in process shortly after ingestion. However, morphological examination failed to detect any changes in appearance prior to 4 h. After a blocking dose of sheep red cells, a rather long period (40 h) was required before cells fully recovered their phagocytic capacity.  相似文献   

15.
Human and rat peritoneal macrophages and rat Kupffer cells were labelled with [1-14C] arachidonic acid and stimulated with the calcium ionophore A23187. The metabolites formed were separated by high pressure liquid chromatography (HPLC). Human peritoneal macrophages formed especially leukotriene B4, 5-hydroxy-6,8,11,14 eicosatetraenoic acid and small amounts of leukotriene C4 and thromboxane B2, 12-hydroxy-5,8,10 heptadecatrienoic acid and 6-keto-prostaglandin F1 alpha, whereas rat peritoneal macrophages mainly produced cyclooxygenase products and in particular thromboxane B2 and 12-hydroxy-5,8,10 heptadecatrienoic acid. Rat Kupffer cells synthesized mainly cyclooxygenase products such as prostaglandin F2 alpha, prostaglandin D2 and prostaglandin E2. These results indicate that the profile of eicosanoids production by macrophages is dependent both on the species and on the tissue from which the macrophage is derived.  相似文献   

16.
Kupffer cells (KC) are the resident macrophages of the liver and represent about 80% of the total fixed macrophage population. They are involved in disease states such as endotoxin shock, alcoholic liver diseases and other toxic-induced liver injury. They release physiologically active substances such as eicosanoids and inflammatory cytokines (IL-1, IL-6, TNFalpha), and produce free radical species. Thus, KC are attractive targets for anti-inflammatory therapies and potential candidates responsible for differences in inflammation in liver disease seen between different individuals. However, to perform parallel in vitro experiments with KC from different donors a suitable method for conservation of KC would be necessary. Therefore, the present study evaluated, whether rat and human KC can be frozen, stored and recovered without losing their functional integrity. Rat and human KC were isolated and either cultured under standard conditions (fresh KC) or cryopreserved in special freezing medium (cryopreserved KC). At least 24 h later, cryopreserved KC were thawed, brought into suspension and seeded in the same density as fresh cells for subsequent experiments. Viability of cultured KC was analyzed by trypan blue exclusion. LPS (or PBS as control) stimulation was performed at different time points and cytokine release was analyzed with IL-6 and TNFalpha ELISAs, respectively. Phagocytic capacity was investigated by using a specific phagocytosis assay and FACS analysis. The recovery rate after thawing was around 57% for rat and around 65% for human cryopreserved KC. The results indicate, that KC can successfully be cryopreserved with an adequate recovery rate of viable cells. The properties of fresh and frozen KC can also be compared after thawing. Freshly isolated and cryopreserved cultured KC showed near-normal morphology and did not differ in the cultivation profiles over a period of 72 h. One to three days after seeding, frozen rat or human KC also retained inducible functions such as the production of TNFalpha or IL-6 after LPS challenge. Finally, regardless if they were cryopreserved or not, no differences in the phagocytic activities of the cells were obtained. Taken together, it is concluded that cryopreservation of KC does not change the physiological characteristics of the cells in vitro. Therefore, the method used here for cryopreservation of especially human KC allows the accumulation of KC from several donors for parallel in vitro experiments.  相似文献   

17.
The increase in tyrosine aminotransferase activity which occurs in rat hepatoma tissue culture (HTC) cells in response to cyclic AMP analogs has been shown to be an enzyme induction, similar to the larger response observed in certain other hepatoma cells and in liver. A specific antibody to tyrosine aminotransferase has been used to show that the number of enzyme molecules and the rate of enzyme synthesis are increased by N6,O2'-dibutyryl cyclic AMP in HTC cells. The effect on tyrosine aminotransferase is also produced by various 8-substituted derivatives of cyclic AMP and occurs whether or not the enzyme has been preinduced with a glucocorticoid. The response of the enzyme is greater when HTC cells are maintained in monolayer than in suspension cultures. Neither cell growth nor serum is required for the response.  相似文献   

18.
Endothelin (ET)-1 was originally characterized as a potent vasoconstrictor peptide secreted by vascular endothelial cells. It possesses a wide range of biological activities within the cardiovascular system and in other organs, including the brain. Also secreted by endothelial cells, nitric oxide (NO), has recently been identified as a relaxing factor, as well as a pleiotropic mediator, second messenger, immune defence molecule, and neurotransmitter. Most of the data concerning the secretion of these two agents in vitro has been collected from studies on macrovascular endothelial cells. Given the remarkable heterogeneity of endothelia in terms of morphology and function, we have analyzed the ability of brain microvessel endothelial cells in vitro to release ET-1 and NO, which, at the level of the blood-brain barrier, have perivascular astrocytes as potential targets. The present study was performed with immortalized rat brain microvessel endothelial cells, which display in culture a non transformed phenotype. Our data demonstrate that: (1) these cells release NO when induced by IFNγ and TNFα, (2) they constitutively secrete ET-1, and (3) cAMP potentiates the cytokine-induced NO release and exerts a biphasic regulation on ET-1 secretion: micromolar concentrations of 8-Br-cAMP inhibit and higher doses stimulate ET-1 secretion. This stimulation is blocked by EGTA and the calmodulin antagonist W7, but not by protein kinase C inhibitors, suggesting the involvement of the calmodulin branch of the calcium messenger system. These results suggest that cerebral microvessel endothelial cells may participate in vivo to the regulation of glial activity in the brain through the release of NO and ET-1. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Isolated non-parenchymal cells from rat liver were separated by centrifugal elutriation into two fractions consisting of structurally intact Kupffer and endothelial cells with purities of 91 and 95%, respectively. Purified Kupffer and endothelial cells showed nearly equal specific activities for the lysosomal enzyme acid phosphatase, whereas the specific activity of cathepsin D was about 3 times higher in Kupffer cells. It was calculated that a significant amount of the cathepsin D activity in the liver is present in the Kupffer cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号