首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The relations between glutamate and GABA concentrations and synaptic vesicle density in nerve terminals were examined in an animal model with 40–50% reduction in synaptic vesicle numbers caused by inactivation of the genes encoding synapsin I and II. Concentrations and synthesis of amino acids were measured in extracts from cerebrum and a crude synaptosomal fraction by HPLC and 13C nuclear magnetic resonance spectroscopy (NMRS), respectively. Analysis of cerebrum extracts, comprising both neurotransmitter and metabolic pools, showed decreased concentration of GABA, increased concentration of glutamine and unchanged concentration of glutamate in synapsin I and II double knockout (DKO) mice. In contrast, both glutamate and GABA concentrations were decreased in crude synaptosomes isolated from synapsin DKO mice, suggesting that the large metabolic pool of glutamate in the cerebral extracts may overshadow minor changes in the transmitter pool. 13C NMRS studies showed that the changes in amino acid concentrations in the synapsin DKO mice were caused by decreased synthesis of GABA (20–24%) in cerebral neurons and increased synthesis of glutamine (36%) in astrocytes. In a crude synaptosomal fraction, the glutamate synthesis was reduced (24%), but this reduction could not be detected in cerebrum extracts. We suggest that lack of synaptic vesicles causes down-regulation of neuronal GABA and glutamate synthesis, with a concomitant increase in astrocytic synthesis of glutamine, in order to maintain normal neurotransmitter concentrations in the nerve terminal cytosol.  相似文献   

2.
The administration of DOPA to violet flowers of Portulaca grandiflora led to the biosynthesis of betaxanthins not present in untreated plant material. Among them vulgaxanthin II but no dopaxanthin could be identified. DOPA serves as a precursor of the dihydropyridine moiety of the new betaxanthins. Its role as an elicitor of betaxanthin biosynthesis is discussed.  相似文献   

3.
Activities of ammonium assimilating enzymes glutamate dehydrogenase (GDH), glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) as well as the amino acid content were higher in nodules compared to roots. Their activities increased at 40 and 60 d after sowing, with a peak at 90 d, a time of maximum nitrogenase activity. The GS/GOGAT ratio had a positive correlation with the amino acid content in nodules. Higher activities of AST than ALT may be due to lower glutamine and higher asparagine content in xylem. The data indicated that glutamine synthetase and glutamate synthase function as the main route for the assimilation of fixed N, while NADH-dependent glutamate dehydrogenase may function at higher NH4 + concentration in young and senescing nodules. Enzyme activities in lentil roots reflected a capacity to assimilate N for making the amino acids they may need for both growth and export to upper parts of the plant. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Neurons are metabolically handicapped in the sense that they are not able to perform de novo synthesis of neurotransmitter glutamate and gamma-aminobutyric acid (GABA) from glucose. A metabolite shuttle known as the glutamate/GABA-glutamine cycle describes the release of neurotransmitter glutamate or GABA from neurons and subsequent uptake into astrocytes. In return, astrocytes release glutamine to be taken up into neurons for use as neurotransmitter precursor. In this review, the basic properties of the glutamate/GABA-glutamine cycle will be discussed, including aspects of transport and metabolism. Discussions of stoichiometry, the relative role of glutamate vs. GABA and pathological conditions affecting the glutamate/GABA-glutamine cycling are presented. Furthermore, a section is devoted to the accompanying ammonia homeostasis of the glutamate/GABA-glutamine cycle, examining the possible means of intercellular transfer of ammonia produced in neurons (when glutamine is deamidated to glutamate) and utilized in astrocytes (for amidation of glutamate) when the glutamate/GABA-glutamine cycle is operating. A main objective of this review is to endorse the view that the glutamate/GABA-glutamine cycle must be seen as a bi-directional transfer of not only carbon units but also nitrogen units.  相似文献   

5.
Metabotropic glutamate receptors (mGluR) modulate neuronal function. Here, we tested the effect on metabolism of a range of Group I and II mGluR ligands in Guinea pig brain cortical tissue slices, applying 13C NMR spectroscopy and metabolomic analysis using multivariate statistics. The effects of Group I agonists (S)-3,5-dihydroxyphenylglycine (DHPG) and (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) depended upon concentration and were mostly stimulatory, increasing both net metabolic flux through the Krebs cycle and glutamate/glutamine cycle activity. Only the higher (50 microm) concentrations of CHPG had the opposite effect. The Group I antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), consistent with its neuroprotective role, caused significant decreases in metabolism. With principal components analysis of the metabolic profiles generated by these ligands, the effects could be separated by two principal components. Agonists at Group II mGluR [(2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) and 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (APDC)] generally stimulated metabolism, including glutamate/glutamine cycling, although this varied with concentration. The antagonist (2S)-alpha-ethylglutamic acid (EGLU) stimulated astrocyte metabolism with minimal impact on glutamate/glutamine cycling. (RS)-1-Aminophosphoindan-1-carboxylic acid (APICA) decreased metabolism at 5 microm but had a stimulatory effect at 50 microm. All ligand effects were separated from control and from each other using two principal components. The ramifications of these findings are discussed.  相似文献   

6.
We have studied the levels of neuroactive amino acids in synaptosomes (P2 fraction) isolated from brain tissue of ten patients with medically intractable epilepsy who were undergoing temporal lobectomy. First, lateral temporal tissue (nonfocal) was removed followed by medial temporal tissue (focal). A synaptosomal fraction (P2) was immediately prepared from each tissue and analyzed for free amino acid concentrations. Statistically significant reductions were seen in glutamine and GABA concentrations in focal tissue compared to nonfocal tissue. The ratio of excitatory amino acids (aspartate and glutamate) to inhibitory amino acids (taurine and GABA) was significantly higher in focal tissue compared to nonfocal. The glutamine/glutamate ratio was significantly reduced. These data support the hypothesis that alterations in the balance between excitatory and inhibitory amino acids may be involved in the expression of epilepsy.  相似文献   

7.
The role of glutamine and alanine transport in the recycling of neurotransmitter glutamate was investigated in Guinea pig brain cortical tissue slices and prisms, and in cultured neuroblastoma and astrocyte cell lines. The ability of exogenous (2 mm) glutamine to displace 13C label supplied as [3-13C]pyruvate, [2-13C]acetate, l-[3-13C]lactate, or d-[1-13C]glucose was investigated using NMR spectroscopy. Glutamine transport was inhibited in slices under quiescent or depolarising conditions using histidine, which shares most transport routes with glutamine, or 2-(methylamino)isobutyric acid (MeAIB), a specific inhibitor of the neuronal system A. Glutamine mainly entered a large, slow turnover pool, probably located in neurons, which did not interact with the glutamate/glutamine neurotransmitter cycle. This uptake was inhibited by MeAIB. When [1-13C]glucose was used as substrate, glutamate/glutamine cycle turnover was inhibited by histidine but not MeAIB, suggesting that neuronal system A may not play a prominent role in neurotransmitter cycling. When transport was blocked by histidine under depolarising conditions, neurotransmitter pools were depleted, showing that glutamine transport is essential for maintenance of glutamate, GABA and alanine pools. Alanine labelling and release were decreased by histidine, showing that alanine was released from neurons and returned to astrocytes. The resultant implications for metabolic compartmentation and regulation of metabolism by transport processes are discussed.  相似文献   

8.
Metabolism of glutamine was determined under a variety of conditions to study compartmentation in cortical synaptosomes. The combined intracellular and extracellular amounts of [U-13C]GABA, [U-13C]glutamate and [U-13C]glutamine were the same in synaptosomes incubated with [U-13C]glutamine in the presence and absence of glucose. However, the concentration of these amino acids was decreased in the latter group, demonstrating the requirement for glucose to maintain the size of neurotransmitter pools. In hypoglycemic synaptosomes more [U-13C]glutamine was converted to [U-13C]aspartate, and less glutamate was re-synthesized from the tricarboxylic acid (TCA) cycle, suggesting use of the partial TCA cycle from -ketoglutarate to oxaloacetate for energy. Compartmentation was studied in synaptosomes incubated with glucose plus labeled and unlabeled glutamine and glutamate. Incubation with [U-13C]glutamine plus unlabeled glutamate gave rise to [U-13C]GABA but not labeled aspartate; however, incubation with [U-13C]glutamate plus unlabeled glutamine gave rise to [U-13C]aspartate, but not labeled GABA. Thus the endogenous glutamate formed via glutaminase in synaptic terminals is preferentially used for GABA synthesis, and is metabolized differently than glutamate taken up from the extracellular milieu.  相似文献   

9.
Glutamate, the major excitatory transmitter in the vertebrate brain, is removed from the synaptic cleft by a family of sodium‐dependent glutamate transporters profusely expressed in glial cells. Once internalized, it is metabolized by glutamine synthetase to glutamine and released to the synaptic space through sodium‐dependent neutral amino acid carriers of the N System (SNAT3/slc38a3/SN1, SNAT5/slc38a5/SN2). Glutamine is then taken up by neurons completing the so‐called glutamate/glutamine shuttle. Despite of the fact that this coupling was described decades ago, it is only recently that the biochemical framework of this shuttle has begun to be elucidated. Using the established model of cultured cerebellar Bergmann glia cells, we sought to characterize the functional and physical coupling of glutamate uptake and glutamine release. A time‐dependent Na+‐dependent glutamate/aspartate transporter/EAAT1‐induced System N‐mediated glutamine release could be demonstrated. Furthermore, D‐aspartate, a specific glutamate transporter ligand, was capable of enhancing the co‐immunoprecipitation of Na+‐dependent glutamate/aspartate transporter and Na+‐dependent neutral amino acid transporter 3, whereas glutamine tended to reduce this association. Our results suggest that glial cells surrounding glutamatergic synapses may act as sensors of neuron‐derived glutamate through their contribution to the neurotransmitter turnover.  相似文献   

10.
The neuronal effects of glucose deficiency on amino acid metabolism was studied on three-dimensional cultures of rat telencephalon neurones. Transient (6 h) exposure of differentiated cultures to low glucose (0.25 mm instead of 25 mm) caused irreversible damage, as judged by the marked decrease in the activities of two neurone-specific enzymes and lactate dehydrogenase, 1 week after the hypoglycemic insult. Quantification of amino acids and ammonia in the culture media supernatants indicated increased amino acid utilization and ammonia production during glucose-deficiency. Measurement of intracellular amino acids showed decreased levels of alanine, glutamine, glutamate and GABA, while aspartate was increased. Added lactate (11 mm) during glucose deficiency largely prevented the changes in amino acid metabolism and ammonia production, and attenuated irreversible damage. Higher media levels of glutamine (4 mm instead of 0.25 mm) during glucose deprivation prevented the decrease of intracellular glutamate and GABA, while it further increased intracellular aspartate, ammonia production and neuronal damage. Both lactate and glutamine were readily oxidized in these neuronal cultures. The present results suggest that in neurones, glucose deficiency enhances amino acid deamination at the expense of transamination reactions. This results in increased ammonia production and neuronal damage.  相似文献   

11.
[1-(13) C]glucose metabolism in the rat brain was investigated after intravenous infusion of the labelled substrate. Incorporation of the label into metabolites was analysed by NMR spectroscopy as a function of the infusion time: 10, 20, 30 or 60 min. Specific enrichments in purified mono- and dicarboxylic amino acids were determined from (1) H-observed/(13) C-edited and (13) C-NMR spectroscopy. The relative contribution of pyruvate carboxylase versus pyruvate dehydrogenase (PC/PDH) to amino acid labelling was evaluated from the enrichment difference between either C2 and C3 for Glu and Gln, or C4 and C3 for GABA, respectively. No contribution of pyruvate carboxylase to aspartate, glutamate or GABA labelling was evidenced. The pyruvate carboxylase contribution to glutamine labelling varied with time. PC/PDH decreased from around 80% after 10 min to less than 30% between 20 and 60 min. This was interpreted as reflecting different labelling kinetics of the two glutamine precursor glutamate pools: the astrocytic glutamate and the neuronal glutamate taken up by astrocytes through the glutamate-glutamine cycle. The results are discussed in the light of the possible occurrence of neuronal pyruvate carboxylation. The methods previously used to determine PC/PDH in brain were re-evaluated as regards their capacity to discriminate between astrocytic (via pyruvate carboxylase) and neuronal (via malic enzyme) pyruvate carboxylation.  相似文献   

12.
Illuminated pea chloroplasts supported (glutamine plus α-oxoglutarate (α-OG)) and (NH3 plus α-OG)-dependent O2 evolution. The properties of these reactions were consistent with light-coupled glutamate synthase and glutamine synthetase activities. In the presence of a glutamate-oxidizing system (component C) comprised of NAD-specific glutamate dehydrogenase (NAD-GDH), lactate dehydrogenase (LDH), 4 mM pyruvate and 0.2 mM NAD, illuminated chloroplasts supported O2 evolution in the presence of glutamine. The reaction did not proceed in the absence of any one of the constituents of component C and the properties of O2 evolution were consistent with light-coupled glutamate synthase activity. In the presence of component C, chloroplasts also catalysed O2 evolution in the presence of catalytic concentrations of glutamate. Studies of O2 evolution and metabolism of [14C]-glutamate in the presence of the inhibitors methionine sulphoximine (MSO) and azaserine suggest that O2 evolution was dependent on the synthesis of glutamine from the products of glutamate oxidation. This was supported by polarographic studies using α-OG and NH3 instead of glutamate.The results are consistent with a C5-dicarboxylic acid shuttlemechanism for the export of reducing equivalents from illuminated chloroplasts (glutamate) and recycling of the oxidation products (α-OG and NH3).  相似文献   

13.
A rat four vessel occlusion model was utilized to examine the effects of ischemia/reperfusion on cortical window superfusate levels of amino acids, glucose, and lactate. Superfusate aspartate, glutamate, phosphoethanolamine, taurine, and GABA were significantly elevated by cerebral ischemia, then declined during reperfusion. Other amino acids were affected to a lesser degree. Superfusate lactate rose slightly during the initial ischemic period, declined during continued cerebral ischemia and then was greatly elevated during reperfusion. Superfusate glucose levels declined to near zero levels during ischemia and then rebounded beyond basal levels during the reperfusion period. Inhibition of neuronal lactate uptake with alpha-cyano-4-hydroxycinnamate dramatically elevated superfusate lactate levels, enhanced the ischemia/reperfusion evoked release of aspartate but reduced glutamine levels. Topical application of an alternative metabolic fuel, glutamine, had a dose dependent effect. Glutamine (1 mM) elevated basal superfusate glucose levels, diminished the decline in glucose during ischemia, and accelerated its recovery during reperfusion. Lactate levels were elevated during ischemia and reperfusion. These effects were not evident at 5 mM glutamine. At both concentrations, glutamine significantly elevated the superfusate levels of glutamate. Topical application of sodium pyruvate (20 mM) significantly attenuated the decline in superfusate glucose during ischemia and enhanced the levels of both glucose and lactate during reperfusion. However, it had little effect on the ischemia-evoked accumulation of amino acids. Topical application of glucose (450 mg/dL) significantly elevated basal superfusate levels of lactate, which continued to be elevated during both ischemia and reperfusion. The ischemia-evoked accumulations of aspartate, glutamate, taurine and GABA were all significantly depressed by glucose, while phosphoethanolamine levels were elevated. These results support the role of lactate in neuronal metabolism during ischemia/reperfusion. Both glucose and glutamine were also used as energy substrates. In contrast, sodium pyruvate does not appear to be as effectively utilized by the ischemic/reperfused rat brain since it did not reduce ischemia-evoked amino acid efflux.  相似文献   

14.
Glutamine and glutamate--their central role in cell metabolism and function   总被引:4,自引:0,他引:4  
Glucose is widely accepted as the primary nutrient for maintenance and promotion of cell function. However, we propose that the 5-carbon amino acids, glutamine and glutamate, should be considered to be equally important for maintenance and promotion of cell function. The functions of glutamine are many and include: substrate for protein synthesis, anabolic precursor for muscle growth, acid-base balance in the kidney, substrate for ureogenesis in the liver, substrate for hepatic and renal gluconeogenesis, an oxidative fuel for intestine and cells of the immune system, inter-organ nitrogen transport, precursor for neurotransmitter synthesis, precursor for nucleotide and nucleic acid synthesis and precursor for glutathione production. Many of these functions are connected to the formation of glutamate from glutamine. We propose that the unique properties regarding concentration and routes of metabolism of these amino acids allow them to be used for a diverse array of processes related to the specialized function of each of the glutamine utilizing cells. In this review we highlight the specialized aspects of glutamine/glutamate metabolism of different glutamine-utilizing cells and in each case relate key aspects of metabolism to cell function.  相似文献   

15.
Plants of duckweed (Lemna minor) were grown under constant illumination and with a controlled supply of ammonium-N so as to maintain a constant low concentration. In two kinetic experiments (differing in illumination and N level) with 15N-ammonia, plants were periodically harvested and their free amino acids analysed for 15N abundance. Attempts were then made to fit the data by computer simulation models. Only models which had at least two or more intracellular compartments gave adequate fits. Two two-compartment models were tested fully. Both had in compartment 1 the glutamine synthetase-glutamate synthase cycle and in compartment 2 a second site of glutamine synthesis. In one model the glutamate for compartment 2 was derived by transport from compartment 1; in the second model it was synthesized from ammonia by glutamate dehydrogenase at a rate equivalent to 10% of the total N uptake. This second model was rejected after it was found that plants previously treated with methionine sulphoximine and aza-serine (inhibitors of the glutamate synthase cycle) were unable to incorporate 15N. In spite of wide differences in labelling pattern between the two experiments the first model gave acceptable fits to both when different pool sizes were allowed for. Operation of the glutamate synthase cycle was confirmed by the correspondence between model and data for labelling of glutamine amide, glutamine amino and glutamic acid. Consideration of enzyme distributions suggested that compartment 1 (the glutamate synthase system) is the chloroplasts and compartment 2 the cytosol. Analysis of asparagine and neutral amino acids made it possible to construct balance sheets for N uptake in the two experiments. They suggest that all glutamine synthesized in the chloroplast is used for glutamate and asparagine synthesis and that the cytosol enzyme meets the need of the cell for glutamine per se. The high turnover rates for asparagine indicate that this compound is an important intermediate even under steady state conditions, and carries between 20 and 50% of the products of N assimilation.  相似文献   

16.
The activities of glutamine synthetase, glutaminase, glutamate decarboxylase, GABA aminotransferase, glutamate dehydrogenase, and aspartate aminotransferase were measured in four areas of the cat spinal cord and in dorsal and ventral roots. Five of the six enzymes showed identical distribution patterns; i.e. the activities in the dorsal and ventral gray matter were equal and those of dorsal and ventral white matter were equal. No statistical differences in the mean enzyme activities in the dorsal and ventral roots were found. Glutamate decarboxylase was the only enzyme which had a different pattern. The enzyme activity in dorsal gray was twice that of ventral gray; the same pattern as the GABA concentration in both these areas. The glutamine synthetase activities in the cord areas and roots correlated with the glutamine distribution reported earlier. Thus, the distribution of glutamine (not a transmitter) and GABA (questionable transmitter) in gray matter are dictated by their synthesizing enzymes, whereas the distribution of glutamate and aspartate (likely transmitter suspects) cannot be explained on the basis of enzyme activities. Therefore, the enzyme activities may be related to the amino acid levels primarily in metabolic compartments, whereas the excess of certain amino acids in specific areas of the cord and roots may be related to functional compartments accumulated for use in synaptic transmission.  相似文献   

17.
Glutamate metabolic pathways and retinal function   总被引:1,自引:0,他引:1  
Glutamate is a major neurotransmitter in the CNS but is also a key metabolite intimately coupled to amino acid production/degradation. We consider the effect of inhibition of two key glutamate metabolic enzymes: glutamine synthetase (GS) and aspartate aminotransferase on retinal function assessed using the electroretinogram to consider photoreceptoral (a-wave) and post-receptoral (b-wave) amplitudes. Quantitative immunocytochemistry was used to assess amino acid levels within photoreceptors, ganglion and Müller cells secondary to GS inhibition. Intravitreal injections of methionine sulfoximine reduced GS immunoreactivity in the rat retina. Additionally, glutamate and its precursor aspartate was reduced in photoreceptors and ganglion cells, but elevated in Müller cells. This reduction in neuronal glutamate was consistent with a deficit in neurotransmission (−75% b-wave reduction). Exogenous glutamine supply completely restored the b-wave, whereas other amino acid substrates (lactate, pyruvate, α-ketoglutarate, and succinate) only partially restored the b-wave (16–20%). Inhibition of the aminotranferases using aminooxyacetic acid had no effect on retinal function. However, aminooxyacetic acid application after methionine sulfoximine further reduced the b-wave (from −75% to −92%). The above data suggest that de novo glutamate synthesis involving aspartate aminotransferase can partially sustain neurotransmission when glutamate recycling is impaired. We also show that altered glutamate homeostasis results in a greater change in amino acid distribution in ganglion cells compared with photoreceptors.  相似文献   

18.
The effects of several metabotropic receptor (mGluR) ligands on baseline hippocampal glutamate and GABA overflow in conscious rats and the modulation of limbic seizure activity by these ligands were investigated. Intrahippocampal mGluR group I agonist perfusion via a microdialysis probe [1 mm (R,S)-3,5-dihydroxyphenylglycine] induced seizures and concomitant augmentations in amino acid dialysate levels. The mGlu1a receptor antagonist LY367385 (1 mm) decreased baseline glutamate but not GABA concentrations, suggesting that mGlu1a receptors, which regulate hippocampal glutamate levels, are tonically activated by endogenous glutamate. This decrease in glutamate may contribute to the reported LY367385-mediated anticonvulsant effect. The mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (50 mg/kg) also clearly abolished pilocarpine-induced seizures. Agonist-mediated actions at mGlu2/3 receptors by LY379268 (100 microm, 10 mg/kg intraperitoneally) decreased basal hippocampal GABA but not glutamate levels. This may partly explain the increased excitation following systemic LY379268 administration and the lack of complete anticonvulsant protection within our epilepsy model with the mGlu2/3 receptor agonist. Group II selective mGluR receptor blockade with LY341495 (1-10 microm) did not alter the rats' behaviour or hippocampal amino acid levels. These data provide a neurochemical basis for the full anticonvulsant effects of mGlu1a and mGlu5 antagonists and the partial effects observed with mGlu2/3 agonists in vivo.  相似文献   

19.
Summary Hairy roots of Brassica napus (rape cv. Giant) were produced by cocultivating leaf and cotyledon explants with Agrobacterium rhizogenes strain A4T. The hairy roots grew prolifically on solid and in liquid media. Incorporation of ammonium sulphate or phosphinothricin (PPT) into the media reduced growth. PPT treatment reduced glutamine synthetase (GS) activity and increased the ammonia content of the hairy roots. We have found that PPT treatment also induces a loss of glutamine from the roots and this may influence root growth. To test this we grew hairy roots in a liquid medium containing 10 mM glutamine. This glutamine treatment overcame the PPT induced suppression of growth but also significantly increased GS activity, reduced ammonia accumulation and increased the levels of glutamate and asparagine.  相似文献   

20.
Homogenates of specific brain regions of three sensory systems (auditory, olfactory, and visual) were prepared from pigmented Long-Evans Hooded rats and assayed for amino acid concentrations and activities of glutaminase, aspartate aminotransferase (total, cytosolic, and, by difference, mitochondrial), malate dehydrogenase, lactate dehydrogenase, and choline acetyltransferase. Comparing the quantitative distributions among regions revealed significant correlations between AAT and aspartate, between glutaminase and glutamate, between glutamate and glutamine, and between AAT plus glutaminase, or glutaminase alone, and the sum of aspartate, glutamate, and GABA, suggesting a metabolic pathway involving the synthesis of a glutamate pool as precursor to aspartate and GABA. Of the inhibitory transmitter amino acids, GABA concentrations routinely exceeded those of glycine, but glycine concentrations were relatively high in brainstem auditory structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号