首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background and aims

Limited information is available on comparing the iron plaque formation capabilities and their effect on arsenic (As) uptake by different rice plant genotypes grown in As-contaminated soils. This study investigates the effect of iron plaque on As uptake in different rice genotypes grown in As-contaminated soils from the Guandu Plain of northern Taiwan.

Methods

Twenty-eight rice genotypes including 14 japonica and 14 indica genotypes were used in this study. Rice seedlings were grown in As-contaminated soils for 38 days. The iron plaque formed on the rice roots were extracted using dithionite–citrate–bicarbonate. The concentrations of As, Fe, and P in soil solutions, iron plaque, and plants were measured. The speciation of As in the root’s iron plaque was determined by As K-edge X-ray absorption near-edge structure spectroscopy (XANES).

Results

The amounts of iron plaque formation on roots were significantly different among 28 tested rice genotypes, and 75.7–92.8 % of As uptake from soils could be sequestered in iron plaque. However, there were no significant negative correlations between the amounts of Fe or As in the iron plaque and the content of As accumulated in rice plants of tested genotypes. XANES data showed that arsenate was the predominant As species in iron plaque, and there were difference in the distribution of As species among different rice genotypes.

Conclusions

The iron plaque can sequester most of As uptake from soils no matter what rice genotypes used in this study. However, the iron plaque alone did not control the extent of As accumulation in rice plants from As-contaminated soils among 28 tested rice genotypes. Low As uptake genotypes of rice selected from this study can be recommended to be grown in the As-contaminated soils.  相似文献   

2.
Although the auger method has been reported to be simple and superior to other methods of determination of roots, a standard procedure of determining roots with the same is lacking. In a bid to standardize the auger method for studying wheat root distribution; we sampled roots with 5, 7.5 and 10 cm ID augers on the row and midway between rows down to 180 cm. The suitability of a sampling scheme was adjudged from bias between observed and actual root length densities (RLD). The actual density in a layer was obtained by integrating the equation fitted to the average of root density data horizontally between 0 and 11 cm, because for 22 cm apart rows of wheat the representative half of the unit soil strip was 11 cm from the row; and assumed actual RLD was the average of horizontal distribution of RLD in a particular layer. Single site sampling on the row or between rows gave the maximum bias. Average of two sites viz. on the row and midway between rows with 10 cm ID auger and 7.5 cm ID auger or at three sites with 5 cm ID auger (additional site midway between the earlier two) gave the best estimates in that order.  相似文献   

3.
We investigated Fe plaque formation and Ca, Cu, Mn, Zn, and P uptake capacities of fifteen kinds of wetland plants. The test plants were cultured in 3 l nutrient solutions for 8 days. Fe plaque was induced by adding 200 mg l−1 Fe2+ as FeSO4·7H2O for 4 days in one set of experiment and 8 days in another. This plaque ranged from 2.38 to 8.67 mg g−1 of plant root after 4 days and from 4.56 to 15.71 mg g−1 of plant root after 8-day treatment. In both experimental durations, the plaque was significantly correlated with root surface area (r = 0.904 and 0.878, P < 0.01). Thus, Canna generalis, Typha latifolia and Thalia dealbata, with their larger root surface areas (>1,400 cm2), formed relatively greater Fe plaque amounts. The amounts of Ca, Cu, Zn and P in the Fe plaques were significantly correlated with Fe plaque amount, (r = 0.819, 0.742, 0.693, 0.917, respectively, for these four elements for the 4-day treatment; and r = 0.917, 0.768, 0.949, 0.872, respectively, for 8-day treatment, P < 0.01). Plants varied widely in accumulating Ca, Cu, Mn, Zn, and P in their tissues. The amounts accumulated on root were significantly correlated with Fe plaque amount in both for 4- and 8-day exposure treatments with Fe (r = 0.973, 0.847, 0.709, 0.837, 0.892, respectively, for 4-day treatment; and r = 0.943, 0.691, 0.843, 0.957, 0.983, respectively, for 8-day treatment, P < 0.01). No such significant correlations were found for the Fe plaque in shoot. Canna generalis, Typha latifolia and Thalia dealbata were superior in Ca, P and Zn uptake, while Canna generalis and Thalia dealbata accumulated Cu and Mn well in case of concentrated wastewater treatment.  相似文献   

4.
稻田生态系统氮素吸收功能及其经济价值   总被引:6,自引:1,他引:6  
肖玉  谢高地  鲁春霞 《生态学杂志》2005,24(9):1068-1073
稻田生态系统中水稻植株吸收土壤中氮素并转化为秸秆中的氮素以及籽粒中的蛋白质和氨基酸的过程是稻田氮素转化的主要过程。在2003年上海市郊五四农场田间试验数据的基础上,研究了稻田生态系统氮素吸收功能及其形成过程,然后运用替代价格法估算了稻田氮素吸收经济价值,同时还对不同地区、施氮水平和作物的氮素吸收物理量和价值量进行了对比。结果表明,稻田植株地上部分氮素累积吸收量在拔节期至抽穗期之间增长最快,抽穗期至成熟期增加减缓,而在收获前有所下降。稻田植株氮素吸收经济价值随生育期不断提高,到成熟期显著增加。施加氮肥对水稻氮素吸收物理量及其价值量都具有促进作用。就不同作物而言,水稻氮素吸收转化量及其经济价值高于小麦和油菜。几乎所有作物籽粒氮素吸收量及其经济价值都高于秸秆。  相似文献   

5.
Brassinosteroids (Brs) have drawn wide attention due to their protective role against toxicity of heavy metals in plants. To better understand the role of Br in arsenic (As) and cadmium (Cd) uptake by rice plants, a hydroponic experiment was conducted to investigate the combined effect of 24-epibrassinolide (Br24) or 28-homobrassinolide (Br28) and iron plaque (IP) on As and Cd uptake and accumulation in rice seedlings. Six-week-old seedlings were sprayed with 0.2 or 0.02 μM Br24 or Br28 and grown in nutrient solution for 3 d, and then 20 or 60 mg Fe2+ dm-3 (Fe20 and Fe60) was used to induce root IP formation for 3 d. These seedlings with or without Br and with or without IP were exposed to solution containing 0.5 mg dm-3 AsIII or Cd for 9 d. The results showed that rice growth decreased when Br24 were applied, but it increased when combination of Br24 and IP was applied. Fe concentrations in dithionite-citratebicarbonate (DCB) extracts were increased after 0.2 or 0.02 μM Br24 application in the absence of IP, but decreased by Br24 in the presence of IP. In the absence of IP, As and Cd content in leaves was significantly reduced by 0.02 μM Br24 and 0.2 μM Br28, respectively. The As content in leaves was also reduced by the combination of 0.02 and 0.2 μM Br28 and IP, and the Cd content in leaves was reduced by the combined effect of 0.2 μM Br24 and IP. These results indicate that Br24 and Br28 could impede As and Cd accumulation, and the interactions between Br and IP may have a potential in restricting the transport of As and Cd into rice shoots.  相似文献   

6.
太湖地区稻田氮肥吸收及其利用的研究   总被引:11,自引:2,他引:9  
宋勇生  范晓晖 《应用生态学报》2003,14(11):2081-2083
The effects of different amounts and kinds of nitrogen fertilizer on rice yield and its nitrogen uptake and utiliza-tion were studied on a main paddy soil (Wushan soil) of Taihu area. The results indicated that the optimal amount of nitrogen fertilizer was about 180 kg N· hm-2 for rice production. Applying ammonium sulfate was better than applying urea for increasing rice yield. The efficiency of nitrogen fertilizer in this experiment was about 41.8-48.5%, and its loss was 22.8-38.1% .  相似文献   

7.
根表铁氧化物胶膜对水稻吸收Zn的影响   总被引:17,自引:1,他引:17  
采用营养液培养方法研究了水稻根表形成的铁氧化物胶膜对水稻吸收Zn的影响.结果表明,在有Fe2+的嫌气环境中,由于根际氧化作用水稻根表会形成红色的铁氧化物胶膜,根表的铁氧化物胶膜影响水稻对Zn的吸收.铁膜数量较少时,由于对Zn的富集作用有限,其对水稻Zn的吸收虽有促进作用,但不明显.随着根表铁膜数量的增加,这种促进作用也相应增加,并且在铁膜数量增加到一定值时,对水稻吸收Zn的促进作用达到最大.而后,随着铁膜数量的进一步增加,铁膜反而阻碍水稻对Zn的吸收,成为水稻吸收Zn的障碍层.在此过程中,水稻的根分泌物,特别是其中的植物铁载体对覆有铁膜水稻根系吸收Zn有促进作用.这种促进作用随铁膜数量的增加而逐渐减弱.因此,根表铁氧化物胶膜对水稻吸收Zn并不总是起促进作用,其作用的方向和程度取决于铁膜的数量.  相似文献   

8.
不同硅吸收效率水稻品种根系对硅素水平的响应   总被引:3,自引:0,他引:3  
为明确硅对水稻根系生长发育的影响,以4个硅吸收效率不同的水稻品种(高效吸收品种TN1、白香粳和低效吸收品种卷叶粳、一目惚)为材料,采用国际水稻研究所的营养液配方水培试验,设置0(T1)、1.25 (T2)和2 (T3) mmol·L-1 3个硅素水平,研究了不同硅素水平对不同基因型水稻根系和地上部干物质量、根条数、侧根数、根总长和根直径等的影响.结果表明:随硅素水平的提高,水稻各品种均表现为根系干物质量、根冠比、侧根数和根总长逐渐减少,地上部干物质量、根条数和根直径逐渐增大.较高的硅素水平有利于水稻不定根的分化发育,而不利于侧根的分化发育.在较低的硅素水平下,硅吸收效率高的基因型水稻TN1和白香粳的根干物质量和根冠比显著高于硅吸收效率低的品种卷叶粳和一目惚,其中白香粳的侧根数和根总长均显著高于卷叶粳和一目惚.可见,根总长和侧根数是引起水稻硅素吸收差异的主要原因.  相似文献   

9.
Both solution culture and pot experiments were performed to investigate (a) the effects of external Fe (II) concentrations and forms on the formation of iron plaque on the roots of rice (Oryza sativa) and subsequent P adsorption on iron plaque and shoot P concentrations and (b) the effects of soil moisture regimes on the formation of iron plaque and P adsorption on root surfaces and P accumulation in shoots. The results showed that iron plaque was significantly increased with increasing Fe2+ concentrations in the solution culture. The amounts of P adsorbed on the iron plaque were increased significantly with external Fe2+ concentrations. Although shoot P concentration was not significantly affected by Fe2+ treatment after incubation for 2 days, it was significantly increased in the Fe‐treated plants compared with Fe‐deprived ones after incubation for 4 days. Soil culture experiment showed that the formation of iron plaque on root surfaces was promoted by exogenous iron, with greater amount of iron plaque being formed by addition of ferric hydroxide than of ferric oxide. Phosphorus adsorption on iron plaque also increased with the addition of iron oxides, and increasing soil P increased the amounts of P associated with the iron plaque and shoot P concentration. The amounts of iron plaque were almost sixfold higher under flooding condition than under field capacity condition. Plants pretreated under flooding condition generally had higher shoot P concentrations when they were transplanted to solutions with varying P levels, and this was most pronounced in the treatment with highest solution P concentration. The results suggest that iron plaque acts as a nutrient reservoir for phosphorus in the rhizosphere and helps enhance P acquisition by rice.  相似文献   

10.
Zhang  Xike  Zhang  Fusuo  Mao  Daru 《Plant and Soil》1998,202(1):33-39
This solution culture study examined the effect of the deposition of iron plaque on zinc uptake by Fe-deficient rice plants. Different amounts of iron plaque were induced by adding Fe(OH)3 at 0, 10, 20, 30, and 50 mg Fe/L in the nutrient solution. After 24 h of growth, the amount of iron plaque was correlated positively with the Fe(OH)3 addition to the nutrient solution. Increasing iron plaque up to 12.1 g/kg root dry weight increased zinc concentration in shoots by 42% compared to that at 0.16 g/kg root dry weight. Increasing the amount of iron plaque further decreased zinc concentration. When the amounts of iron plaque reached 24.9 g/kg root dry weight, zinc concentration in shoots was lower than that in shoots without iron plaque, implying that the plaque became a barrier for zinc uptake. While rice plants were pre-cultured in –Fe and +Fe nutrient solution in order to produce the Fe-deficient and Fe-sufficient plants and then Fe(OH)3 was added at 20, 30, and 50 mg Fe/L in nutrient solution, zinc concentrations in shoots of Fe-deficient plants were 54, 48, and 43 mg/kg, respectively, in contrast to 32, 35, and 40 mg/kg zinc in shoots of Fe-sufficient rice plants. Furthermore, Fe(OH)3 addition at 20 mg Fe/L and increasing zinc concentration from 0.065 to 0.65 mg Zn/L in nutrient solution increased zinc uptake more in Fe-deficient plants than in Fe-sufficient plant. The results suggested that root exudates of Fe-deficient plants, especially phytosiderophores, could enhance zinc uptake by rice plants with iron plaque up to a particular amount of Fe.  相似文献   

11.
Limmer  Matt A.  Thomas  John  Seyfferth  Angelia L. 《Plant and Soil》2022,477(1-2):171-181
Plant and Soil - Aquatic plants, including rice, develop iron (Fe) plaques on their roots due to radial oxygen loss (ROL), and these plaques accumulate both beneficial and toxic elements. Silicon...  相似文献   

12.
A greenhouse experiment evaluated the effect of phytoextraction of arsenic from a contaminated soil by Chinese Brake Fern (Pteris vittata L.) and its subsequent effects on growth and uptake of arsenic by rice (Oryza sativa L.) crop. Pteris vittata was grown for one or two growing cycles of four months each with two phosphate sources, using single super phosphate (SSP) and di-ammonium phosphate (DAP). Rice was grown on phytoextracted soils followed by measurements of biomass yield (grain, straw, and root), arsenic concentration and, uptake by individual plant parts. The biomass yield (grain, straw and rice) of rice was highest in soil phytoextracted with Pteris vittata grown for two cycles and fertilized with diammonium phosphate (DAP). Total arsenic uptake in contaminated soil ranged from 8.2 to 16.9 mg pot(-1) in first growing cycle and 5.5 to 12.0 mg pot(-1) in second growing cycle of Pteris vittata. There was thus a mean reduction of 52% in arsenic content of rice grain after two growing cycle of Pteris vittata and 29% after the one growing cycle. The phytoextraction of arsenic contaminated soil by Pteris vittata was beneficial for growing rice resulted in decreased arsenic content in rice grain of <1 ppm. There was a mean improvement in rice grain yield 14% after two growing cycle and 8% after the one growing cycle of brake fern.  相似文献   

13.
植物主要依赖自身根系从土壤中获取矿质养分; 具有不同根形态的植物对于养分的吸收能力存在差异。丛枝菌根真菌(AMF)能与陆地植物根系形成共生关系, 帮助植物吸收矿质养分。但是, AMF对于植物根系养分吸收的促进效应是否会受根形态的影响还鲜有研究。该研究选取4种不同根形态基因型水稻(根毛缺陷突变体rhl1、侧根缺陷突变体iaa11、不定根缺失突变体arl1和野生型Kas)为研究对象, 设置2种施氮水平处理(低氮: 20 mg·kg-1氨氮; 高氮: 100 mg·kg-1氨氮), 利用稳定同位素15N示踪标记技术, 探究AMF和氮添加对不同根形态植物氮吸收的影响。研究结果发现, 相比低氮处理, 高氮处理下, rhl1、Kas、iaa11arl1的茎叶15N浓度分别提高了60%、72%、128%与118%, 说明氮添加显著促进了水稻氮吸收, 且iaa11arl1对氮添加的响应更强烈。在低氮水平下, AMF对rhl1、Kas、iaa11arl1氮吸收的平均效应值分别为17%、31%、42%、51%, 表明AMF对于植物氮吸收的促进效应受根形态影响, iaa11arl1对AMF的响应明显高于Kas与rhl1; 相较于低氮水平, 高氮水平下AMF对于不同根形态水稻氮吸收的促进效应都会显著降低, 表明氮添加削弱了AMF对植物氮吸收的促进效应。该研究阐明了4种不同根形态基因型水稻氮养分吸收存在显著差异, 其中氮吸收能力较弱的基因型水稻对AMF的响应更强, 该结果补充了植物与AMF在养分吸收上存在功能互补的控制实验证据。  相似文献   

14.
低磷胁迫不同磷效率水稻苗期根系的生理适应性研究   总被引:23,自引:4,他引:23  
以P效率差异显著的IR74(P高效型)、IR71331(中间型)及IR71379(P低效型)等3个品种为供试材料,采用水培法研究了这3类水稻在低P胁迫下P的吸收、转运及利用效率等P效率差异的原因以及P吸收动力学特征参数、R/S、酸性磷酸酯酶(acid phosphoesterase,简称APase)与核糖核酸酶(ribonuclease,简称RNase)等表现。结果表明,在低P胁迫下,P效率的高低是由水稻对P的吸收率、转运率以及利用效率综合作用的结果,存在基因型差异,P高效基因型IR74和P效率中间型的IR71331具有高的P吸收率,而IR712379P的吸收率低。不同P效率水稻在低P胁迫下,其Km、Cmin、Imax、R/S与Apase相对活性等参数表现出基因型的差异,小的Km和Cmin,大的Imax和R/S及高的APase升幅是水稻对P胁迫的生理适应性特征,也是植株在低P胁迫下较为敏感生理指标。其中各类型水稻叶片中RNase活性在低P胁迫一均表现大幅度上升,在品种间无显著差异,说明该酶是逆境胁迫并非低P胁迫的特征反应。  相似文献   

15.
Bo Xu  Shen Yu 《Annals of botany》2013,111(6):1189-1195

Background and Aims

Anoxic conditions are seldom considered in root iron plaque induction of wetland plants in hydroponic experiments, but such conditions are essential for root iron plaque formation in the field. Although ferrous ion availability and root radial oxygen loss capacity are generally taken into account, neglect of anoxic conditions in root iron plaque formation might lead to an under- or over-estimate of their functional effects, such as blocking toxic metal uptake. This study hypothesized that anoxic conditions would influence root iron plaque formation characteristics and translocation of Zn and Cd by rice seedlings.

Methods

A hydroponic culture was used to grow rice seedlings and a non-disruptive approach for blocking air exchange between the atmosphere and the induction solution matrix was applied for root iron plaque formation, namely flushing the headspace of the induction solution with N2 during root iron plaque induction. Zn and Cd were spiked into the solution after root iron plaque formation, and translocation of both metals was determined.

Key Results

Blocking air exchange between the atmosphere and the nutrient solution by N2 flushing increased root plaque Fe content by between 11 and 77 % (average 31 %). The N2 flushing treatment generated root iron plaques with a smoother surface than the non-N2 flushing treatment, as observed by scanning electron microscopy, but Fe oxyhydroxides coating the rice seedling roots were amorphous. The root iron plaques sequestrated Zn and Cd and the N2 flushing enhanced this effect by approx. 17 % for Zn and 71 % for Cd, calculated by both single and combined additions of Zn and Cd.

Conclusions

Blocking of oxygen intrusion into the nutrient solution via N2 flushing enhanced root iron plaque formation and increased Cd and Zn sequestration in the iron plaques of rice seedlings. This study suggests that hydroponic studies that do not consider redox potential in the induction matrices might lead to an under-estimate of metal sequestration by root iron plaques of wetland plants.  相似文献   

16.
Amino acids (AAs) play significant roles in metal binding, antioxidant defense, and signaling in plants during heavy metal stress. In the present study, the essential amino acids (EAAs), non-essential amino acids (NEAAs), as well as the enzymes of proline and cysteine biosynthetic pathways were studied in contrasting arsenic accumulating rice genotypes grown in hydroponic solutions with addition of arsenate (AsV) or arsenite (AsIII). Under a mild As stress, the total AAs content significantly increased in both the rice genotypes with a greater increase in a low As accumulating rice genotype (LAARG; IET-19226) than in a high As accumulating rice genotype (HAARG; BRG-12). At the equimolar concentration (10 μM), AsIII had a greater effect on EAAs than AsV. Conversely, AsV was more effective in inducing a proline accumulation than AsIII. Among NEAAs, As significantly induced the accumulation of histidine, aspartic acid, and serine. In contrast, a higher As concentration (50 μM) reduced the content of most AAs, the effect being more prominent during AsIII exposure. The inhibition of glutamate kinase activity was noticed in HAARG, conversely, serine acetyltransferase and cysteine synthase activities were increased which was positively correlated with the cysteine synthesis.  相似文献   

17.

Aims

Maintaining variation in germination response provides a selective advantage, by spreading risk during recruitment. In fire-prone regions, physically dormant (PY) species vary their response to dormancy-breaking fire-related heat cues at the intra-population level. However little is known about physiologically dormant (PD) species, which respond to smoke cues. These contrasting dormancy types reflect different evolutionary developmental pathways and we considered whether intra-population variation in germination of Boronia floribunda (PD) occurs in response to smoke.

Methods

Seeds were collected from individual plants. We assessed germination magnitude and rate of seeds from each individual in response to a single aerosol smoke treatment, and three concentrations of smoke water, using replicate seed lots in temperature-controlled incubators.

Results

The magnitude and onset of germination differed significantly among individuals in response to the same smoke treatment. Seeds from different individuals varied in their sensitivity to smoke water concentration, with some responding to very low doses, and others obligated to high doses.

Conclusions

Variation in germination response to smoke highlights a mechanism by which PD species spread risk, by allowing some seeds to emerge quickly, while others remain dormant in the soil seed bank. The similarity to heat-cued variation displayed by PY species suggests that this could represent a convergent functional response.
  相似文献   

18.
The effects of arsenate, Fe2+, and phosphate on amount and composition of Fe-oxide plaque at the rice-root surface and on the yield and arsenic accumulation in rice (cv. BRRI dhan33) were studied in a replicated pot-culture experiment. Arsenic in the form of Na2HAsO4 was applied at concentrations of 0, 15 and 30 mg kg?1 in combination with P and/or Fe at 0 and 50 mg kg?1, from KH2PO4 and FeSO4, respectively. Root, grain and straw yields and their As, Fe and P concentrations were determined. The Fe-oxide plaque was extracted from the plant roots using dithionite-citrate-bicarbonate (DCB) and NH4-oxalate extractions. The addition of Fe2+ reduced the toxic effect of As in flooded-rice culture and resulted in reduced grain-As accumulation and increased grain yields. The effect of applied phosphate was the opposite, in that it resulted in higher As concentrations in both grain and straw and lower grain yields. The effects of both Fe and P can be explained based on their impacts on adsorption of As onto soil and rice-plaque Fe-oxides and the subsequent As solubility and availability for uptake by rice. These reactions have important implications to rice-crop management and the natural variability in soils and irrigation-water characteristics that might impact As uptake by rice.  相似文献   

19.
水稻铁吸收、转运及调控的分子机制研究进展   总被引:1,自引:0,他引:1  
郭明欣  郑玲  赵旭升 《遗传》2017,39(5):388-395
铁是水稻生长和发育所必需的营养元素之一。研究表明,水稻既可以以螯合物的形式从土壤中吸收Fe3+、Fe2+,又可以直接转运根际土壤中游离的Fe2+。科研人员已经鉴定了很多参与铁离子吸收和转运的重要分子元件,包括转运蛋白、酶、螯合物等,同时也挖掘了部分调控这些分子元件表达的上游基因。碱性土壤的高pH值影响水稻对铁离子的吸收和利用,因此,科研人员通过改良碱性土壤中铁离子的利用效率来改良水稻的耐碱性,并取得了一定的成效。本文主要对上述内容进行了综述,并对该领域未来的研究方向进行了展望。  相似文献   

20.
The effect of selenium on sulfur uptake by barley and rice   总被引:9,自引:1,他引:8  
Because of their chemical and physical similarities, plant uptake of S and Se are closely related. Barley (Hordeum vulgare L.) and rice (Oryza sativa L.) were grown in greenhouse solution culture to examine the synergistic interactions between SO4 and Se6+ in plant uptake. In the presence of low concentrations of solution SO4, shoot and root yields were decreased with additions of Se6+. However, when SO4 was present in elevated concentrations, no Se-induced yield reduction occurred. A synergistic interaction between SO4 and Se6+ caused an increase in the shoot S concentrations with increasing concentrations of Se6+ at low SO4 solution concentrations. At elevated SO4 concentrations, no synergism was osberved. Selenium had a lesser effect on the S concentration in plant roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号