首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the auger method has been reported to be simple and superior to other methods of determination of roots, a standard procedure of determining roots with the same is lacking. In a bid to standardize the auger method for studying wheat root distribution; we sampled roots with 5, 7.5 and 10 cm ID augers on the row and midway between rows down to 180 cm. The suitability of a sampling scheme was adjudged from bias between observed and actual root length densities (RLD). The actual density in a layer was obtained by integrating the equation fitted to the average of root density data horizontally between 0 and 11 cm, because for 22 cm apart rows of wheat the representative half of the unit soil strip was 11 cm from the row; and assumed actual RLD was the average of horizontal distribution of RLD in a particular layer. Single site sampling on the row or between rows gave the maximum bias. Average of two sites viz. on the row and midway between rows with 10 cm ID auger and 7.5 cm ID auger or at three sites with 5 cm ID auger (additional site midway between the earlier two) gave the best estimates in that order.  相似文献   

2.
A simplified procedure has been formulated and tested for determining average root length density (RLD) by auger sampling at a single site in wheat, corn and mustard. It involves the determination of horizontal root distribution in the representative half of the unit soil strip (distance from base of plant to mid-point in the rows) by excavating small monolith segments in the top soil layer. Average RLD is computed by dividing the integral of polynomial function fitted to the horizontal root distribution (in the unit soil strip) with its length. The average RLD, thus, obtained is interpolated on the curve between root length density and horizontal distance from the plant base (d) in the representative half of the unit soil strip. Root length density determined by centering 5 cm diameter auger at the interpolated d gave minimum deviation from the average RLD of that layer compared to the other possible single site sampling schemes with same-sized auger. These results indicate that for row crops, the best centre for single-site augering is about one-third of distance from the plant base to mid-way between the two rows.  相似文献   

3.
Coelho  Eugenio F.  Or  Dani 《Plant and Soil》1999,206(2):123-136
Information on root distribution and uptake patterns is useful to better understand crop responses to irrigation and fertigation, especially with the limited wetted soil volumes which develop under drip irrigation. Plant water uptake patterns play an important role in the success of drip irrigation system design and management. Here the root systems of corn were characterized by their length density (RLD) and root water uptake (RWU). Comparisons were made between the spatial patterns of corn RWU and RLD under surface and subsurface drip irrigation in a silt loam soil, considering a drip line on a crop row and between crop rows. Water uptake distribution was measured with an array of TDR probes at high spatial and temporal resolution. Root length density was measured by sampling soil cores on a grid centered on crop row. Roots were separated and an estimation of root geometrical attributes was made using two different image analysis programs. Comparisons of these programs yielded nearly identical estimates of RLD. The spatial patterns of RWU and RLD distributions, respectively normalized to the total uptake and root length, were generally similar only for drip line on a crop row, but with some local variations between the two measures. Both RLD and RWU were adequately fitted with parametric models based on semi-lognormal and normal Gaussian bivariate density functions (Coelho and Or, 1996; Soil Sci. Soc. Am. J. 60, 1039–1049).  相似文献   

4.
小麦和玉米根系取样位置优化确定及根系分布模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
为了确定小麦(Triticum aestivum)、玉米(Zea mays)根系的最优取样位置和更准确地模拟根长密度在土壤剖面的分布, 在冬小麦和夏玉米的灌浆后期, 采用根钻法取样, 比较了不同取样位置对根系分布的影响; 采用Gerwitz和Page模型对根长密度的分布进行了模拟。结果表明, 冬小麦行间和行上取样在0-10 cm土层根长密度差异显著, 在10 cm以下土层差异减少。在确定根长密度分布的取样中, 在0-20 cm土层应考虑根长密度分布的空间差异, 即行上密度大于行间密度; 而在20-100 cm土层, 需要考虑行间根长密度大于行上的空间差异; 在1 m以下土层两个位置的差异逐渐消失, 可不考虑空间差异。夏玉米根长密度在上层土壤表现出距离植株不同位置差异显著的特征。植株位置(株上)、距植株10 cm和距植株20 cm位置根长密度在土壤中的分布特征是: 0-10 cm土层3个位置根长密度差异在50%以上, 根长密度大小是株上>距植株10 cm>距植株20 cm; 而在10-30 cm层次, 根长密度表现为距植株10 cm>株上>距植株20 cm, 30-50 cm土层株上位置的根长密度最小, 50 cm以下各位置根长密度差异不明显。对于玉米根系取样, 50 cm以上土层需要考虑根长密度的空间差异, 50 cm以下土层可不考虑。采用Gerwitz和Page模型, 结合华北平原机械化耕作下形成的土壤犁底层变厚及其犁底层容重增加对根系分布的影响, 在模型中加入土壤容重参数订正可以使模型更准确地模拟根长密度在土壤剖面的分布。  相似文献   

5.
棉花根系生长和空间分布特征   总被引:25,自引:0,他引:25       下载免费PDF全文
结合田间根钻取样和图像扫描分析方法, 研究了不同棉花品种根系的长度、直径和表面积动态及 0~ 10 0cm深和 0~ 4 0cm宽土壤范围内的空间分布特征。该方法与常规直尺测量结果相比相关系数R2 达到 0.899 (n =1318), 显示了较好的可靠性。研究结果表明, 棉花平均根长密度 (RLD) 在花铃期为 1.2 1~ 1.2 7mm·cm-3, 吐絮后降至 1.0 4~ 1.12mm·cm-3, 收花时为 0.76mm·cm-3 。棉花根平均直径在不同基因型间存在显著差异, 抗虫杂交棉的根直径最粗, 平均为 0.5 2mm ;早熟类型品种根直径较细, 平均为 0.36mm。在土壤深度上根直径的差异不显著, 但距棉行距离越远, 根的平均直径越小。在明确根系长度和直径动态规律的基础上, 提出了根表面积指数 (RAI) 的概念, 与地上部叶面积指数具有相似的含义和生物学意义, 且呈较好的指数相关关系 (R2 =0.779) 。RAI在生理发育时间 (PDT) 小于等于 4 0前, 其增长动态符合LOGISTIC生长规律 (R2 =0.84 9), 在PDT大于 4 0后, 呈线性递减趋势 (R2 =0.5 70~ 0.895 ), 且杂交抗虫棉的RAI在全生育期内均明显高于其它类型品种, 而早熟类型品种相对略低。RAI空间分布特征表现为, 开花前在浅根层内 (0~ 30cm) 分布最多, 花铃期以中层根系 (40~ 6 0cm) 为主, 吐絮后主要以深层 (70~ 10 0cm) 和距棉行较远的行间较多。研究结果为制定合理的施肥、灌溉措施提供了理论依据, 并量化了棉花根系的时空变化, 为进一步提高生长发育模拟模型的精度奠定了基础。  相似文献   

6.
Root research has been hampered by a lack of good methods and by the amount of time involved in making measurements. The use of the minirhizotron as a quantitative tool requires comparison with conventional destructive methods. This study was conducted in the greenhouse to compare the minirhizotron technique with core and monolith methods in quantifying barley (Hordeum vulgare L.) and fababean (Vicia faba L.) root distribution. Plants were grown in boxes (80 cm long × 80 cm wide × 75 cm deep) in a hexagonal arrangement to minimize the effects of rooting anistrophy. Minirhizotron observations and destructive sampling to a depth of 70 cm using core and monolith methods were performed at the ripening growth stage. Total root length for the entire depth interval was generally higher in barley (159–309 m) than fababean (110–226 m). Significant correlation coefficients between monolith and core methods for root length density (RLD, cm cm–3) was observed in both crops (p 0.01). A method and depth interaction showed no significant differences in fababean RLD distribution measured by core and monolith methods. However, the RLD was different for the uppermost 40 cm depth in barley. The relationship for RLD between minirhizotron and core methods was significant only in barley (r=0.77*). For both crops, estimates of RLD in the top 10-cm layer by the minirhizotron technique were lower than those by core and monolith techniques. In contrast, estimates of RLD were higher in fababean at a depth >30 cm. Destructive sampling still remains the method to quantify root growth in the 0–10 cm soil layer. ei]B E Clothier  相似文献   

7.
Brück  H.  Piro  B.  Sattelmacher  B.  Payne  W.A. 《Plant and Soil》2003,256(1):149-159
Root sampling in crop stands of low planting density requires reliable information on horizontal distribution of roots. This applies particularly to pearl millet in the Sahel, which is sown at a rate of less than two pockets of seed per m2. The objective of this study was to investigate the spatial variability of root length density (RLD) among sampling positions in an improved management system with ridging and under traditional sowing. RLD between ridges (bR) was lower compared to sampling positions within ridges (wR) at soil depth layers from 0 to 80 cm soil depth. We found a highly significant, positive correlation between the sum of the root length (RL) of four sampling dates (tillering, booting, flowering, and maturity) with shoot dry mass (SDM) at maturity. The square of the correlation coefficient was highest when calculation of RL was based on RLD at all four sampling positions. While SDM exhibited significant differences among three pearl millet varieties, sole root sampling wR at a lateral distance of 60 cm relative to the pocket would not allow for the detection of varietal differences in RL, while all other sampling positions did. The correlation between RL and SDM was considerably improved if information of RLD bR was included. Under traditional sowing, RLD directly under the plant was lower compared to sampling positions at lateral distance 25 and 50 cm from the centre of the pocket, but this effect of sampling position was not significant. RLD estimates within deeper soil layers were not systematically affected by direction and lateral distance. To obtain accurate information about depth of rooting and RL under traditional sowing, samples should be taken from lateral distances between 20 and 40 cm from the pocket centre.  相似文献   

8.
Calibration of minirhizotron data against root length density (RLD) was carried out in a field trial where three drip irrigation depths: surface (R0) and subsurface, 0.20 m (RI) and 0.40 m depth (RII) and two processing tomato cultivars: `Brigade' (CI) and `H3044' (CII) were imposed. For each treatment three minirhizotron tubes were located at 10, 37.5 and 75 cm of the way from one plant row to the next. Roots intersecting the minirizotrons walls were expressed as root length intensity (L a) and number of roots per unit of minirhizotron wall area (N ra). Root length density (RLD) was calculated from core samples taken for each minirhizotron tube at two locations: near the top of the minirhizotron (BI) and 15 cm apart from it, facing the minirhizotron wall opposite the plant row (BII). Minirhizotron data were regressed against RLD obtained at BI and BII and with their respective means. The results show that for all the situations studied, better correlations were obtained when RLD was regressed with L a than with N ra. Also was evident that the relationship between L a and RLD was strongly influenced by the location of soil coring. RLD was correlated with L a trough linear and cubic equations, having the last ones higher determination coefficients. For instance at 10 cm from the plant row when values from the top layer (0–40 cm) were analysed separately, L a was significantly regressed with RLD measured at BII and described by the equations: RLD = 0.5448 + 0.0071 L a (R 2 = 0.51) and RLD = 0.4823 + 0.0074L a + 8×10–5 L a 2 – 5×10–7 L a 3 (R 2 = 0.61). Under the 40 cm depth the highest coefficients of determination for the linear and cubic equations were respectively 0.47 and 0.88, found when L a was regressed with RLD measured at BI. For minirhizotrons located at 75 cm from the plant row and for location BI it was possible to analyse jointly data from all depths with coefficients of determination of 0.45 and 0.59 for the linear and cubic equations respectively.  相似文献   

9.
Roots in the Wageningen Rhizolab are observed using two methods: (i) non-destructively, using horizontal, glass minirhizotrons at intervals of 14 days between observations; (ii) with destructive sampling using augers on three dates in the season. This paper reports changes with depth and time in root numbers per unit interface area of the minirhizotron tube (number of intersections) of four crop species (wheat, Brussels sprouts, leek and potato). The number of root intersections of Brussels sprouts, wheat and potato declined with depth at any time, whereas leek showed a different pattern because maximum root growth was observed at a depth of 10–20 cm. Root density generally decreased in the following order: Brussels sprouts, wheat, potato and leek. Plots of root length densities, Lrv(cm. cm-3), obtained by auger sampling, versus the number of intersections showed considerable variation in slope with species, time in the season and year, implying that a single, universal equation to convert minirhizotron observations into volumetric root densities does not exist. Causes of variation in the slopes are discussed. It is concluded that limited auger sampling combined with minirhizotron observations yield adequate quantitative estimates of relevant root properties.  相似文献   

10.
树木细根具有高度空间异质性,确定合理的细根取样策略是林木细根研究的前提。通过在福建省三明米槠天然常绿阔叶林内随机钻取96个土芯,分析细根生物量和形态特征的空间变异特征,并估计各指标所需的取样数量。结果表明:(1)随着径级增加,细根各指标变异系数增大,相应的取样数量增加;(2)随着土壤深度增加,单位面积细根生物量变异程度和相应的取样数量均增加。在置信水平为95%、精度为80%的条件下,直径为0-1 mm和1-2 mm的细根,分别采集16和42个样品可以满足测定单位面积细根生物量,采集17和31个样品可以满足测定单位面积细根长度,采集25和33个样品可以满足测定单位面积细根表面积。Shapiro-Wilk检验表明,除表层土壤0-1 mm细根单位面积生物量符合正态分布外,其余细根生物量和形态指标数据均不符合正态分布。研究结果为亚热带常绿阔叶林细根的合理取样提供了科学依据。  相似文献   

11.
12.
Golden nematode, Globodera rostochiensis (GN) population decline under resistant potatoes was related to cyst distance from plants 23 cm apart in rows 92 cm apart. GN decline, determined by sampling an infested field planted to the resistant cultivar ''Yankee Chipper'', was 81.8% in cores 11.5 cm from plants within rows. Decline was 27.4% at 23 cm from plants between rows and 36.6% at 46 cm. Population decline of juveniles in cysts added to soil in bags was 90.3% for cysts 11.5 cm from plants within rows planted to the resistant cultivar ''Rosa''. Decline between rows was 83.5, 76.9, and 60.4% at 11.5, 23.0, and 46.0 cm from plants, respectively. Maximum decline within for rows 30.5, 46.0, 61.0, and 92.0 cm apart, respectively. Decline under fallow was 43.5%, signif- which peaked 7 weeks AE. There was no effect of soil depth on population decline at any sampling position. Decreasing row spacing resulted in 79.9, 74.2, 73.4, and 66.1% GN population decline for rows 30.5, 46.0, 61.0, and 92.0 cm apart, respectively. Decline under fallow was 43.5%, significantly less than under potatoes. Potato root weight between rows was negatively correlated with row spacing and positively correlated with GN population decline.  相似文献   

13.
The spatial distribution of root length density (RLD) is important because it affects water and nutrient uptake. It is difficult to obtain reliable estimates of RLD because root systems are very variable and heterogeneous. We identified systematic trends, clustering, and anisotropy as geometrical properties of root systems, and studied their consequences for the sampling and observation of roots. We determined the degree of clustering by comparing the coefficient of variation of a simulated root system with that of a Boolean model. We also present an alternative theoretical derivation of the relation between RLD and root intersection density (RID) based on the theory of random processes of fibres. We show how systematic trends, clustering and anisotropy affect the theoretical relation between RLD and RID, and the consequences this has for measurement of RID in the field. We simulated the root systems of one hundred maize crops grown for a thermal time of 600 K d, and analysed the distribution of RLD and root intersection density RID on regular grids of locations throughout the simulated root systems. Systematic trends were most important in the surface layers, decreasing with depth. Clustering and anisotropy both increased with depth. Roots at depth had a bimodal distribution of root orientation, causing changes in the ratio of RLD/RID. The close proximity of the emerging lateral roots and the parent axis caused clustering which increased the coefficient of variation.  相似文献   

14.
Transparent plastic minirhizotron tubes have been used to evaluate spatial and temporal growth activities of plant root systems. Root number was estimated from video recordings of roots intersecting minirhizotron tubes and of washed roots extracted from monoliths of the same soil profiles at the physiological maturity stage of a maize (Zea mays L.) crop. Root length was measured by the line intercept (LI) and computer image processing (CIP) methods from the monolith samples.There was a slight significant correlation (r=0.28, p<0.005) between the number of roots measured by minirhizotron and root lengths measured by the LI method, however, no correlation was found with the CIP method. Using a single regression line, root number was underestimated by the minirhizotron method at depths between 0–7.6 cm. A correlation was found between root length estimated by LI and CIP. The slope of estimated RLD was significant with depth for these two methods. Root length density (RLD) measured by CIP showed a more erratic decline with distance from the plant row and soil surface than the LI method.  相似文献   

15.
Striga hermonthica is a serious root parasite of sorghum in the semiarid tropics. Successful parasitism is dependent on interactions of Striga seeds and host roots. Several sorghum cultivars have been found which resist parasitism. The basis of resistance is not well known. One possible method for reducing the chances of parasitism is by restricted host root development. This research was conducted to evaluate this hypothesis in sorghum known to possess resistance to parasitism by Striga.Root length density of 21-day-old pot-grown resistant cultivars, Framida, N-13, IS-9830, Tetron and P-967083, were compared to that of the susceptible check, Dabar, using the line intercept method of measuring root length. There was no significant difference between resistant cultivars and the susceptible cultivar Dabar. The RLD of resistant P-967083 however was significantly less than Framida, another resistant cultivar.The RLD of Dabar was compared to that of Framida and P-967083 in USA and Niger field trials. Root length density was determined on soil cores taken at flowering with a Giddings Soil Sampler. Each core was divided into 10-cm fractions for estimating RLD by the line intercept method. In the USA Dabar had significantly greater RLD than the two resistant cultivars in the upper 10-cm portion of the soil profile, but only significantly greater than P-967083 in the 10–20-cm portion. Significant differences in RLD between susceptible and resistant cultivars were not found at depths between 20–60 cm. In field trials in Niger, RLD of Dabar was significantly greater than either resistant cultivar in the (0 to 30 cm) portion of the soil core. These results suggest that part of the Striga resistance of P-967083 and perhaps Framida may be a result of avoiding interactions between parasitic seeds and host roots.  相似文献   

16.
采用剖面法对宽窄行栽植模式下三倍体毛白杨(triploid Populus tomentosa)的根系分布特征进行了研究;采用管式TDR系统对土壤剖面含水率变化动态进行了连续观测,并据此计算林木根系吸水速率,以探讨土壤含水率、根系分布和根系吸水分布之间的相关关系。研究结果表明:毛白杨的总平均根长密度在林带两侧和不同径向距离处非常接近(P>0.05);但在不同土层间变化很大(P<0.01),其中0-20和60-150 cm土层为根系主要分布区域,其根系所占比例共达86%;不同径阶间的根长密度差异显著(P<0.01),且其比例关系会随空间位置的改变而发生变化。不同栽植方位下,林带东侧毛白杨根系分布的浅层化程度高于西侧,且在径向240-280 cm内其0-0.5 mm的极细根显著多于西侧(P<0.05)。因此,宽窄行栽植模式下,深度和径阶是毛白杨根系分布的主要影响因子,而栽植方位会对其形态构型产生影响。毛白杨根系吸水模式受细根分布的影响,但会随土壤剖面水分有效性分布的变化而变化:当表土层水分有效性增加时,根系吸水主要集中在表土层;当表土层水分有效性降低时,深层土壤根系的吸水贡献率会逐渐增加;当土壤剖面水分条件异质性较高时,根系吸水主要集中在根系密度与水分有效性均较高的区域;当土壤剖面水分分布均匀且不存在水分胁迫时,根系吸水分布与细根分布最为一致。  相似文献   

17.

Aims

Tree roots are spatially highly heterogeneous and it thus requires large numbers of samples to detect statistically significant changes in root biomass. The objectives of this study were to understand and quantify the sources of error in the assessment of fine root biomass (<2 mm) during the second year of a high-density Populus plantation.

Methods

Soil cores were collected in winter (n?=?35) and in summer (n?=?20), and fine roots were picked by hand for varying lengths of time: 1, 2, 5, 20, 40, and 60 min. The root biomass data were used to identify the best combination of the time spent for root picking and the number of samples collected, that minimizes the overall uncertainty (i.e. the combination of the spatial error due to the incomplete sampling and the temporal error due to the incomplete core processing).

Results

On average, 25 min was enough time to pick 90 % of the fine root biomass in winter, while in summer only 10 min were needed. In winter fewer samples were needed, but more time for picking was necessary as compared to summer when root biomass was higher.

Conclusions

Fine root sampling can be optimized by minimizing the uncertainty of the biomass estimates and simultaneously decreasing root sampling time investment.  相似文献   

18.

Background and aims

Root length density (RLD) is a parameter that is difficult to measure, but crucial to estimate water and nutrient uptake by plants. In this study a novel approach is presented to characterize the 3-D root length distribution by supplementing data of the 3-D distribution of root intersections with data of root length density from a limited number of soil cores.

Methods

The method was evaluated in a virtual experiment using the RootTyp model and a field experiment with cauliflower (Brassica oleracea L. botrytis) and leek (Allium porrum, L.).

Results

The virtual experiment shows that total root length and root length distribution can be accurately estimated using the novel approach. Implementation of the method in a field experiment was successful for characterizing the growth of the root distribution with time both for cauliflower and leek. In contrast with the virtual experiment, total root length could not be estimated based upon root intersection measurements in the field.

Conclusions

The novel method of combining root intersection data with root length density data from core samples is a powerful tool to supply root water uptake models with root system information.  相似文献   

19.
M K Kuhner  J Yamato  J Felsenstein 《Genetics》1998,149(1):429-434
We describe a method for co-estimating 4Nemu (four times the product of effective population size and neutral mutation rate) and population growth rate from sequence samples using Metropolis-Hastings sampling. Population growth (or decline) is assumed to be exponential. The estimates of growth rate are biased upwards, especially when 4Nemu is low; there is also a slight upwards bias in the estimate of 4Nemu itself due to correlation between the parameters. This bias cannot be attributed solely to Metropolis-Hastings sampling but appears to be an inherent property of the estimator and is expected to appear in any approach which estimates growth rate from genealogy structure. Sampling additional unlinked loci is much more effective in reducing the bias than increasing the number or length of sequences from the same locus.  相似文献   

20.
Distribution of Xiphinema americanum and four Meloidogyne spp, was studied in a vineyard over a 13-mo. period. The X. arnericanum population was concd in the upper 60-cm of undisturbed soil in the vine row, whereas the Meloidogyne species were distributed both in and between rows and to greater depths, similar to the distribution of the root system. Samples for assessment of X. americanum densities had least variation when taken in the vine row from the upper 60-cm of soil. Sampling error is reduced in Meloidogyne populations by sampling within 40 cm of the vine both within and/or between rows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号