首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

EDTA is useful to assess mobile metal pools in polluted soils and sediments. There is a need to enhance our understanding of the significance of metal fractions released. The impact of single reagent extraction with 0.05 mol L?1 EDTA on the solid phase distribution of trace metals in surface soils sampled from confined dredged sediment disposal sites was investigated. Not extracted and EDTA extracted soils were subjected to sequential extraction to fractionate the total contents into: (1) easily exchangeable and carbonate bound fraction; (2) reducible fraction; (3) oxidisable fraction; and (4) residual fraction. With EDTA, significant portions of metals associated with the acid extractable and reducible fractions were released. The oxidisable and residual fractions remained unaffected for most of the investigated metals except for the organic matter associated metals (Cu and Pb). A decrease in the residual fraction after EDTA-extraction for Cu and Pb was attributed to artifacts of the sequential extraction procedure.  相似文献   

2.
It is common to find that low bioavailability can prevent the phytoremediation process of heavy metal-contaminated soils. Heavy metals in soil are associated with various forms having different bioavailability. In this study, the bioavailability of various Cu forms in contaminated soils was investigated using ion-exchange resins, a sequential extraction procedure, and combined with methods including partial dissolution procedure, simulated Cu forms, seedling culture, pot experiment when treated with EDTA, or waste water from monosodium glutamate and citric acid production. Results showed that the bioavailability, in decreasing order of different Cu forms to tall fescue (Festuca arundinacea Schreb.) is: exchangeable Cu (EX-Cu) and organic matter bound Cu (OM-Cu)> Cu bound to carbonate (CAB-Cu)> Fe/Mn oxide bound Cu (OX-Cu)> residual Cu (RES-Cu). Effect of EDTA on the activation of Cu contaminated soil or simulated Cu and the uptake and translocation of tall fescue was better than that of monosodium glutamate waste water (MGW) and citric acid waste water (CAW). EDTA, CAW and MGW all improved the plant availability of different Cu forms in contaminated soil, which could be used in chelate-assisted phytoremediation of heavy metal polluted soil.  相似文献   

3.
Eight lead-contaminated soils and one background soil artificially contaminated with several lead compounds were examined to determine the factors that limit lead extractability and thus plant availability during phytoremediation, as lead must be in soluble form for plant uptake to occur. The effect of the chemical form of the lead as well as the association of the lead among the different soil chemical fractions on lead extractability was specifically addressed. Results indicate that all the added lead forms tested except PbCrO4 were readily extracted and believed to be available for plant uptake, operationally defined as EDTA-extractable lead, as EDTA is the primary soil amendment for phytoremediation of lead-contaminated soils. Sequential extraction of the eight lead-contaminated soils that previously had been extracted with EDTA shows that the EDTA-extractable or plant available lead corresponds to mainly the exchangeable and carbonate fractions of each soil. Lead associated with oxide, organic, and residual fractions were less effectively targeted and solubilized by EDTA and therefore are not as readily available for plant uptake. Attempts to increase the available pool of soluble lead included the combination of EDTA with organic acids, reducing agents, and surfactants. Results from these studies indicate that high concentrations or extremely low pH conditions are required to enhance the plant available pool of lead by the organic acids and reducing agents. Surfactants, particularly caprylic acid in combination with 0.25 mM EDTA, were shown to be as effective as 0.50 mM EDTA alone. An amendment formulation combining less EDTA with surfactants is attractive for phytoremediation because of the biodegradability and cost concerns commonly associated with using larger amounts of EDTA.  相似文献   

4.
Since heavy metals are nondegradable and strongly bonded in soils, remediation of heavy metal polluted soils by extraction is difficult and current extraction techniques require harsh chemicals such as ethylenediaminetetraacetic acid (EDTA). However, use of EDTA is environmentally problematic because of costs, persistence, toxicity and deterioration of soil structure. Therefore, the potential of soluble natural humic substances (HS) to extract heavy metals from contaminated soils is tested as an environmentally friendly substitute for EDTA. A strongly polluted, calcareous urban soil (CRC soil) and a moderately polluted agricultural soil (CUP soil) were extracted at neutral pH in batch mode by three HS solutions from beech and Norway spruce litter (Beech-HS and Spruce-HS) and processed cow slurry (Bio-HS), all containing 25 mM dissolved organic carbon (DOC). After 10 extractions with a solution to soil ratio of 5:1 (L/kg), 8% to 39% of the total Cd, Cu, Ni and Pb soil contents, lowest for Ni and highest for Cu/Pb, were extracted. Natural and processed HS samples had comparable capacities to extract the heavy metals. A comparison of 100 mM DOC of Bio-HS and EDTA as extractants for Cu from the CRC soil showed extraction of 67% by EDTA and 41% by Bio-HS, indicating somewhat higher efficiency of EDTA than of HS. Sequential extraction of the CRC soil after Bio-HS and EDTA extraction showed removal of exchangeable, carbonate- and metal oxide-bound Cu but also of some residual Cu. It is therefore concluded that HS appears to be an attractive and promising alternative to EDTA as remediation agent for heavy metal polluted soils provided cheap HS of good quality is easily available.  相似文献   

5.
Phytoextraction, the use of plants to extract heavy metals from contaminated soils, could be an interesting alternative to conventional remediation technologies. However, calcareous soils with relatively high total metal contents are difficult to phytoremediate due to low soluble metal concentrations. Soil amendments such as ethylene diaminetetraacetate (EDTA) have been suggested to increase heavy metal bioavailability and uptake in aboveground plant parts. Strong persistence of EDTA and risks of leaching of potentially toxic metals and essential nutrients have led to research on easily biodegradable soil amendments such as citric acid. In our research, EDTA is regarded as a scientific benchmark with which degradable alternatives are compared for enhanced phytoextraction purposes. The effects of increasing doses of EDTA (0.1,1,10 mmol kg(-1) dry soil) and citric acid (0.01, 0.05, 0.25, 0.442, 0.5 mol kg(-1) dry soil) on bioavailable fractions of Cu, Zn, Cd, and Pb were assessed in one part of our study and results are presented in this article. The evolution of labile soil fractions of heavy metals over time was evaluated using water paste saturation extraction (approximately soluble fraction), extraction with 1 M NH4OAc at pH 7 (approximately exchangeable fraction), and extraction with 0.5 M NH4OAc + 05 M HOAc + 0.02 M EDTA at pH 4.65 (approximately potentially bioavailable fraction). Both citric acid and EDTA produced a rapid initial increase in labile heavy metal fractions. Metal mobilization remained constant in time for soils treated with EDTA, but a strong exponential decrease of labile metal fractions was noted for soils treated with citric acid. The half life of heavy metal mobilization by citric acid varied between 1.5 and 5.7 d. In the following article, the effect of heavy metal mobilization on uptake by Helianthus annuus will be presented.  相似文献   

6.
Field and greenhouse experiments were performed to assess the performance of phytoremediation of arsenic and lead from contaminated soil at an EPA Superfund site (Barber Orchard). Chinese Brake ferns (Pteris vittata) were used to extract arsenic. On average, fern shoot arsenic concentrations were as high as 20 times the soil arsenic concentrations under field conditions. It was estimated that 8 years would be required to reduce the acid-extractable portion of soil arsenic to safe levels (40 mg/kg). The effect of soil pH on arsenic extraction was also investigated. Results indicate that increasing soil pH may improve arsenic removal. Indian mustard plants (Brassica juncea) were used under greenhouse conditions to phytoextract soil lead. EDTA was applied to soil and was found to improve lead extraction. When the EDTA concentration was 10 mmol EDTA/kg soil in soil containing 338 mg Pb/kg soil, mustard plants extracted approximately 32 mg of lead. In conclusion, phytoremediation would be a suitable alternative to conventional remediation techniques, especially for soils that do not require immediate remediation.  相似文献   

7.
This article reports the results of a study focused on the presence and bioavailability of arsenic in agricultural soil in the mining and industrial regions of northern Kosovo and southern Serbia, as well as uptake and bioaccumulation of arsenic in two commonly cultivated plant species (Zea mays L. and Solanum tuberosum L.). This area was one of the most important mining districts in Europe. The collected soil samples were subjected to a modified BCR three-step sequential extraction procedure in order to investigate the chemical partitioning of arsenic in the soils. The general distribution of arsenic in various fractions was: exchangeable < reducible < oxidizable fractions. Highest concentrations of total arsenic in soil were found close to industrial facilities and tailing ponds. In addition, fluvisols were significantly more enriched with arsenic than soils at a distance from the river flows. The edible parts of the plant specimen showed different As contents, suggesting that these plant species have different propensities for the uptake and bioaccumulation of arsenic from soil.  相似文献   

8.
The research was carried out in a pine-covered area of the Wielkopolski National Park (Poland), for years exposed to acid rain. The soils under study are sands and loamy sands with a pH of 3.3-4.4. To assess potentially reactive pools of aluminium in those soils, two methods were employed: sequential and single extraction. For the exchangeable form the results obtained by single extraction using KCl greatly exceeded the figures yielded by sequential extraction, in which the conditions under which the process was executed (pH 7) led to an underestimation of the results. The soil profile displayed a lithogenically dichotomous structure which was reflected in the aluminium content, especially in Al extracted by pyrophosphate (single extraction) and in the so-called oxidisable fraction (sequential extraction). In both cases there was a jump in Al concentrations resulted from the release of aluminium from interlayer spaces of clay minerals. The labile percentage obtained for mean values in the profile amounted from 8.1% for single extraction to 12.1% for sequential extraction, which may indicate the metal's considerable pool of potentially reactive aluminium. Single extraction seems to be more reliable in evaluating Al forms.  相似文献   

9.
Abstract

Column leaching using [S, S]-ethylene diamine disuccinate ([S, S]-EDDS) on copper tailing soils was carried out to investigate metal content and fractionation after leaching. The soil column was divided into four layers after leaching. Fractionation of Cu, Pb, Zn, and Mn in soil was analyzed using a modified BCR sequential extraction method. Metal contents (Cu, Pb, Ca, Mn) in soil layers increased with the depth of the soil column after leaching in the [S, S]-EDDS treatment. The cumulative extraction efficiency was approximately 43.1% for Cu, 26.8% for Zn, 19.5% for Pb, 10.5% for Ca, 2.07% for Mg, 58.5% for Mn, and 7.92% for Fe. The removal of the reducible fractions of Cu and Mn and the exchangeable fraction of Zn was the most significant in the treatment with [S, S]-EDDS. The exchangeable fraction of Pb was the main fraction that was affected by leaching using [S, S]-EDDS. Distribution of Cu and Mn were severely modified by leaching with [S, S]-EDDS. Percentages of residual fractions of the tested heavy metals in the treatment with [S, S]-EDDS after leaching were much higher than that in the control. Although column leaching using [S, S]-EDDS could remove target metals effectively and impaired their availability, it also dissolved large amounts of major elements and modified the distribution of Mn appreciably.  相似文献   

10.
Phytoextraction has been proposed as an alternative remediation technology for soils polluted with heavy metals, but is generally perceived to be too slow. Enhancing accumulation of trace pollutants in harvestable plant tissues is a prerequisite for such technology to be practical. The main aims of this paper were to investigate whether a combination of nutrients and ethylenediaminetetraacetic acid (EDTA) enhanced Pb uptake of sunflower (Helianthus annuus) plants, and if timing of EDTA application altered Pb uptake and environmental persistence. Plants were grown in greenhouse pot experiments. Pb distributions and uptake of the whole plant were studied using chemical and flame atomic absorption spectrometry analyses. Pb mobilization by EDTA appeared to be dose dependent, with more mobilization for the high than the low dose. There were distinct differences in mobilization patterns of various nutrient amendments. EDTA mobilized Pb more in the medium than the highest and lowest nutrient levels. Heterogeneous soil humus components exerted mobilizing and stabilizing effects, so the medium nutrition was most effective for phytoextraction. At low nutrient levels, Pb concentration in the shoot with one low EDTA application was less than two applications to the same total EDTA dosage. So in the poor soil, two applications of EDTA was more effective than once. The half-life of two low EDTA treatment applications was longer than for one application, to the same total dosage. In general, sunflower was suited to phytoremediation of moderately Pb-contaminated soil by phytoextraction.  相似文献   

11.
The present research was conducted to determine heavy metals in agricultural soils from Çanakkale, Turkey, using a sequential extraction procedure (acid soluble, reducible, oxidizable, and residual) as proposed by the Community Bureau of Reference (BCR) of the European Commission. Soil samples were taken from 12 different cultivated sites and analyzed for Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn concentrations. The results revealed an order of Mn > Cd > Pb > Co > Ni > Cu > Zn > Cr for the heavy metals based on the sum of the first three fractions (acid soluble + reducible + oxidizable). The relationships between soil properties and each metal fraction were identified through Pearsons's correlation analysis. Hierarchical cluster analysis was performed to determine the behaviors and similarities of metals in each fraction. While Mn, Pb, and Zn exhibited subjective behaviors in the acid-soluble fraction, Cd, Co, Cu, Cr, and Ni exhibited similar behaviors with each other.  相似文献   

12.
The extractable contents of Zn, Pb, Cu, Cr, Mn, Ni, Fe and Al were evaluated in sediments from the Lis River (Portugal) using the three-step sequential extraction procedure described by Community Bureau of Reference (BCR, now the Standards, Measurement and Testing Programme) of the European Union. The distribution of trace metals among the exchangeable, water and acid soluble, reducible, oxidizable and residual fractions was determined. The highest metal concentrations were observed in samples collected at the most polluted river sites (animal husbandry, domestic, industrial and agricultural wastes). Pb, Cu, Cr, Ni, Fe and Al were found mainly associated with the residual and organic fractions. High concentrations of Zn and Mn were found in the exchangeable/acid soluble fraction.  相似文献   

13.
Geebelen  W.  Adriano  D.C.  van der Lelie  D.  Mench  M.  Carleer  R.  Clijsters  H.  Vangronsveld  J. 《Plant and Soil》2003,249(1):217-228
Lead immobilization in 10 soils contaminated with Pb from different origin was examined using lime (CaCO3), a mix of cyclonic ash and steelshots (CA+ST), and a North Carolina phosphate rock. The immobilization efficacy of the three amendments was evaluated using single (CaCl2solution) and sequential (BCR method) chemical extractions in tandem with a microbiological Pb biosensor (BIOMET), a Pb phytotoxicity test, Pb plant uptake, and a Physiologically Based Extraction Test (PBET) mimicking Pb bioavailability in the human gastro-intestinal tract. The results demonstrated the necessity of using a diverse suite of bioavailability methodology when in situ metal immobilization is assessed. Sequential (BCR) extractions and PBET analysis indicated that PR was the most effective amendment. PR however, proved ineffective in totally preventing Pb phytotoxicity and Pb uptake on all soils tested. On the contrary, CA+ST and lime decreased BIOMET Pb, Pb phytotoxicity, and Pb uptake to a far greater extent than did PR. BIOMET detectable Pb and Pb uptake, however, were strongly related to Pb in soluble or exchangeable soil fractions (i.e., CaCl2 extractable). By combining these fractions with the acid-extractable Pb, accomplished by using acetic acid extractant, the recently developed BCR sequential extraction scheme appeared to have lost some valuable information on judging Pb bioavailability. The data show that different amendments do not behave consistently across different soils with different sources of contamination. Different indices for measuring Pb bioavailability are also not necessarily consistent within particular soil and amendment combinations.  相似文献   

14.
In this work Ni speciation in natural and spiked soils (with similar total concentration) was studied. Spiked soils were prepared by addition of NiSO4.6H2O to obtain concentration similar to the one in natural soils. In soils mobile species were determined with a simplified sequential extraction as follows: H2O for water-soluble metal, KNO3 for exchangeable species, DTPA for complexed/adsorbed species. Results show that in spiked soils the exchangeable and adsorbed Ni concentrations are considerably higher than in natural soils. A study of plant uptake was carried out in order to evaluate the relation between mobile species and phyto-availability. Alfalfa (Medicago sativa L.), even though it is not a hyperaccumulator, was selected for its tolerance to high metal concentrations in soil. Preliminary results show a very high correlation between Ni mobile species and Ni uptake by alfalfa. Significant differences were found between spiked and natural soils. In the latter, high levels of total Ni did not correspond to relevant uptake as in the case of spiked soil. Results stress the importance of evaluating preliminarly heavy metal speciation in soil before planning phytoremediation procedures.  相似文献   

15.
This study investigated the concentrations of Co, Cr, Cu, Mn, Ni, Pb and Zn in surface soil and corn cob samples collected from agricultural fields near a coal mine from Huaibei, China. Meanwhile, the mobility and availability of heavy metals in soil samples were evaluated by a modified three-step The European Community Bureau of Reference (BCR) sequential extraction procedure. The total concentrations of metals in soil pose no ecological threats to the local plants. Transfer factors of essential metals, Cu and Zn, as well as those of non-essential metal Pb, were higher than those of the remained metals. The results of BCR fractionation analysis revealed that the acid soluble, reducible and oxidizable fractions of the Mn, Pb and Zn were higher than those of the residual fraction, suggesting that these elements may be more bioavailable. The pH and organic matter contents of soil were significant parameters affecting speciation of metals in soil samples. Hierarchical cluster analysis indicated significant correlations between metal levels in corn grains and more available (acid soluble and reducible) fractions in soil, indicating that heavy metals in the first two fractions were more available for corn crops. The elevated mobility and bioavailability of Pb in soil are of great concern in the study area.  相似文献   

16.
Summary The amount of copper extracted from soils by EDTA was found to increase with the temperature of extraction. Under controlled conditions of extraction, the amount of applied copper extracted from soils by EDTA decreased during incubation of soils under both moist and dry conditions. The recovery of applied copper by EDTA appeared to be related to the amounts of manganese and iron oxides in the soil. On the basis of comparisons with calcium chloride-extractable copper and isotopically-exchangeable copper it is suggested that EDTA extraction could over-estimate the availability of soil copper to plants.  相似文献   

17.
Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability of EDTA as a potential remediating agent. Parameters, including EDTA concentration, soil type, soil content, washing cycle, precipitant concentration and type, and pH, were varied and tested during metal extraction and recovery operations. Factors, including EDTA concentration, aqueous and 5% soil slurry, presence of Pb, acclimated and unacclimated activated sludges, along with abiotic control, were varied and studied in the biodegradation of EDTA. The results showed that EDTA was able to extract lead completely from the tested soils, amenable to recovery by addition of cationic and anionic precipitants in the alkaline pH range, relatively biostable even under conditions very favorable toward biodegradation. Thus, EDTA is a strong, recoverable, and relatively biostable chelating agent that has potential for soil remediation application.  相似文献   

18.
Microbially reducible iron (water-soluble plus exchangeable forms) in three soils represented about 20% of the chemically reducible iron. The amount of iron reduced by microorganisms increased for about ten days to two weeks following flooding and thereafter remained constant. A similar trend was observed for the release of added Fe-59 in the soils following flooding, except that the reduction of labelled iron began earlier. In the more weathered soil, a higher proportion of the total iron was reduced by citrate-dithionite than in the relatively unweathered alluvial soils. Of labelled iron added, sequential reduction showed approximately 70% in the three soils was microbially reducible, an additional 20% was reduced by citrate-dithionite, and 10% of the labelled iron had moved into the residual form.  相似文献   

19.
Column experiments of copper extraction from four contaminated soils characterized by a content of Soil Organic Matter (SOM) ranging from 1% to 25% are presented and discussed. The extraction was performed by flushing the soil with an aqueous solution of a sodium salt of ethylene diamminotetraacetic acid (EDTA). Preliminary tests were performed on a soil containing 25% of organic matter, to investigate the influence of pH, concentration and volumes of EDTA on its chelant action and on the dissolution of SOM. Having selected the optimal conditions for the extraction process, a further series of tests was conducted on the four soils to evaluate the influence of organic content on copper extraction yields. EDTA solutions at 0.01 M, 0.05 M, 0.1 and 0.2 M were injected at 0.33 ml/s; copper and organic matter extraction yield were determined. At a pH of 5, 15 pore volume (PV) of a solution containing 0.05M EDTA, extracted about 99% of copper contained by the soil with the higher organic matter content. Under the same conditions, and for soil with > 6% SOM, extraction yields over 80% were achieved, while at lower organic content, copper extraction was dramatically reduced. This was attributed to the formation of highly stable copper-humate complexes and to their increasingly dissolution that occurred in the soils with higher organic matter level.

Experimental tests performed at different contamination levels (1200 mg/kg, 2400 mg/kg) showed that EDTA extraction effectiveness also depended upon initial soil Cu concentration.  相似文献   


20.
To assess the phytoremediation potential of an autochthonous willow (Salix × aureo-pendula CL 'J1011') for phenanthrene (PHE)-contaminated soils and PHE-cadmium (PHE-Cd) co-contaminated soils, we conducted field experiments in the lower reaches of the Yangtze River, China. Ethylenediaminetetraacetic acid (EDTA) and ethyl lactate were tested for individual and combined effects on the phytoremediation efficiency. For PHE-contaminated soils, willow plus ethyl lactate resulted in significant removal of PHE from soils after 45 days, and the PHE concentration in the shoots was significantly higher with than without ethyl lactate. For PHE-Cd co-contaminated soils, both willow plus EDTA and willow plus EDTA and ethyl lactate led to a significant decrease in the concentrations of PHE and Cd in the soils after 45 days, whereas willow alone did not. The PHE and Cd concentrations in the willow shoots were significantly enhanced in the presence of EDTA alone and with ethyl lactate, except for the PHE concentration in stems with EDTA alone. Under the same treatment, the presence of Cd had no significant influence on the PHE removal from soils. The results indicate the feasibility of using this willow together with both EDTA and ethyl lactate for the simultaneous removal of PHE and Cd from soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号