首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intronless genes, as a characteristic feature of prokaryotes, are an important resource for the study of the evolution of gene architecture in eukaryotes. In the study, 14,623 (36.87%) intronless genes in maize were identified and the percentage is greater than that of other monocots and algae. The number of maize intronless genes on each chromosome has a significant linear correlation with the number of total genes on the chromosome and the length of the chromosomes. Intronless genes in maize play important roles in translation and energy metabolism. Evolutionary analysis revealed that 2601 intronless genes conserved among the three domains of life and 2323 intronless genes that had no homology with genes of other species. These two sets of intronless genes were distinct in genetic features, physical locations and function. These results provided a useful source to understand the evolutionary patterns of related genes and genomes and some intronless genes are good candidates for subsequent functional analyses specifically.  相似文献   

2.
Herbivory is an important selective pressure in the life history of most plant species, as it usually results in reduced plant fitness. In some situations, however, plants are able to compensate for the resources lost to herbivory and do not suffer any reduction in growth or reproduction after attack. We examined the ability of Lebanese cucumber (Cucumis sativus) to compensate for both pre-flowering and during-flowering foliar herbivory through increased photosynthetic efficiency and capacity. Plants that were damaged before flowering were able to compensate, in terms of vegetative biomass and fruit production for up to 80% leaf area loss. Plants that were damaged during the flowering period were less able to compensate and fruit production declined with increasing herbivory. Damaged plants had higher photosynthetic efficiency and capacity, and dissipated less light energy as heat. Herbivore-damaged plants may be induced to use a greater proportion of the absorbed light energy for photosynthesis as a result of altered carbohydrate source-sink relationships.  相似文献   

3.
Zhang P  Gu Z  Li WH 《Genome biology》2003,4(9):R56-6

Background  

Following gene duplication, two duplicate genes may experience relaxed functional constraints or acquire different mutations, and may also diverge in function. Whether the two copies will evolve in different patterns remains unclear, however, because previous studies have reached conflicting conclusions. In order to resolve this issue, by providing a general picture, we studied 250 independent pairs of young duplicate genes from the whole human genome.  相似文献   

4.
Maize (Zea mays L.) is one of the most important cereal crops and a model for the study of genetics, evolution, and domestication. To better understand maize genome organization and to build a framework for genome sequencing, we constructed a sequence-ready fingerprinted contig-based physical map that covers 93.5% of the genome, of which 86.1% is aligned to the genetic map. The fingerprinted contig map contains 25,908 genic markers that enabled us to align nearly 73% of the anchored maize genome to the rice genome. The distribution pattern of expressed sequence tags correlates to that of recombination. In collinear regions, 1 kb in rice corresponds to an average of 3.2 kb in maize, yet maize has a 6-fold genome size expansion. This can be explained by the fact that most rice regions correspond to two regions in maize as a result of its recent polyploid origin. Inversions account for the majority of chromosome structural variations during subsequent maize diploidization. We also find clear evidence of ancient genome duplication predating the divergence of the progenitors of maize and rice. Reconstructing the paleoethnobotany of the maize genome indicates that the progenitors of modern maize contained ten chromosomes.  相似文献   

5.
6.
7.
The vertical stratification of two species-rich moth families (Lepidoptera: Arctiidae, Geometridae) was analysed in a lowland rain forest in Costa Rica. Moths were trapped with automatic 8 W ultraviolet light traps at three sites in the understorey and canopy of a primary forest at the La Selva Biological Station (10.4° N, 84.0° W). A total of 846 arctiid moths (148 species) and 946 geometrid moths (140 species) were analysed. Species richness and diversity of arctiid moths was significantly lower in the understorey than in the canopy (Fisher's alpha: 24 vs. 49) whereas geometrid moths showed an inverse pattern (Fisher's alpha: 44 vs. 27). This resulted in an overall increase in the proportion of conspicuously coloured species towards the canopy. Moth ensembles were clearly separated in multidimensional scaling ordinations, and differed significantly in their faunal composition and dominance between the strata. The available host plant data suggest that the flight height of moths was determined by larval resource availability. Examples include understorey flyers such as the geometrid genus Eois feeding on Piper, and canopy flyers such as the arctiid moth genera Aclytia, Macrocneme and Poliopastea which feed on lianas.  相似文献   

8.
The goal of this work was to study mutational patterns in the evolution of RNA secondary structure. We analyzed bacterial tmRNA, RNaseP and eukaryotic telomerase RNA secondary structures, mapping structural variability onto phylogenetic trees constructed primarily from rRNA sequences. We found that secondary structures evolve both by whole stem insertion/deletion, and by mutations that create or disrupt stem base pairing. We analyzed the evolution of stem lengths and constructed substitution matrices describing the changes responsible for the variation in the RNA stem length. In addition, we used principal component analysis of the stem length data to determine the most variable stems in different families of RNA. This data provides new insights into the evolution of RNA secondary structures and patterns of variation in the lengths of double helical regions of RNA molecules. Our findings will facilitate design of improved mutational models for RNA structure evolution.  相似文献   

9.
In the past decade, rapid increases in the availability of high-resolution molecular and epidemiological data, combined with developments in statistical and computational methods to simulate and infer migration patterns, have provided key insights into the spatial dynamics of influenza A viruses in humans. In this review, we contrast findings from epidemiological and molecular studies of influenza virus transmission at different spatial scales. We show that findings are broadly consistent in large-scale studies of inter-regional or inter-hemispheric spread in temperate regions, revealing intense epidemics associated with multiple viral introductions, followed by deep troughs driven by seasonal bottlenecks. However, aspects of the global transmission dynamics of influenza viruses are still debated, especially with respect to the existence of tropical source populations experiencing high levels of genetic diversity and the extent of prolonged viral persistence between epidemics. At the scale of a country or community, epidemiological studies have revealed spatially structured diffusion patterns in seasonal and pandemic outbreaks, which were not identified in molecular studies. We discuss the role of sampling issues in generating these conflicting results, and suggest strategies for future research that may help to fully integrate the epidemiological and evolutionary dynamics of influenza virus over space and time.  相似文献   

10.
The myc family of protooncogenes encode similar but distinct nuclear proteins. Since N-myc, c-myc, and L-myc have been found to be expressed in the newborn kidney, we studied their expression during murine kidney development. By organ culture studies and in situ hybridization of tissue sections, we found that each of the three members of the myc gene family shows a remarkably distinct expression pattern during kidney development. It is known that mesenchymal stem cells of the embryonic kidney convert into epithelium if properly induced. We demonstrate the N-myc expression increases during the first 24 h of in vitro culture as an early response to induction. Moreover, the upregulation was transient and expression levels were already low during the first stages of overt epithelial cell polarization. In contrast, neither c-myc nor L-myc were upregulated by induction of epithelial differentiation. c-myc was expressed in the uninduced mesenchyme but subsequently became restricted to the newly formed epithelium and was not expressed in the surrounding loose mesenchyme. At onset of terminal differentiation c-myc expression was turned off also from the epithelial tubules. We conclude that N-myc is a marker for induction and early epithelial differentiation states. That the undifferentiated mesenchyme, unlike stromal cells of later developmental stages, express c-myc demonstrates that the undifferentiated mesenchymal stem cells are distinct from the stromal cells. The most astonishing finding, however, was the high level of L-myc mRNA in the ureter, ureter-derived renal pelvis, papilla, and collecting ducts. In the ureter, expression increased, rather than decreased, with advancing maturation and was highest in adult tissue. Our results suggest that each of the three members of the myc gene family are involved in quite disparate differentiation processes, even within one tissue.  相似文献   

11.
Structure and architecture of the maize genome   总被引:16,自引:0,他引:16       下载免费PDF全文
Maize (Zea mays or corn) plays many varied and important roles in society. It is not only an important experimental model plant, but also a major livestock feed crop and a significant source of industrial products such as sweeteners and ethanol. In this study we report the systematic analysis of contiguous sequences of the maize genome. We selected 100 random regions averaging 144 kb in size, representing about 0.6% of the genome, and generated a high-quality dataset for sequence analysis. This sampling contains 330 annotated genes, 91% of which are supported by expressed sequence tag data from maize and other cereal species. Genes averaged 4 kb in size with five exons, although the largest was over 59 kb with 31 exons. Gene density varied over a wide range from 0.5 to 10.7 genes per 100 kb and genes did not appear to cluster significantly. The total repetitive element content we observed (66%) was slightly higher than previous whole-genome estimates (58%-63%) and consisted almost exclusively of retroelements. The vast majority of genes can be aligned to at least one sequence read derived from gene-enrichment procedures, but only about 30% are fully covered. Our results indicate that much of the increase in genome size of maize relative to rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) is attributable to an increase in number of both repetitive elements and genes.  相似文献   

12.
Many studies use genetic markers to explore population structure and variability within species. However, only a minority use more than one type of marker and, despite increasing evidence of a link between heterozygosity and individual fitness, few ask whether diversity correlates with population trajectory. To address these issues, we analysed data from the Steller's sea lion, Eumetiopias jubatus , where three stocks are distributed over a vast geographical range and where both genetic samples and detailed demographic data have been collected from many diverse breeding colonies. To previously published mitochondrial DNA (mtDNA) and microsatellite data sets, we have added new data for amplified fragment length polymorphism (AFLP) markers, comprising 238 loci scored in 285 sea lions sampled from 23 natal rookeries. Genotypic diversity was low relative to most vertebrates, with only 37 loci (15.5%) being polymorphic. Moreover, contrasting geographical patterns of genetic diversity were found at the three markers, with Nei's gene diversity tending to be higher for AFLPs and microsatellites in rookeries of the western and Asian stocks, while the highest mtDNA values were found in the eastern stock. Overall, and despite strongly contrasting demographic histories, after applying phylogenetic correction we found little correlation between genetic diversity and either colony size or demography. In contrast, we were able to show a highly significant positive relationship between AFLP diversity and current population size across a range of pinniped species, even though equivalent analyses did not reveal significant trends for either microsatellites or mtDNA.  相似文献   

13.
We have sequenced five distinct mitochondrial genomes in maize: two fertile cytotypes (NA and the previously reported NB) and three cytoplasmic-male-sterile cytotypes (CMS-C, CMS-S, and CMS-T). Their genome sizes range from 535,825 bp in CMS-T to 739,719 bp in CMS-C. Large duplications (0.5-120 kb) account for most of the size increases. Plastid DNA accounts for 2.3-4.6% of each mitochondrial genome. The genomes share a minimum set of 51 genes for 33 conserved proteins, three ribosomal RNAs, and 15 transfer RNAs. Numbers of duplicate genes and plastid-derived tRNAs vary among cytotypes. A high level of sequence conservation exists both within and outside of genes (1.65-7.04 substitutions/10 kb in pairwise comparisons). However, sequence losses and gains are common: integrated plastid and plasmid sequences, as well as noncoding "native" mitochondrial sequences, can be lost with no phenotypic consequence. The organization of the different maize mitochondrial genomes varies dramatically; even between the two fertile cytotypes, there are 16 rearrangements. Comparing the finished shotgun sequences of multiple mitochondrial genomes from the same species suggests which genes and open reading frames are potentially functional, including which chimeric ORFs are candidate genes for cytoplasmic male sterility. This method identified the known CMS-associated ORFs in CMS-S and CMS-T, but not in CMS-C.  相似文献   

14.
15.
16.
The immunophilins, protein receptors for the immunosuppressing drugs cyclosporin A and FK506 and related proteins from plants, fungi, and bacteria, have been analyzed structurally and evolutionarily. The cyclosporin A binding proteins (cyclophilins) represent one ubiquitous family of homologous proteins, and the FK506- and rapamycin-binding proteins (FKBPs) constitute a second, unrelated family. Multiple sequence alignments of members of each of these two protein families define the highly conserved residues that are likely to play important structural and functional roles, and mutations in representative members of these two families that abolish or alter function have been evaluated. FKBPs have undergone greater evolutionary divergence than the cyclophilins. Evolutionary trees were constructed using two distinct programs, and these trees establish the structural relationships that allow division of each of these families into subgroups. The results lead to the suggestion that several genes encoding isozymic forms of the FKBPs and possibly also of the cyclophilins existed in prokaryotes before the emergence of eukaryotes on earth and that representatives of these genes were transmitted to both kingdoms to give rise to current subfamilies of these proteins. By contrast, compartmentalization of both classes of immunophilins appears to have arisen independently in prokaryotes and eukaryotes, late in evolutionary history.  相似文献   

17.
Summary Three subspecies ofPeromyscus inhabiting the montane, foothill, and coastal plain regions of the Carolinas were trapped in midwinter and the occurrence of spontaneous and ration-induced daily torpor was monitored via biotelemetric determination of body temperature. All tests were undertaken with field-caught mice that were subjected to a minimum of laboratory acclimation (two days). The tendency to enter torpor in the presence of adequate food was highest inP. maniculatus nubiterrae, whose natural montane habitat presents it with the greatest seasonal stress in terms of ambient temperature and food availability. This species exhibited significantly (P<0.05) longer spontaneous torpor bouts than did the two lowland subspecies,P. gossypinus gossypinus andP. leucopus leucopus (Table 1). Restriction of food to one-half thead libitum level increased the frequency, duration, and depth (mean minimum body temperature) of torpor in all three species (Fig. 1).P. maniculatus, however, displayed significantly (P<0.001) longer episodes of torpor induced by rationing than did either of the other two subspecies. The ability to compensate for a reduction in energy intake by adjusting levels of energy utilization may profoundly affect survival during short-term environmental stress in any of these three species.  相似文献   

18.
19.
We have constructed a yeast artificial chromosome (YAC) library using high-molecular-weight DNA prepared from agarose-embedded leaf protoplasts of the maize inbred line UE95. This library contains 79 000 clones with an average insert size of 145 kb and should therefore represent approximately three haploid genome equivalents. The library is organised as an ordered array in duplicate microtitre plates. Forty-one pools of DNA from 1920 individual clones have been prepared for rapid screening of the library by the polymerase chain reaction (PCR). Using this approach, together with conventional colony hybridisation, we have been able to identify between one and eight positive clones for every probe used.  相似文献   

20.
A detailed analysis of the polbeta superfamily of nucleotidyltransferases was performed using computer methods for iterative database search, multiple alignment, motif analysis and structural modeling. Three previously uncharacterized families of predicted nucleotidyltransferases are described. One of these new families includes small proteins found in all archaea and some bacteria that appear to consist of the minimal nucleotidyltransferase domain and may resemble the ancestral state of this superfamily. Another new family that is specifically related to eukaryotic polyA polymerases is typified by yeast Trf4p and Trf5p proteins that are involved in chromatin remodeling. The TRF family is represented by multiple members in all eukaryotes and may be involved in yet unknown nucleotide polymerization reactions required for maintenance of chromatin structure. Another new family of bacterial and archaeal nucleotidyltransferases is predicted to function in signal transduction since, in addition to the nucleotidyltransferase domain, these proteins contain ligand-binding domains. It is further shown that the catalytic domain of gamma proteobacterial adenylyl cyclases is homologous to the polbeta superfamily nucleotidyltransferases which emphasizes the general trend for the origin of signal-transducing enzymes from those involved in replication, repair and RNA processing. Classification of the polbeta superfamily into distinct families and examination of their phyletic distribution suggests that the evolution of this type of nucleotidyltransferases may have included bursts of rapid divergence linked to the emergence of new functions as well as a number of horizontal gene transfer events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号