共查询到20条相似文献,搜索用时 48 毫秒
2.
Two experiments were conducted to examine the response of Quercus rubra L. seedlings to coppicing. In a greenhouse experiment, growth, biomass distribution, leaf gas exchange, and water and carbohydrate relations were measured for 1-year-old seedlings that were either coppiced when dormant at the time of planting or left intact as controls. Coppicing induced sprouting from the base of the stem, and, in general, the physiology of sprouts and controls was similar. However, the relative growth rate (RGR) of sprouts was 9% higher than that of controls, allowing sprouts to compensate fully for the initial mass lost to coppicing. In a second experiment, in an outdoor cold frame, growth, biomass distribution, leaf gas exchange and plant water relations were measured on 1-year-old seedlings that were either coppiced at the time of planting (dormant-coppiced), coppiced soon after bud break (active-coppiced) or left intact (controls). Dormant coppicing again had little impact on seedling physiology, and dormant-coppiced plants again compensated for initial mass loss with a higher RGR. In contrast, active-coppiced seedlings did not compensate for initial mass loss, as their RGR did not differ from that of controls. By the tenth week of the study, leaf gas exchange rates of active-coppiced sprouts were higher than those of dormant-coppiced and control seedlings. Active-coppiced sprouts also had a greater soil-to-leaf hydraulic conductivity (expressed on a leaf area basis) and a lower ratio of leaf area to root surface area than did controls. Across treatments, photosynthetic rate and stomatal conductance were positively correlated with soil-to-leaf hydraulic conductivity, and gas exchange rates and hydraulic conductivity were negatively related to leaf:root area ratio. Thus, the removal of actively growing shoots may have altered subsequent leaf gas exchange largely through coppice-induced changes in leaf-root balance. 相似文献
3.
An efficient protocol has been developed for high‐frequency shoot regeneration and plant establishment of Clitoria ternatea – a potential medicinal legume. Adventitious shoots were regenerated from young excised root segments of aseptic seedlings on Murashige and Skoog (MS) medium supplemented with various concentrations of 6‐benzyladenine (BA), kinetin, α‐naphthalene acetic acid (NAA) or 2,4‐dichlorophenoxy acetic acid (2,4‐D) either singly or in various combinations. The highest frequency (100%) of shoot regeneration and maximum number (16.4 ± 0.24) of shoots per explant was obtained on MS medium supplemented with 20 μm BA and 2.0 μm NAA. Organogenic calli were produced on a medium containing 2,4‐D (10 or 20 μm ) and BA (5.0 μm ). The calli were differentiated into multiple shoots on MS medium supplemented with 2.5–10 μm BA and 2.0 μm NAA. The microshoots were rooted on half‐strength MS medium supplemented with 5.0 μm indole‐3‐butyric acid and transplanted successfully in field conditions. After 12 months of transfer to ex vitro conditions, the performance of micropropagated plants were evaluated on the basis of some physiological and biochemical parameters and compared with the in vivo–grown plants of the same age. The sodium dodecyl sulphate polyacrylamide gel electrophoresis protein profile was same between regenerated and naturally growing shoots. Total soluble protein in aerial part as well as in seeds of in vitro–regenerated and in vivo–grown plants was almost the same. The mitotic study showed normal chromosomal movement and numbers (2 x = 16). 相似文献
4.
Abstract Drought treatments in holm-oak ( Quercus ilex) seedlings induce variations in total root length, number of root apices, shoot/root dry weight, and root electrolyte leakage. When drought treatments last for more than 50 days a considerable number of fine lateral roots die, irrespective of branching order or distribution within the root system. Scorching of drought-treated seedlings induces a transient stimulation of root growth. These results indicate that root turnover is deeply affected during treatments, with survival of seedlings being entrusted to the tolerance of a number of roots situated in the deeper region of the root system. Activity of the meristematic tissue present within the apices of these surviving roots supports regeneration of above-ground lost organs during recovery. Knowledge of the mechanisms ensuring the survival of Mediterranean tree seedlings following drought and fire is useful for developing models of vegetation dynamics. 相似文献
6.
Ecophysiological and structural traits of seedlings of the water-saver Pinus halepensis and the water-spenders Quercus coccifera and Q. ilex were studied in response to water stress under greenhouse conditions. Water deficit reduced stomatal conductance ( g
s) and, as a consequence, both net CO 2 assimilation ( A) and transpiration rate ( E) were also reduced. Water stress also emphasized midday down-regulation of the photochemical efficiency (dynamic photoinhibition) reducing quantum yield of noncyclic electron transport (Φ PSII), photochemical quenching (qP) and photochemical efficiency of the open reaction centres of PSII () and involved an increase of thermal dissipation of excess energy. However, water stress not only induced dynamic photoinhibition but also brought a reduction in F
v/ F
m (chronic photoinhibition). Despite the water-saving strategy of P. halepensis that limited net CO 2 assimilation, this species showed a higher photochemical efficiency and lower photoinhibition than Quercus species. This was not the result of a different photochemical quenching but was linked to a higher value of , indicating a less severe photo-inactivation of PSII. Water stress resulted in a loss of pigment content and in an increase of the carotenoids/chlorophyll ratio, antioxidant capacity and the biomass rate allocated to roots as opposed to that assigned to leaves. P. halepensis showed a lower photoinhibition and antioxidant activity than Quercus species due to its lower pigment content and higher proportion of carotenoids allowing P. halepensis to use, in a more effective way, the lesser excess energy absorbed. 相似文献
7.
Plants defend themselves against herbivory at several levels. One of these is the synthesis of inducible chemical defences. Using NMR metabolomic techniques, we studied the metabolic changes of plant leaves after a wounding treatment simulating herbivore attack in the Mediterranean sclerophyllous tree Quercus ilex. First, an increase in glucose content was observed in wounded plants. There was also an increase in the content of C‐rich secondary metabolites such as quinic acid and quercitol, both related to the shikimic acid pathway and linked to defence against biotic stress. There was also a shift in N‐storing amino acids, from leucine and isoleucine to asparagine and choline. The observed higher content of asparagine is related to the higher content of choline through serine that was proved to be the precursor of choline. Choline is a general anti‐herbivore and pathogen deterrent. The study shows the rapid metabolic response of Q. ilex in defending its leaves, based on a rapid increase in the production of quinic acid, quercitol and choline. The results also confirm the suitability of 1H NMR‐based metabolomic profiling studies to detect global metabolome shifts after wounding stress in tree leaves, and therefore its suitability in ecometabolomic studies. 相似文献
8.
The long‐term effect of elevated atmospheric CO 2 on isoprenoid emissions from adult trees of two Mediterranean oak species (the monoterpene‐emitting Quercus ilex L. and the isoprene‐emitting Quercus pubescens Willd.) native to a high‐CO 2 environment was investigated. During two consecutive years, isoprenoid emission was monitored both at branch level, measuring the actual emissions under natural conditions, and at leaf level, measuring the basal emissions under the standard conditions of 30 °C and at light intensity of 1000 µmol m ?2 s ?1. Long‐term exposure to high atmospheric levels of CO 2 did not significantly affect the actual isoprenoid emissions. However, when leaves of plants grown in the control site were exposed for a short period to an elevated CO 2 level by rapidly switching the CO 2 concentration in the gas‐exchange cuvette, both isoprene and monoterpene basal emissions were clearly inhibited. These results generally confirm the inhibitory effect of elevated CO 2 on isoprenoid emission. The absence of a CO 2 effect on actual emissions might indicate higher leaf temperature at elevated CO 2, or an interaction with multiple stresses some of which (e.g. recurrent droughts) may compensate for the CO 2 effect in Mediterranean ecosystems. Under elevated CO 2, isoprene emission by Q. pubescens was also uncoupled from the previous day's air temperature. In addition, pronounced daily and seasonal variations of basal emission were observed under elevated CO 2 underlining that correction factors may be necessary to improve the realistic estimation of isoprene emissions with empirical algorithms in the future. A positive linear correlation of isoprenoid emission with the photosynthetic electron transport and in particular with its calculated fraction used for isoprenoid synthesis was found. The slope of this relationship was different for isoprene and monoterpenes, but did not change when plants were grown in either ambient or elevated CO 2. This suggests that physiological algorithms may usefully predict isoprenoid emission also under rising CO 2 levels. 相似文献
9.
1. The short‐ and long‐term effects of photosynthate removal by sap‐sucking herbivores on plant growth were examined by experimentally manipulating densities of an aphid Cinara pseudotsugae (Wilson) on 2‐year‐old Douglas‐fir seedlings Pseudotsuga menziesii (Mirb.) Franco under greenhouse conditions. An 18‐week test was conducted to determine short‐term effects. Effects of long‐term aphid feeding were examined by exposing seedlings to aphid feeding for two consecutive growing seasons. A third experiment evaluated the extent of recovery during 1 year following a single season of aphid feeding. At least 35 seedlings were used in each test. 2. Volume and dry weight of both shoots and roots decreased significantly with increasing aphid feeding in all three experiments. 3. The most significant and severe aphid effect was reduced root tissue density, suggesting carbohydrate depletion due to translocation from roots to shoots. 4. There was no sign of recovery, of either root or shoot growth, during the year following one season of feeding. 5. The results of this study indicate that short‐term feeding by aphids can affect plant growth and structure for a relatively long time. 相似文献
10.
The biomass, production and mortality of fine roots (roots with diameter <2.5 mm) were studied in a typical Mediterranean holm oak ( Quercus ilex L.) forest in NE Spain using the minirhizotron methodology. A total of 1212 roots were monitored between June of 1994 and March of 1997. Mean annual fine root biomass in the holm oak forest of Prades was 71±8 g m –2 yr –1. Mean annual production for the period analysed was 260+11 g m –2 yr –1. Mortality was similar to production, with a mean value of 253±3 g m –2 yr –1. Seasonal fine root biomass presented a cyclic behaviour, with higher values in autumn and winter and lower in spring and summer. Production was highest in winter, and mortality in spring. In summer, production and mortality values were the lowest for the year. Production values in autumn and spring were very similar. The vertical distribution of fine root biomass decreased with increasing depth except for the top 10–20 cm, where values were lower than immediately below. Production and mortality values were similar between 10 and 50 cm depth. In the 0–10 cm and the 50–60 cm depth intervals, both production and mortality were lower. 相似文献
11.
The effect of wind loading on seedlings of English oak ( Quercus robur L.) was investigated. Instead of using a traditional wind tunnel, an innovative ventilation system was designed. This device was set up in the field and composed of a rotating arm supporting an electrical fan, which emitted an air current similar to that of wind loading. Oaks were sown from seed in a circle around the device. A block of control plants was situated nearby, and was not subjected to artificial wind loading. After 7 months, 16 plants from each treatment were excavated, and root architecture and morphological characteristics measured using a 3D digitiser. The resulting geometrical and topological data were then analysed using AMAPmod software. Results showed that total lateral root number and length in wind stressed plants were over two times greater than that in control trees. However, total lateral root volume did not differ significantly between treatments. In comparing lateral root characters between the two populations, it was found that mean root length, diameter and volume were similar between the two treatments. In trees subjected to wind loading, an accentuated asymmetry of root distribution and mean root length was found between the windward and leeward sides of the root system, with windward roots being significantly more numerous and longer than leeward roots. However, no differences were found when the two sectors perpendicular to the wind direction were compared. Mean tap root length was significantly higher in control samples compared to wind stressed plants, whilst mean diameter was greater in the latter. Wind loading appears to result in increased growth of lateral roots at the expense of the tap root. Development of the lateral root system may therefore ensure better anchorage of young trees subjected to wind loading under certain conditions. 相似文献
12.
In the southern United States, much of the emphasis in bottomland restoration is placed on establishing an oak-dominated forest. Artificial regeneration is an alternative for restoration on cleared lands and where a desirable seed source is not present. Currently the standard procedure for seedling preparation is to prune the roots prior to transplanting in the field. It is not fully known what effect(s) root pruning has on transplanted seedlings. In addition, bottomland restoration efforts inherently take place on floodplains. The potential interaction between root pruning and flooding on seedling performance is not known. This study consisted of two separate but related laboratory experiments. The purpose of the first experiment was to quantify the effects of various percentages of root removal and varying soil moisture regimes on transplanted Nuttall oak seedlings ( Quercus nuttallii Palmer). Root pruning treatments consisted of removal of roots at 0%, 25% and 75% while soil moisture regime was maintained at non-flooded or periodically flooded conditions. Plant gas exchange, growth, and survival were measured. Root pruning alone had adverse effects on height growth during the first 72 days following transplanting. Periodic flooding also produced adverse effects on stomatal conductance (p = 0.0002), height growth (p = 0.005), and survival (p = 0.02). Photosynthetic data indicated that as pruning intensified in the periodically flooded seedlings, photosynthetic rates decreased. In contrast, as pruning intensified in the non-flooded seedlings, photosynthesis increased. This demonstrated that pruning rate had a varying effect on photosynthesis dependent upon soil moisture condition. Experiment 2 focused on the effects of varying degrees of root pruning on new root formation. The seedlings were grown under laboratory conditions, harvested at 0, 10, 20, and 30 days after treatment initiation, and analyzed for new root formation. Results of Experiment 2 indicated no difference in new root formation, root length, or root biomass due to the pruning treatment. Overall, our results from both experiments indicated that root pruning had no detectable long-term adverse effects on growth and survival of seedlings under drained soil conditions; however, as results from Experiment 1 demonstrated, if seedlings were planted in periodically flooded conditions, root pruning produced adverse effects. Thus, in restoration efforts utilizing Nuttall oak seedlings, the planting strategy and pruning rate should be carefully evaluated based on the knowledge of sites' hydrology. Alternatively, on sites with unpredictable flooding both pruned and unpruned seedlings may be utilized to ensure survival. 相似文献
13.
Summary The inoculation of Alnus rubra (red alder) with Frankia sp. can lead to a highly efficient symbiosis. Several factors contribute to the successful establishment of nitrogenfixing nodules: (1) quantity and quality of Frankia inoculant; (2) time and method of inoculation; (3) nutritional status of the host plant. Frankia isolates were screened for their ability to nodulate and promote plant growth of container-grown red alder. Inoculations were performed on seedlings and seeds. Apparent differences in symbiotic performance could be seen when seeds or seedlings were inoculated. Plants inoculated at planting performed significantly better than those inoculated four weeks later in terms of shoot height, nodule number and shoot dry weight. If inoculation was delayed further, reduction in shoot height, nodule number and shoot dry weight resulted. The effect of fertilizer was also investigated with regard to providing optimal plant growth after inoculation. Plants receiving 1/5 Hoagland's solution minus nitrogen showed maximal plant growth with abundant nodulation. Plants receiving 1/5 Hoagland's solution with nitrogen showed excellent plant growth with significantly reduced nodulation. 相似文献
14.
An investigation was undertaken to assess the community structure of ectomycorrhizal (ECM) fungi on naturally regenerating European larch ( Larix decidua Mill.) seedlings grown under forest conditions. The sites examined were in two managed monoculture larch forests, differentiated by soil chemistry and mature tree density. Morphological and molecular analyses revealed a total of 22 fungal taxa. From detected ECM fungal taxa, 13 were noted at Site I and 13 at Site II. Only four taxa were found in both sites ( Russula ochroleuca, Thelephora terrestris, Lactarius tabidus and Paxillus involutus). The most abundant species at Site I (lower mineral concentration, high tree density) was Hydnotrya tulasnei (25.7?%), followed by Pseudotomentella tristis, Tomentella sublilacina and Russula puelaris. At Site II (higher mineral concentration, low tree density) the dominant fungal symbiont of larch seedlings was clearly Wilcoxina mikolae, which accounted for 74?% of mycorrhizal tips. The less abundant species comprised T. terrestris, L. tabidus, Xerocomus pruinatus and R. ochroleuca. The analysis of similarity (ANOSIM) and non-metric multidimensional scaling (NMDS) ordination clearly separated the ECM fungal assemblages in the two sites tested. Because our study sites were differentiated by many factors, it is not easy to distinguish one factor in particular to explain the differences observed between the ECM communities at Sites I and II. The results obtained significantly increase our knowledge about the diversity of the ECM fungi hosted by L. decidua. The large number of ECM fungi detected was the first observation showing these fungi as symbiotic partners of European larch. 相似文献
15.
In Central-Western Spain, forests and woodlands composed of Quercus sp. support outstanding levels of biodiversity, but there is increasing concern about their long-term persistence due to
a lack of regeneration. We hypothesize that this regenerative lack is operating on a large geographic scale; that there are
differences in the abundance of regeneration between three oak species; that oak regeneration is governed mainly by forest
management and structure; and that shrubs act as important physical protectors of seedlings and saplings. We analyzed whether
densities of oak seedlings and saplings in several size classes were related to stand-structure, understory, and physiographic
variables potentially affecting regeneration. Data collected at a regional level (1 km × 1 km grid) by the Spanish Forest
Inventory were evaluated from 2,816 plots. Results revealed that regeneration failure was common for all size categories,
from small seedlings to large saplings, and for the three oak species studied, especially the evergreens. Of the Quercus ilex, Q. suber, and Q. pyrenaica plots studied, 49%, 62%, and 20% were lacking any small seedlings, and 82%, 96%, and 56% did not have any large saplings,
respectively. Regeneration was positively correlated with tree cover and density, especially of small and medium-sized trees,
and negatively correlated with the presence of large trees, indicating that regeneration failure is mostly associated with
more open, uniform, and/or aged woodlands. Regeneration densities of Q. ilex and Q. suber were positively correlated with all understory variables, suggesting that the presence of pioneer shrubs represent a major
safe site for early tree recruitment, independent from specific shrub species. 相似文献
16.
Quercus ilex L. (holm oak) coppices, widespread around the Mediterranean basin, are probably the result of 5 000 years of prolonged human disturbance of the original Quercus pubescens Willd. (downy oak) forests. Since disturbance has almost ceased in recent years, a question arises as to the development of these coppices: will the Q. pubescens forests return, or will Q. ilex remain the dominant species? To investigate the phenomenon, we analyzed the first stages, i.e. germination of the two species in holm oak coppices. Our experiments show that both species germinated better in coppices than in clearings or clear-cuts. Moreover, Q. pubescens appears to be slightly favored above Q. ilex and it is suggested auto-allelopathy is involved, at least partially inhibiting the germination of Q. ilex. 相似文献
17.
The effects of water stress on growth and water relations of loblolly and white pine seedlings were studied during series of drying cycles. As mean soil water potential decreased, growth of roots, needles, and buds decreased. Growth of roots during successive severe drying cycles was not uniform, however. A study of needle and root extension showed that of the total growth of roots for 3 7-day drying cycles, only 6% occurred during the third cycle, while needle extension was uniform for the 3 cycles. The difference in response of needles and roots to drying cycles may be attributed primarily to the effect of water stress on the growing region. When subjected to a severe stress, roots matured toward the tip and became dormant, resulting in less growth during subsequent drying cycles. The intercalary growing region of needles, however, was not altered seriously enough by the stress to cause a difference in amount of growth during each drying cycle. Transpiration of loblolly pine was lower in the second drying cycle than in the first. Needle water potential after rewatering was as high as that of control plants watered daily; root resistance was apparently not important in restricting transpiration during a second drying cycle. Needle diffusion resistance of loblolly pine, measured with a low-resistance diffusion porometer, was slightly higher during the second drying cycle than during the first. In addition, many primary needles were killed during the first period of stress. These factors contributed to the reduction of transpiration during the second drying cycle. Diffusion resistance of Coleus increased and transpiration ceased during the first drying cycle while water potential remained relatively high. After rewatering, both leaf resistance and transpiration returned to the control level, presumably because the stress during the first period of drying was not severe. The diffusion resistances observed for well-watered plants were 30 to 50 sec·cm−1 for loblolly pine, 3 to 5 sec·cm−1 for Coleus, and 4 to 6 sec·cm−1 for tomato. These values agree closely with those reported by other workers. 相似文献
18.
The improvement of early vigour is crucial for the adaptation of maize ( Zea mays L.) to the climatic conditions of central Europe and the northern Mediterranean, where early sowing is an important strategy for avoiding the effect of summer drought. The objectives of this study were to identify quantitative trait loci (QTL) controlling cold-related traits and to investigate the relationships among them. A set of 168 F 2:4 families of the Lo964 × Lo1016 cross was grown in a sand–vermiculite substrate at 15/13°C (day/night) until the one-leaf stage. Twenty QTL were identified for the four shoot and two seed traits examined. Analysis of root weight and digital measurements of the length and diameter of primary and seminal roots led to the identification of 40 QTL. The operating efficiency of photosystem II ( PSII) was related to seedling dry weight at both the phenotypic and genetic level ( r=0.46, two matching loci, respectively) but was not related to root traits. Cluster analysis and QTL association revealed that the different root traits were largely independently inherited and that root lengths and diameters were mostly negatively correlated. The major QTL for root traits detected in an earlier study in hydroponics were confirmed in this study. The length of the primary lateral roots was negatively associated with the germination index ( r=–0.38, two matching loci). Therefore, we found a large number of independently inherited loci suitable for the improvement of early seedling growth through better seed vigour and/or a higher rate of photosynthesis.This paper is dedicated to our friend and colleague Alberto Soldati, who passed away unexpectedly. 相似文献
19.
Background and AimsTo understand whether root responses to aerial rhythmic growth and contrasted defoliation treatments can be interpreted under the common frame of carbohydrate availability; root growth was studied in parallel with carbohydrate concentrations in different parts of the root system on oak tree seedlings. MethodsQuercus pubescens seedlings were submitted to selective defoliation (removal of mature leaves, cotyledons or young developing leaves) at appearance of the second flush and collected 1, 5 or 10 d later for morphological and biochemical measurements. Soluble sugar and starch concentrations were measured in cotyledons and apical and basal root parts. Key ResultsSoluble sugar concentration in the root apices diminished during the expansion of the second aerial flush and increased after the end of aerial growth in control seedlings. Starch concentration in cotyledons regularly decreased. Continuous removal of young leaves did not alter either root growth or apical sugar concentration. Starch storage in basal root segments was increased. After removal of mature leaves (and cotyledons), root growth strongly decreased. Soluble sugar concentration in the root apices drastically decreased and starch reserves in the root basal segments were emptied 5 d after defoliation, illustrating a considerable shortage in carbohydrates. Soluble sugar concentrations recovered 10 d after defoliation, after the end of aerial growth, suggesting a recirculation of sugar. No supplementary recourse to starch in cotyledons was observed. ConclusionsThe parallel between apical sugar concentration and root growth patterns, and the correlations between hexose concentration in root apices and their growth rate, support the hypothesis that the response of root growth to aerial periodic growth and defoliation treatments is largely controlled by carbohydrate availability. 相似文献
20.
Mycorrhiza samples of neighbouring Quercus ilex and Erica arborea plants collected in a postcutting habitat were processed to see whether plants differing in mycorrhizal status harbour the same root endophytes. Three experiments were performed in parallel: (i) isolation, identification and molecular characterization of fungi from surface-sterilized roots of both plant species; (ii) re-inoculation of fungal isolates on axenic E. arborea and Q. ilex seedlings; (iii) direct inoculation of field-collected Q. ilex ectomycorrhizas onto E. arborea seedlings. About 70 and 150 fungal isolates were obtained from roots of Q. ilex and E. arborea, respectively. Among them, Oidiodendron species and five cultural morphotypes of sterile isolates formed typical ericoid mycorrhizas on E. arborea in vitro. Fungi with such mycorrhizal ability were derived from both host plants. Isolates belonging to one of these morphotypes (sd9) also exhibited an unusual pattern of colonization, with an additional extracellular hyphal net. Ericoid mycorrhizas were also readily obtained by direct inoculation of E. arborea seedlings with Q. ilex ectomycorrhizal tips. Polymerase chain-restriction fragment length polymorphism and random amplified polymorphic DNA analyses of the shared sterile morphotypes demonstrate, in the case of sd9, the occurrence of the same genet on the two host plants. These results indicate that ericoid mycorrhizal fungi associate with ectomycorrhizal roots, and the ecological significance of this finding is discussed. 相似文献
|