首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vetiver grass (Vetiveria zizanioides), also known as Chrysopogon zizanioides, is a graminaceous plant native to tropical and subtropical India. The southern cultivar is sterile; it flowers but sets no seeds. It is a densely tufted, perennial grass that is considered sterile outside its natural habitat. It grows 0.5–1.5 m high, stiff stems in large clumps from a much branched root stock. The roots of vetiver grass are fibrous and reported to reach depths up to 3 m thus being able to stabilize the soil and its use for this purpose is promoted by the World Bank. Uprooting tests were carried out on vetiver grass in Spain in order to ascertain the resistance the root system can provide when torrential runoffs and sediments are trying to uproot the plant. Uprooting resistance of each plant was correlated to the shoot and root morphological characteristics. In order to investigate any differences between root morphology of vetiver grass in its native habitat reported in the literature, and the one planted in a sub-humid environment in Spain, excavation techniques were used to show root distribution in the soil. Results show that vetiver grass possesses the root strength to withstand torrential runoff. Planted in rows along the contours, it may act as a barrier to the movement of both water and soil. However, the establishment of the vetiver lags behind the reported rates in its native tropical environment due to adverse climatic conditions in the Mediterranean. This arrested development is the main limitation to the use of vetiver in these environments although its root strength is more than sufficient.  相似文献   

2.
植物根系固坡抗蚀的效应与机理研究进展   总被引:22,自引:0,他引:22  
植物根系对抵抗坡体浅层滑坡和表土侵蚀起着巨大的作用.植物根系通过增强土体的抗剪强度发挥固坡效应.目前有关植物根系固坡机理的模型较多,普遍接受的是Wu-Waldron模型.该模型表明,植物根系产生的土体抗剪强度的增量与根系的平均抗拉强度和根面积比成正比,应用该模型评价根系固坡效应的2个最重要因素是根系的平均抗拉强度和根面积比.研究发现,土壤抗侵蚀性随着植物根系数量的增加而提高,但未有一致的定量函数关系.植物根系提高土壤抗侵蚀性主要通过直径小于1mm的须根起作用.须根通过增加土壤水稳性团聚体的数量与粒径等作用来提高土壤的稳定性,以抵抗水流分散;须根还能有效地增强土壤渗透性,减少径流,从而达到减少土壤冲刷的目的.  相似文献   

3.
分析喀斯特地区不同地埂篱根系的形态和力学特性,量化其根-土复合体抗剪和抗冲性能的强弱,探寻该地区地埂篱根系固土抗蚀性能的评价因子,为喀斯特坡地水土流失治理中植被恢复措施的科学应用提供参考。选取重庆酉阳龙潭槽谷为研究区,分上、中、下坡分别布设拉巴豆和光叶苕子2种地埂篱,采用根系扫描仪和电子万能试验机测定其根系形态和力学参数,应变控制式直剪仪测定复合体抗剪强度,原状土冲刷水槽法测定复合体抗冲指数。结果表明:(1)抗剪复合体中,拉巴豆平均根长密度和根表面积密度分别高出光叶苕子59.32%和16.86%;抗冲复合体中,拉巴豆平均根长密度、根表面积密度和根体积密度较之光叶苕子高出30.48%、57.78%、92.98%;拉巴豆根系极限抗拉力和抗拉强度均显著高于光叶苕子。(2)2种地埂篱根系均能增强土壤的抗剪和抗冲性能,其中拉巴豆和光叶苕子复合体粘聚力较之对照土体分别增强了113.06%—124.37%和51.56%—87.12%,抗冲指数最高达到对照土体的2.81倍和2.45倍。(3)不同坡位,下坡2种植物的根长密度显著高于上、中坡;拉巴豆根系抗拉特性在下坡表现最优,光叶苕子在上坡表现更好;拉巴...  相似文献   

4.
This study attempts to quantify the reinforcement effect of the Makino bamboo (Phyllostachys makinoi Hayata) root system on the stability of slopeland through numerical analyses and in situ tests. Based on the field surveys of Makino bamboo root morphology, a three-dimensional (3-D) numerical model of the soil–root system consisting of the reverse T-shape tap root and hair roots was developed and successfully applied to the finite element simulations of in situ pull-out tests. In the simulations, the soil mass was simulated by a soil element with a perfect elastic–plastic (or Mohr–Coulomb) material model whereas the root system was simulated by a ground anchor element with a linear elastic material model. In addition, a mechanical conversion model with simple mathematical form, which enables a direct transformation of the ultimate pull-out resistance into the shear strength increment of soil–root system was proposed. The conversion model offered a convenient way to quantify the reinforcement effect of the Makino bamboo root system required for the 3-D slope stability analyses. The numerical results indicated that the shear strength increment of the Makino bamboo soil–root system ranged from 18.4 to 26.3 kPa and its effect on the slope stability was insignificant when compared with those adverse influence factors such as the steep slope angle (=50–70°), shallow root depth (=0.8–1.0 m) and large growth height (>10 m) of the Makino bamboo forest slopeland. It can be also speculated that the tension cracks widespread over the slope surface due to the wind loading acting on the bamboo stems and the sequential rainwater infiltration is the dominating factor in the collapse failure of slopeland. For a Makino bamboo forest slopeland with medium slope (25° < slope angle β < 40°), the reinforcement effect of the Makino bamboo root system can mobilize its maximum stabilization capacity when compared with those of slopeland with mild (β < 25°) and steep slopes (β > 40°). Conclusively, the contribution of the Makino bamboo root system to the stability of slopeland is not as significant as expected.  相似文献   

5.
隔沟交替灌溉条件下玉米根系形态性状及结构分布   总被引:9,自引:0,他引:9  
为揭示根系对土壤环境的适应机制,研究了隔沟交替灌溉条件下玉米根系形态性状及结构分布。以垄位和坡位的玉米根系为研究对象,利用Minirhizotrons法研究了根系(活/死根)的长度、直径、体积、表面积、根尖数和径级变化及其与土壤水分、土温和水分利用效率(WUE)的相关关系。结果表明,对于活根,在坡位非灌水区域复水后根系平均直径减小,而根系日均生长速率、单位面积土壤根系体积密度、根尖数和表面积均增大,并随灌水区域土壤水分的消退逐渐减小;对于死根,在坡位非灌水区域复水后根系日均死亡速率、根系体积密度、根尖数和表面积变化均减小,其中根系死亡速率和死根直径随土壤水分的消退逐渐降低,而死根体积密度、根尖数和表面积分布随土壤水分降低呈增大趋势;在垄位,根系形态分布趋势与坡位一致,除根系直径与与坡位比较接近外,其他根系形态值均小于坡位。将根系分成4个径级区间分析根系的形态特征,结果表明在根系长度和体积密度分布中以2.5-4.5 mm径级的根系所占比例最大,在根尖数和根系表面积分布中以0.0-2.5 mm径级的根系为主。通过显著性相关分析,死根直径、体积密度、活根表面积等根系形态与土壤含水率、土壤温度和WUE间均存在显著或极显著的正相关关系,部分根系形态指标(如根系的生长速率、活根体积密度)只与坡位土壤含水量、土壤温度具有明显的相关性,表明隔沟交替灌溉对坡位根系形态的调控作用比垄位显著。  相似文献   

6.
Fine roots of an annual grass, a perennial grass and a perennial shrub were examined. Based on life histories and tissue composition, we expected the greatest root persistence for the shrub and shortest for the annual grass. Roots were observed with minirhizotrons over 2 yr for number, length and diameter changes. A Cox proportional hazard regression correlated root persistence with soil water, depth, diameter and date of production. In 2001, grass roots had similar persistence times, but shrub roots had the shortest. In 2002, the annual had the longest median root persistence, the perennial grass intermediate and the perennial shrub had the shortest. All species responded similarly to the magnitude of seasonal precipitation; root numbers increased with favorable soil moisture and disappeared with drying; fewer, thinner roots at greater soil depths were found in the drier year (2001). Root persistence increased with soil moisture, diameter and earlier appearance in the spring. Plasticity in root morphology and placement was influenced by water availability, yet persistence was surprisingly contrary to expectations.  相似文献   

7.
In Mediterranean environments, gully erosion is responsible for large soil losses. It has since long been recognized that slopes under vegetation are much more resistant to soil erosion processes compared to bare soils and improve slope stability. Planting or preserving vegetation in areas vulnerable to erosion is therefore considered to be a very effective soil erosion control measure. Re-vegetation strategies for erosion control rely in most cases on the effects of the above-ground biomass in reducing water erosion rates, whereas the role of the below-ground biomass is often neglected or underestimated. While the above-ground biomass can temporally disappear in semi-arid environments, roots may still be present underground and play an important role in protecting the topsoil from being eroded. In order to evaluate the potential of plant species growing in Mediterranean environments to prevent shallow mass movements on gully or terrace walls, the root reinforcement effect of 25 typical Mediterranean matorral species (i.e. shrubs, grasses herbs, small trees) was assessed, using the simple perpendicular model of Wu et al. (Can Geotech J 16:19–33, 1979). As little information is available on Mediterranean plant root characteristics, root distribution data were collected in SE-Spain and root tensile strength tests were conducted in the laboratory. The power root tensile strength–root diameter relationships depend on plant species. The results show that the shrubs Salsola genistoides Juss. Ex Poir. and Atriplex halimus L. have the strongest roots, followed by the grass Brachypodium retusum (Pers.) Beauv. The shrubs Nerium oleander L. and the grass Avenula bromoides (Gouan) H. Scholz have the weakest roots in tension. Root area ratio for the 0–0.1 m topsoil ranges from 0.08% for the grass Piptatherum miliaceum (L.) Coss to 0.8% for the tree Tamarix canariensis Willd. The rush Juncus acutus L. provides the maximum soil reinforcement to the topsoil by its roots (i.e. 304 kPa). Grasses also increase soil shear strength significantly (up to 244 kPa in the 0–0.1 m topsoil for Brachypodium retusum (Pers.) Beauv.). The shrubs Retama sphaerocarpa (L.) Boiss. and Anthyllis cytisoides L. are increasing soil shear strength to a large extent as well (up to 134 and 160 kPa respectively in the 0–0.10 m topsoil). Whereas grasses and the rush Juncus acutus L. increase soil shear strength in the topsoil (0–0.10 m) to a large extent, the shrubs Anthyllis cytisoides (L.), Retama sphaerocarpa (L.) Boiss., Salsola genistoides Juss. Ex Poir. and Atriplex halimus L. strongly reinforce the soil to a greater depth (0–0.5 m). As other studies reported that Wu’s model overestimates root cohesion values, reported root cohesion values in this study are maximum values. Nevertheless, the calculated cohesion values are used to rank species according to their potential to reinforce the soil.  相似文献   

8.
Forest vegetation is known to enhance the stability of slopes by reinforcing soil and increasing its shear resistance through root system. The effects of root reinforcement depend on the morphological characteristics of the root system, the tensile strength of single roots, and the spatial distribution of the roots in soil. In the present study the results of research carried out in order to evaluate the biotechnical characteristics of the root system of Persian Ironwood (Parrotia persica), in northern Iran are presented. Profile trenching method was used to obtain root area ratio (RAR) values for uphill and downhill sides of the individual trees. For each species, single root specimens were sampled and tested for their tensile strength. It was found that root density generally decreases with depth according to an exponential law. Maximum RAR values were located within the first 0.1 m, with maximum rooting depth at about 0.65 m. RAR values ranged from 0.001% at lower depths to 1.39% near the surface, at upper 0.1 m depth. Significant differences of RAR values, rooting depth and root cohesion between uphill and downhill were observed, however, the differences were not significant for number of roots (ANCOVA). Downhill profiles had higher RAR values, rooting depth and root cohesion. In general, root tensile strength tends to decrease with diameter according to a power law, as observed by other researchers. Downhill roots were significantly stronger in tensile strength than uphill ones. Inter-species variation of tensile strength in downhill roots was also observed. The resulting data were used to evaluate the reinforcing effects in terms of increased shear strength of the soil, using Wu/Waldron Model. The root reinforcement provided by Persian Ironwood is about 46.0 kPa in the upper layers and 0.3 kPa in the deeper horizons. The results of Spearman test revealed a significant correlation between RAR and cr and that best followed by a power law. The results presented in this paper contribute to expanding the knowledge on biotechnical characteristics of Persian Ironwood on slope reinforcement.  相似文献   

9.
In order to evaluate influences of roots on soil shear strength, a triaxial compression test was carried out to study the shear strength of plain soil samples and composites comprised of roots of Robinia pseucdoacacia and soil from the Loess Plateau in Northwest China. Roots were distributed in soil in three forms: vertical, horizontal, and vertical–horizontal (cross). All samples were tested under two different soil water contents. Test results showed that roots have more impacts on the soil cohesion than the friction angle. The presence of roots in soil substantially increased the soil shear strength. Among three root distribution forms, the reinforcing effect of vertical–horizontal (cross) root distribution was the most effective. Increase in soil water content directly induced a decline in soil cohesion of all test samples and resulted in a decrease in shear strength for both plain soil samples and soil–root composites. It was concluded that the triaxial compression test can be effectively used to study influences of roots on soil shear strength.  相似文献   

10.
This paper aims to investigate the effect of the root architecture on the shear strength increment provided by plant roots in the soil. In situ shear tests were conducted for this purpose. Five plant species – Hibiscus tiliaceus L. (Linden hibiscus), Mallotus japonicus (Thunb.) Muell.-Arg. (Japanese Mallotus), Sapium sebiferum (L.) Roxb. (Chinese tallow tree), Casuarina equisetifolia L. (ironwood), and Leucaena leucocephala (Lam.) (white popinac) – were used in this study. Tensile tests on roots of various diameters and surveys on the root system structure were carried out for each of the plant species tested. The shear strength increments (ΔS) provided by the roots of Linden hibiscus, Japanese Mallotus, Chinese tallow tree, ironwood, and white popinac were 0.34tR, 0.462tR, 0.688tR, 0.3tR, and 0.87tR, respectively, when tR was estimated on the basis of the tensile root strength crossing through the shear plane. The shear strength increment provided by plant roots with conspicuous oblique and vertical roots was greater than that of root structures in which lateral roots were dominant. In comparison with other types of root architecture, the R-type root architecture was found to be the most effective root system against shear failure in the soil. Its shear strength increment was slightly greater than that with the V-type root architecture, followed by the VH-type root architecture. The shear strength increment provided by plants with the H-type root architecture was less effective than that contributed by plant species with other types of root architecture.  相似文献   

11.
In a hydroponic setting, we investigated the possible role of phytochelatins (metal-binding peptides) in the lead (Pb) tolerance of vetiver grass (Vetiveria zizanioides L.). Pb was added to the nutrient medium at concentrations ranging from 0 to 1,200 mg L?1. Furthermore, we simulated the effect of soil phosphorus (P) on potentially plant available Pb by culturing vetiver grass in P-rich nutrient media. After 7 days of exposure to Pb, we evaluated the Pb uptake by vetiver grass. Results indicate that vetiver can accumulate Pb up to 3,000 mg kg?1 dry weight in roots with no toxicity. Formation of lead phosphate inhibited Pb uptake by vetiver, suggesting the need for an environmentally safe chelating agent in conjunction with phytoremediation to clean up soils contaminated with lead-based paint. Unambiguous characterization of phytochelatins (PCn) was possible using high pressure liquid chromatography coupled with electrospray ionization mass spectrometry (LC-ESMS). Vetiver shows qualitative and quantitative differences in PCn synthesis between root and shoot. In root tissue from vetiver exposed to 1,200 mg Pb L-1, phytochelatins ranged from PC1 to PC3. Collision-induced dissociation of the parent ion allowed confirmation of each PCn based on the amino acid sequence. Possible Pb-PC1 and Pb2-PC1 complexes were reported in vetiver root at the highest Pb concentration. The data from these experiments show that the most probable mechanism for Pb detoxification in vetiver is by synthesizing PCn and forming Pb–PCn complexes.  相似文献   

12.
Effect of Root Moisture Content and Diameter on Root Tensile Properties   总被引:1,自引:0,他引:1  
The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation.  相似文献   

13.
 乔木根系的土壤加强作用是防护林稳定土壤和保护坡面的最有效的机械途径,其中侧根的牵引效应在林地的固土护坡过程中具有重要作用,其潜能与侧根的抗张强度呈正相关关系。本研究构建了侧根抗张强度与其牵引效应的数学模型,对云南山地以云南松林和滇青冈林为代表的松属和青冈属乔木群落进行了分析。结果表明:青冈属和松属乔木侧根的抗张强度分别在40一10MPa和30~5 MPa范围内,量值的高低随侧根直径的增加而降低。两种乔木的侧根在0~60cm的土壤深处有较高的分布密度,由于具有一定的强度,通过它们的牵引效应,侧根使这一深度的根际土层的抗张强度提高了6.85~12.41 kPa。在各个土层,青冈属乔木固土护坡能力明显高于松属,说明松属侧根在浅层土体加固方面具有局限性。  相似文献   

14.
The finite element (FE) method has been used in recent years to simulate overturning processes in trees and to better comprehend plant anchorage mechanics. We aimed at understanding the fundamental mechanisms of root-soil reinforcement by simulating direct shear of rooted and non-rooted soil. Two- (2D) and three-dimensional (3D) FE simulations of direct shear box tests were carried out using readily available software for routine strength assessment of the root-soil composite. Both rooted and non-rooted blocks of soil were modelled using a simplified model of root distribution and root material properties representative of real roots. Linear elastic behaviour was assumed for roots and the soil was modelled as an ideally plastic medium. FE analysis showed that direct shear tests were dependent on the material properties specified for both the soil and roots. 2D and 3D simulations of direct shear of non-rooted soil produced similar results and any differences between 2D and 3D simulations could be explained with regard to the spatial complexity of roots used in the root distribution model. The application of FE methods was verified through direct shear tests on soil with analogue roots and the results compared to in situ tests on rooted soil in field conditions.  相似文献   

15.
16.
Root systems have a pivotal role in plant anchorage and their mechanical interactions with the soil may contribute to soil reinforcement and stabilization of slide-prone slopes. In order to understand the responses of root system to mechanical stress induced by slope, samples of Spartium junceum L., growing in slope and in plane natural conditions, were compared in their morphology, biomechanical properties and anatomical features. Soils sampled in slope and plane revealed similar characteristics, with the exception of organic matter content and penetrometer resistance, both higher in slope. Slope significantly influenced root morphology and in particular the distribution of lateral roots along the soil depth. Indeed, first-order lateral roots of plants growing on slope condition showed an asymmetric distribution between up- and down-slope. Contrarily, this asymmetric distribution was not observed in plants growing in plane. The tensile strength was higher in lateral roots growing up-slope and in plane conditions than in those growing down-slope. Anatomical investigations revealed that, while roots grown up-slope had higher area covered by xylem fibers, the ratio of xylem and phloem fibers to root diameter did not differ among the three conditions, as also, no differences were found for xylem fiber cell wall thickness. Roots growing up-slope were the main contributors to anchorage properties, which included higher strength and higher number of fibers in the xylematic tissues. Results suggested that a combination of root-specific morphological, anatomical and biomechanical traits, determines anchorage functions in slope conditions.  相似文献   

17.
It is unclear whether roots of acid-soil resistant plants have significant advantages, compared with acid-soil sensitive genotypes, when growing in high-strength, acid soils or in acid soils where macropores may allow the effects of soil acidity and strength to be avoided. The responses of root growth and morphology to soil acidity, soil strength and macropores by seedlings of five perennial grass genotypes differing in acid-soil resistance were determined, and the interaction of soil acidity and strength for growth and morphology of roots was investigated. Soil acidity and strength altered root length and architecture, root hair development, and deformed the root tip, especially in acid-soil sensitive genotypes. Root length was restricted to some extent by soil acidity in all genotypes, but the adverse impact of soil acidity on root growth by acid-soil resistant genotypes was greater at high levels of soil strength. Roots reacted to soil acidity when growing in macropores, but elongation through high-strength soil was improved. Soil strength can confound the effect of acidity on root growth, with the sensitivity of acid-resistant genotypes being greater in high-strength soils. This highlights the need to select for genotypes that resist both acidity and high soil strength.  相似文献   

18.
A dynamic 3D model of root system development was adapted to young sessile oak seedlings, in order to evaluate the effects of grass competition on seedling root system development. The model is based on a root typology and the implementation of a series of developmental processes (axial and radial growth, branching, reiteration, decay and abscission). Parameters describing the different processes are estimated for each root type. Young oak seedlings were grown for 4 years in bare soil or with grass competition and were periodically excavated for root system observation and measurements (topology of the root system, length and diameter of all roots with a diameter greater than 0.3 mm). In the fourth year, 40 cm×20 cm×20 cm soil monoliths were excavated for fine root measurement (root density and root length). Root spatial development was analysed on a sub-sample of roots selected on four seedlings. The model was a guideline that provided a complete and consistent set of parameters to represent root system development. It gave a comprehensive view of the root systems and made it possible to quantify the effects of competition on the different root growth processes. The same root typology was used to describe the seedlings in bare soil and in grass. Five root types were defined, from large tap roots to fine roots. Root system size was considerably reduced by grass competition. Branching density was not affected but the branch roots were always smaller for the seedlings grown in competition. Reiteration capacity was also reduced by competition. Cross sectional areas before and after branching were linearly related with a scaling coefficient close to 1, as predicted by the pipe model theory. This relationship was not affected by grass competition.  相似文献   

19.

Background and aims

Biomechanical properties of cereal root systems largely control both resistance to root lodging and their ability to stabilise soil. Abiotic stresses can greatly modify root system growth and form. In this paper the effect of waterlogging and moderate mechanical impedance on root biomechanics is studied for both lateral roots and the main axes of barley.

Methods

Barley (Hordeum vulgare) plants were subjected to transient water-logging and moderate mechanical impedance in repacked soil columns. Roots were excavated, separated into types (nodal, seminal or lateral) and tested in tension to measure strength and elastic modulus.

Results

Water-logging and mechanical impedance substantially changed root system growth whilst root biomechanical properties were affected by waterlogging. Root strength was generally greater in thin roots and depended on root type. For example, seminal roots 0.4–0.6 mm in diameter were approximately seven times stronger and five times stiffer than lateral roots of the same diameter when mechanically impeded. Root sample populations typically exhibited negative power-law relationships between root strength and diameter for all root types. Mechanical impedance slowed seminal root elongation by approximately 50 % and resulted in a 15 % and 11 % increase in the diameter of in nodal and seminal roots respectively. Power-law relationships between root diameter and root biomechanical properties corresponded to the different root types. Coefficients for between root diameter, strength and elastic modulus improved when separated by root type, with R2 values increasing in some roots from 0.05 to 0.71 for root strength and 0.08 to 0.74 for elastic modulus.

Conclusions

Moderate mechanical impedance did not influence the tensile strength of roots, but, waterlogging diminished the relationship between root strength and diameter. Separation of root type improved predictions of root strength and elastic modulus using power-law regressions.  相似文献   

20.
Slope stability models traditionally use simple indicators of root system structure and strength when vegetation is included as a factor. However, additional root system traits should be considered when managing vegetated slopes to avoid shallow substrate mass movement. Traits including root distribution, length, orientation and diameter are recognized as influencing soil fixation, but do not consider the spatial and temporal dimensions of roots within a system. Thick roots act like soil nails on slopes and the spatial position of these thick roots determines the arrangement of the associated thin roots. Thin roots act in tension during failure on slopes and if they traverse the potential shear zone, provide a major contribution in protecting against landslides. We discuss how root traits change depending on ontogeny and climate, how traits are affected by the local soil environment and the types of plastic responses expressed by the plant. How a landslide engineer can use this information when considering slope stability and management strategies is discussed, along with perspectives for future research. This review encompasses many ideas, data and concepts presented at the Second International Conference ‘Ground Bio- and Eco-engineering: The Use of Vegetation to Improve Slope Stability—ICGBE2’ held at Beijing, China, 14–18 July 2008. Several papers from this conference are published in this edition of Plant and Soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号