首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The N, P, and S cycles in pristine forests are assumed to differ from those of anthropogenically impacted areas, but there are only a few studies to support this. Our objective was therefore to assess the controls of N, P, and S release, immobilization, and transport in a remote tropical montane forest. The study forest is located on steep slopes of the northern Andes in Ecuador. We determined the concentrations of NO3-N, NH4-N, dissolved organic N (DON), PO4-P, dissolved organic P (DOP), SO4-S, dissolved organic S (DOS), and dissolved organic C (DOC) in rainfall, throughfall, stemflow, lateral flow (in the organic layer), litter leachate, mineral soil solution, and stream water of three 8–13 ha catchments (1900–2200 m a.s.l.). The organic forms of N, P, and S contributed, on average, 55, 66, and 63% to the total N, P, and S concentrations in all ecosystem fluxes, respectively. The organic layer was the largest source of all N, P, and S species except for inorganic P and S. Most PO4 was released in the canopy by leaching and most SO4 in the mineral soil by weathering. The mineral soil was a sink for all studied compounds except for SO4. Consequently, concentrations of dissolved inorganic and organic N and P were as low in stream water (TDN: 0.34–0.39 mg N l−1, P not detectable) as in rainfall (TDN: 0.39–0.48 mg N l−1, P not detectable), whereas total S concentrations were elevated (stream water: 0.04–0.15, rainfall: 0.01–0.07 mg S l−1). Dissolved N, P, and S forms were positively correlated with pH at the scale of soil peda except inorganic S. Soil drying and rewetting promoted the release of dissolved inorganic N. High discharge levels following heavy rainstorms were associated with increased DOC, DON, NO3-N and partly also NH4-N concentrations in stream water. Nitrate-N concentrations in the stream water were positively correlated with stream discharge during the wetter period of the year. Our results demonstrate that the sources and sinks of N, P, and S were element-specific. More than half of the cycling N, P, and S was organic. Soil pH and moisture were important controls of N, P, and S solubility at the scale of individual soil peda whereas the flow regime influenced the export with stream water.  相似文献   

2.
At the Harvard Forest, Massachusetts, a long-term effort is under way to study responses in ecosystem biogeochemistry to chronic inputs of N in atmospheric deposition in the region. Since 1988, experimental additions of NH4NO3 (0, 5 and 15 g N m–2 yr–1) have been made in two forest stands:Pinus resinosa (red pine) and mixed hardwood. In the seventh year of the study, we measured solute concentrations and estimated solute fluxes in throughfall and at two soil depths, beneath the forest floors (Oa) and beneath the B horizons.Beneath the Oa, concentrations and fluxes of dissolved organic C and N (DOC and DON) were higher in the coniferous stand than in the hardwood stand. The mineral soil exerted a strong homogenizing effect on concentrations beneath the B horizons. In reference plots (no N additions), DON composed 56% (pine) and 67% (hardwood) of the total dissolved nitrogen (TDN) transported downward from the forest floor to the mineral soil, and 98% of the TDN exported from the solums. Under N amendments, fluxes of DON from the forest floor correlated positively with rates of N addition, but fluxes of inorganic N from the Oa exceeded those of DON. Export of DON from the solums appeared unaffected by 7 years of N amendments, but as in the Oa, DON composed smaller fractions of TDN exports under N amendments. DOC fluxes were not strongly related to N amendment rates, but ratios of DOC:DON often decreased.The hardwood forest floor exhibited a much stronger sink for inorganic N than did the pine forest floor, making the inputs of dissolved N to mineral soil much greater in the pine stand. Under the high-N treatment, exports of inorganic N from the solum of the pine stand were increased >500-fold over reference (5.2 vs. 0.01 g N m–2 yr–1), consistent with other manifestations of nitrogen saturation. Exports of N from the solum in the pine forest decreased in the order NO3-N> NH4-N> DON, with exports of inorganic N 14-fold higher than exports of DON. In the hardwood forest, in contrast, increased sinks for inorganic N under N amendments resulted in exports of inorganic N that remained lower than DON exports in N-amended plots as well as the reference plot.  相似文献   

3.
This study examined impacts of succession on N export from 20 headwater stream systems in the west central Cascades of Oregon, a region of low anthropogenic N inputs. The seasonal and successional patterns of nitrate (NO3−N) concentrations drove differences in total dissolved N concentrations because ammonium (NH4−N) concentrations were very low (usually < 0.005 mg L−1) and mean dissolved organic nitrogen (DON) concentrations were less variable than nitrate concentrations. In contrast to studies suggesting that DON levels strongly dominate in pristine watersheds, DON accounted for 24, 52, and 51% of the overall mean TDN concentration of our young (defined as predominantly in stand initiation and stem exclusion phases), middle-aged (defined as mixes of mostly understory reinitiation and older phases) and old-growth watersheds, respectively. Although other studies of cutting in unpolluted forests have suggested a harvest effect lasting 5 years or less, our young successional watersheds that were all older than 10 years still lost significantly more N, primarily as NO3−N, than did watersheds containing more mature forests, even though all forest floor and mineral soil C:N ratios were well above levels reported in the literature for leaching of dissolved inorganic nitrogen. The influence of alder may contribute to these patterns, although hardwood cover was quite low in all watersheds; it is possible that in forested ecosystems with very low anthropogenic N inputs, even very low alder cover in riparian zones can cause elevated N exports. Only the youngest watersheds, with the highest nitrate losses, exhibited seasonal patterns of increased summer uptake by vegetation as well as flushing at the onset of fall freshets. Older watersheds with lower N losses did not exhibit seasonal patterns for any N species. The results, taken together, suggest a role for both vegetation and hydrology in N retention and loss, and add to our understanding of N cycling by successional forest ecosystems influenced by disturbance at various spatial and temporal scales in a region of relatively low anthropogenic N input.  相似文献   

4.

Background and aims

Climate warming, nitrogen (N) deposition and land use change are some of the drivers affecting ecosystem processes such as soil carbon (C) and N dynamics, yet the interactive effects of those drivers on ecosystem processes are poorly understood. This study aimed to understand mechanisms of interactive effects of temperature, form of N deposition and land use type on soil C and N mineralization.

Methods

We studied, in a laboratory incubation experiment, the effects of temperature (15 vs. 25 °C) and species of N deposition (NH4 +-N vs. NO3 ?-N) on soil CO2 efflux, dissolved organic C (DOC) and N (DON), NH4 +-N, and NO3 ?-N concentrations using intact soil columns collected from adjacent forest and grassland ecosystems in north-central Alberta.

Results

Temperature and land use type interacted to affect soil CO2 efflux, concentrations of DON, NH4 +-N and NO3 ?-N in most measurement times, with the higher incubation temperature resulted in the higher CO2 efflux and NH4 +-N concentrations in forest soils and higher DON and NO3 ?-N concentrations in grassland soils. Temperature and land use type affected the cumulative soil CO2 efflux, and DOC, DON, NH4 +-N and NO3 ?-N concentrations. The form of N added or its interaction with the other two factors did not affect any of the C and N cycling parameters.

Conclusions

Temperature and land use type were dominant factors affecting soil C loss, with the soil C in grassland soils more stable and resistant to temperature changes. The lack of short-term effects of the deposition of different N species on soil C and N mineralization suggest that maybe there was a threshold for the N effect to kick in and long-term experiments should be conducted to further elucidate the species of N deposition effects on soil C and N cycling in the studied systems.  相似文献   

5.
Relatively high deposition ofnitrogen (N) in the northeastern United States hascaused concern because sites could become N saturated.In the past, mass-balance studies have been used tomonitor the N status of sites and to investigate theimpact of increased N deposition. Typically, theseefforts have focused on dissolved inorganic forms ofN (DIN = NH4-N + NO3-N) and have largelyignored dissolved organic nitrogen (DON) due todifficulties in its analysis. Recent advances in themeasurement of total dissolved nitrogen (TDN) havefacilitated measurement of DON as the residual of TDN– DIN. We calculated DON and DIN budgets using data onprecipitation and streamwater chemistry collected from9 forested watersheds at 4 sites in New England. TDNin precipitation was composed primarily of DIN. Netretention of TDN ranged from 62 to 89% (4.7 to 10 kghaminus 1 yrminus 1) of annual inputs. DON made up themajority of TDN in stream exports, suggesting thatinclusion of DON is critical to assessing N dynamicseven in areas with large anthropogenic inputs of DIN.Despite the dominance of DON in streamwater,precipitation inputs of DON were approximately equalto outputs. DON concentrations in streamwater did notappear significantly influenced by seasonal biologicalcontrols, but did increase with discharge on somewatersheds. Streamwater NO3-N was the onlyfraction of N that exhibited a seasonal pattern, withconcentrations increasing during the winter months andpeaking during snowmelt runoff. Concentrations ofNO3-N varied considerably among watersheds andare related to DOC:DON ratios in streamwater. AnnualDIN exports were negatively correlated withstreamwater DOC:DON ratios, indicating that theseratios might be a useful index of N status of uplandforests.  相似文献   

6.
Here we report measurements of organic and inorganic nitrogen (N) fluxes from the high-elevation Green Lakes Valley catchment in the Colorado Front Range for two snowmelt seasons (1998 and 1999). Surface water and soil samples were collected along an elevational gradient extending from the lightly vegetated alpine to the forested subalpine to assess how changes in land cover and basin area affect yields and concentrations of ammonium-N (NH4-N), nitrate-N (NO3-N), dissolved organic N (DON), and particulate organic N (PON). Streamwater yields of NO3-N decreased downstream from 4.3 kg ha−1 in the alpine to 0.75 kg ha−1 at treeline, while yields of DON were much less variable (0.40–0.34 kg ha−1). Yields of NH4-N and PON were low and showed little variation with basin area. NO3-N accounted for 40%–90% of total N along the sample transect and was the dominant form of N at all but the lowest elevation site. Concentrations of DON ranged from approximately 10% of total N in the alpine to 45% in the subalpine. For all sites, volume-weighted mean concentrations of total dissolved nitrogen (TDN) were significantly related to the DIN:DON ratio (R 2 = 0.81, P < 0.001) Concentrations of NO3-N were significantly higher at forested sites that received streamflow from the lightly vegetated alpine reaches of the catchment than in a control catchment that was entirely subalpine forest, suggesting that the alpine may subsidize downstream forested systems with inorganic N. KCl-extractable inorganic N and microbial biomass N showed no relationship to changes in soil properties and vegetative cover moving downstream in catchment. In contrast, soil carbon–nitrogen (C:N) ratios increased with increasing vegetative cover in catchment and were significantly higher in the subalpine compared to the alpine (P < 0.0001) Soil C:N ratios along the sample transect explained 78% of the variation in dissolved organic carbon (DOC) concentrations and 70% of the variation in DON concentrations. These findings suggest that DON is an important vector for N loss in high-elevation ecosystems and that streamwater losses of DON are at least partially dependent on catchment soil organic matter stoichiometry. Received 26 July 2001; accepted 6 May 2002.  相似文献   

7.
Surface and subsurface litter fulfil many functions in the biogeochemical cycling of C and N in terrestrial ecosystems. These were explored using a microcosm study by monitoring dissolved inorganic nitrogen (DIN) (NH4 +–N?+?NO3 ?–N), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and fluxes in drainage water under ambient outdoor temperatures. Subsurface litter remarkably reduced the DIN concentrations in winter, probably by microbial N uptake associated with higher C:N ratio of added litter compared with soil at 10–25?cm depth. Fluxes of DIN were generally dominated by NO3 ?–N; but NH4 +–N strongly dominated DIN fluxes during freeze–thaw events. Appreciable concentrations of NH4 +–N were observed in the drainage from the acid grassland soils throughout the experiment, indicating NH4 +–N mobility and export in drainage water especially during freeze–thaw. Litter contributed substantially to DOC and DON production and they were correlated positively (p?<?0.01) for all treatments. DOC and DON concentrations correlated with temperature for the control (p?<?0.01) and surface litter (p?<?0.001) treatments and they were higher in late summer. The subsurface litter treatment, however, moderated the effect of temperature on DOC and DON dynamics. Cumulative N species fluxes confirmed the dominance of litter as the source of DON and DOC in the drainage water. DON constituted 42, 46 and 62% of cumulative TDN flux for control, surface litter and subsurface litter treatments respectively.  相似文献   

8.
We analyzed long-term organic and inorganic nitrogen inputs and outputs in precipitation and streamwater in six watersheds at the H.J. Andrews Experimental Forest in the central Cascade Mountains of Oregon. Total bulk N deposition, averaging 1.6 to 2.0 kg N ha–1 yr–1, is low compared to other sites in the United States and little influenced by anthropogenic N sources. Streamwater N export is also low, averaging <1 kg ha–1 yr–1. DON is the predominant form of N exported from all watersheds, followed by PON, NH4-N, and NO3-N. Total annual stream discharge was a positive predictor of annual DON output in all six watersheds, suggesting that DON export is related to regional precipitation. In contrast, annual discharge was a positive predictor of annual NO3-N output in one watershed, annual NH4-N output in three watersheds, and annual PON output in three watersheds. Of the four forms of N, only DON had consistent seasonal concentration patterns in all watersheds. Peak streamwater DON concentrations occurred in November-December after the onset of fall rains but before the peak in the hydrograph, probably due to flushing of products of decomposition that had built up during the dry summer. Multiple biotic controls on the more labile nitrate and ammonium concentrations in streams may obscure temporal DIN flux patterns from the terrestrial environment. Results from this study underscore the value of using several watersheds from a single climatic zone to make inferences about controls on stream N chemistry; analysis of a single watershed may preclude identification of geographically extensive mechanisms controlling N dynamics.  相似文献   

9.
Fluxes of dissolved organic carbon (DOC) and nitrogen (DON) may play an important role for losses of C and N from the soils of forest ecosystems, especially under conditions of high precipitation. We studied DOC and DON fluxes and concentrations in relation to precipitation intensity in a subtropical montane Chamaecyparis obtusa var. formosana forest in Taiwan. Our objective was, to quantify DOC and DON fluxes and to understand the role of high precipitation for DOC and DON export in this ecosystem. From 2005 to 2008 we sampled bulk precipitation, throughfall, forest floor percolates and seepage (60 cm) and analyzed DOC, DON and mineral N concentrations. Average DOC fluxes in the soil were extremely high (962 and 478 kg C ha?1 year?1 in forest floor percolates and seepage, respectively) while DON fluxes were similar to other (sub)tropical ecosystems (16 and 8 kg N ha?1 year?1, respectively). Total N fluxes in the soil were dominated by DON. Dissolved organic C and N concentrations in forest floor percolates were independent of the water flux. No dilution effect was visible. Instead, the pool size of potentially soluble DOC and DON was variable as indicated by different DOC and DON concentrations in forest floor percolates at similar precipitation amounts. Therefore, we hypothesized, that these pools are not likely to be depleted in the long term. The relationship between water fluxes in bulk precipitation and DOC and DON fluxes in forest floor percolates was positive (DOC r = 0.908, DON r = 0.842, respectively, Spearman rank correlation). We concluded, that precipitation is an important driver for DOC and DON losses from this subtropical montane forest and that these DOC losses play an important role in the soil C cycle of this ecosystem. Moreover, we found that the linear relationship between bulk precipitation and DOC and DON fluxes in forest floor percolates of temperate ecosystems does not hold when incorporating additional data on these fluxes from (subtropical) ecosystems.  相似文献   

10.
The transport and transformation of dissolved organic matter (DOM) and dissolved inorganic nitrogen (DIN) through the soil profile impact down-gradient ecosystems and are increasingly recognized as important factors affecting the balance between accumulation and mineralization of subsoil organic matter. Using zero tension and tension lysimeters at three soil depths (20, 40, 60 cm) in paired forest and maize/soybean land uses, we compared dissolved organic C (DOC), dissolved organic N (DON) and DIN concentrations as well as DOM properties including hydrophilic-C (HPI-C), UV absorption (SUVA254), humification index and C/N ratio. Soil moisture data collected at lysimeter locations suggest zero tension lysimeters sampled relatively rapid hydrologic flowpaths that included downward saturated flow through the soil matrix and/or rapid macropore flow that is not in equilibrium with bulk soil solution whereas tension lysimeters sampled relatively immobile soil matrix solution during unsaturated conditions. The effect of land use on DOC and DON concentrations was largely limited to the most shallow (20 cm) sampling depth where DOC concentrations were greater in the forest (only zero tension lysimeters) and DON concentrations were greater in the cropland (both lysimeter types). In contrast to DOC and DON concentrations, the effect of land use on DOM properties persisted to the deepest sampling depth (60 cm), suggesting that DOM in the cropland was more decomposed regardless of lysimeter type. DOC concentrations and DOM properties differed between lysimeter types only in the forest at 20 cm where soil solutions collected with zero tension lysimeters had greater DOC concentrations, greater SUVA254, greater humification index and lower HPI-C. Our data highlight the importance of considering DOM quality in addition to DOC quantity, and indicate long-term cultivation reduced the delivery of relatively less decomposed DOM to all soil depths.  相似文献   

11.
Nitrate, ammonium, dissolved organic N, and dissolved oxygen were measured in stream water and shallow groundwater in the riparian zones of two tropical watersheds with different soils and geomorphology. At both sites, concentrations of dissolved inorganic N (DIN; NH4 +- and NO3 -N) were low in stream water (< 110 ug/L). Markedly different patterns in DIN were observed in groundwater collected at the two sites. At the first site (Icacos watershed), DIN in upslope groundwater was dominated by NO3 -N (550 ug/L) and oxygen concentrations were high (5.2 mg/L). As groundwater moved through the floodplain and to the stream, DIN shifted to dominance by NH4 +-N (200–700 ug/L) and groundwater was often anoxic. At the second site (Bisley watershed), average concentrations of total dissolved nitrogen were considerably lower (300 ug/L) than at Icacos (600 ug/L), and the dominant form of nitrogen was DON rather than inorganic N. Concentrations of NH4 + and NO3 were similar throughout the riparian zone at Bisley, but concentrations of DON declined from upslope wells to stream water. Differences in speciation and concentration of nitrogen in groundwater collected at the two sites appear to be controlled by differences in redox conditions and accessibility of dissolved N to plant roots, which are themselves the result of geomorphological differences between the two watersheds. At the Icacos site, a deep layer of coarse sand conducts subsurface water to the stream below the rooting zone of riparian vegetation and through zones of strong horizontal redox zonation. At the Bisley site, infiltration is impeded by dense clays and saturated flow passes through the variably oxidized rooting zone. At both sites, hydrologic export of nitrogen is controlled by intense biotic activity in the riparian zone. However, geomorphology appears to strongly modify the importance of specific biotic components.  相似文献   

12.
Nitrogen (N) dynamics were evaluated from 1 June 1995 through 31 May 1996 within the Arbutus Lake watershed in the Adirondack Mountains of New York State, USA. At the Arbutus Lake outlet dissolved organic nitrogen (DON), NO3 - and NH4 + contributed 61%, 33%, and 6% respectively, to the total dissolved nitrogen (TDN) flux (259 mol ha-1 yr-1). At the lake inlet DON, NO3 -, and NH4 - constituted 36%, 61%, and 3% respectively, of TDN flux (349 mol ha-1 yr-1). Differences between the factors that control DON, NO3 +, and NH4 + stream water concentrations were evaluated using two methods for estimating annual N flux at the lake inlet. Using biweekly sampling NO3 - and NH4 + flux was 10 and 4 mol ha-1 yr-1 respectively, less than flux estimates using biweekly plus storm and snowmelt sampling. DON flux was 18 mol ha-1 yr-1 greater using only biweekly sampling. These differences are probably not of ecological significance relative to the total flux of N from the watershed (349 mol ha-1 yr-1). Dissolved organic N concentrations were positively related to discharge during both the dormant (R2 = 0.31; P < 0.01) and growing season (R2 = 0.09; P < 0.01). There was no significant relationship between NO3 - concentration and discharge during the dormant season, but a significant negative relationship was found during the growing season (R2 = 0.29; P < 0.01). Biotic controls in the growing season appeared to have had a larger impact on stream water NO3 - concentrations than on DON concentrations. Arbutus Lake had a major impact on stream water N concentrations of the four landscape positions sampled, suggesting the need to quantify within lake processes to interpret N solute losses and patterns in watershed-lake systems.  相似文献   

13.
Higher plant diversity reduces nitrate leaching by complementary resource use, while its relation to leaching of other N species is unclear. We determined the effects of plant species richness, functional group richness, and the presence of specific functional groups on ammonium, dissolved organic N (DON), and total dissolved N (TDN) leaching from grassland in the first 4 years after conversion from fertilized arable land to unfertilized grassland. On 62 experimental plots in Jena, Germany, with 1–60 plant species and 1–4 functional groups (legumes, grasses, tall herbs, small herbs), nitrate, ammonium, and TDN concentrations in soil solution (0–0.3 m soil layer) were measured fortnightly during 4 years. DON concentrations were calculated by subtracting inorganic N from TDN. Nitrogen concentrations were multiplied with modeled downward water fluxes to obtain N leaching. DON leaching contributed most to TDN leaching (64 ± SD 4% of TDN). Ammonium leaching was unaffected by plant diversity. Increasing species richness decreased DON leaching in the fourth year. We attribute this finding to enhanced use of DON as a C and N source and enhanced mineralization of DON by soil microorganisms. An increase of species richness decreased TDN leaching likely driven by the complementary use of nitrate by diverse mixtures. Legumes increased DON and TDN leaching likely because of their N\(_{2}\)-fixing ability and higher litter production. Grasses decreased TDN leaching because of more exhaustive use of nitrate and water. Our results demonstrate that increasing plant species richness decreases leaching of DON and TDN.  相似文献   

14.
Russian olive (Elaeagnus angustifolia) is a non-native riparian tree that has become common and continues to rapidly spread throughout the western United States. Due to its dinitrogen (N2)-fixing ability and proximity to streams, Russian olive has the potential to subsidize stream ecosystems with nitrogen (N), which may in turn alter nutrient processing in these systems. We tested these potential effects by comparing background N concentrations; nutrient limitation of biofilms; and uptake of ammonium (NH4-N), nitrate (NO3-N), and phosphate (PO4-P) in paired upstream-reference and downstream-invaded reaches in streams in southeastern Idaho and central Wyoming. We found that stream reaches invaded by Russian olive had higher organic N concentrations and exhibited reduced N limitation of biofilms compared to reference reaches. However, at low inorganic N background concentrations, reaches invaded by Russian olive exhibited higher demand for both NH4-N and NO3-N compared to their paired reference reaches, suggesting these streams have the potential to retain the N subsidy from Russian olive N2 fixation and diminish its downstream export and effects. Our findings demonstrate the potential for a non-native riparian plant to significantly alter biogeochemical cycling in streams. Finally, we used our results to develop a conceptual model that describes predicted effects of Russian olive and other non-native riparian N2 fixers on in-stream N dynamics.  相似文献   

15.
Traditional biogeochemical theories suggest that ecosystem nitrogen retention is controlled by biotic N limitation, that stream N losses should increase with successional age, and that increasing N deposition will accelerate this process. These theories ignore the role of dissolved organic nitrogen (DON) as a mechanism of N loss. We examined patterns of organic and inorganic N export from sets of old-growth and historically (80–110 years ago) logged and burned watersheds in the northeastern US, a region of moderate, elevated N deposition. Stream nitrate concentrations were strongly seasonal, and mean (± SD) nitrate export from old-growth watersheds (1.4 ± 0.6 kg N ha−1 y−1) was four times greater than from disturbed watersheds (0.3 ± 0.3 kg N ha−1 y−1), suggesting that biotic control over nitrate loss can persist for a century. DON loss averaged 0.7 (± 0.2) kg N ha−1 y−1 and accounted for 28–87% of total dissolved N (TDN) export. DON concentrations did not vary seasonally or with successional status, but correlated with dissolved organic carbon (DOC), which varied inversely with hardwood forest cover. The patterns of DON loss did not follow expected differences in biotic N demand but instead were consistent with expected differences in DOC production and sorption. Despite decades of moderate N deposition, TDN export was low, and even old-growth forests retained at least 65% of N inputs. The reasons for this high N retention are unclear: if due to a large capacity for N storage or biological removal, N saturation may require several decades to occur; if due to interannual climate variability, large losses of nitrate may occur much sooner. Received 27 April 1999; accepted 30 May 2000.  相似文献   

16.
Despite growing attention concerning therole of dissolved organic matter (DOM) inelement cycling of forest ecosystems, thecontrols of concentrations and fluxes of bothdissolved organic carbon (DOC) and nitrogen(DON) under field conditions in forest soilsremain only poorly understood. The goal ofthis project is to measure the concentrations and fluxes of DON, NH4 +, NO3 and DOC in bulkprecipitation, throughfall, forest floorleachates and soil solutions of a deciduousstand in the Steigerwald region (northernBavaria, Germany). The DOC and DONconcentrations and fluxes were highest inleachates originating from the Oa layer of theforest floor (73 mg C L–1, 2.3 mg NL–1 and about 200–350 kg C, 8–10 kg Nha–1 yr–1). They were observed to behighly variable over time and decreased in themineral topsoil (17 mg C L–1, 0.6 mg NL–1 and about 50–90 kg C, 2.0 to 2.4 kg Nha–1 yr–1). The annual variability ofDOC and DON concentrations and subsequentialDOC/DON ratios was substantial in allsolutions. The DOC and DON concentrations inthroughfall were positively correlated withtemperature. The DOC and DON concentrationsdid not show seasonality in the forest floorand mineral soil. Concentrations were notrelated to litterfall dynamics but didcorrespond in part to the input of DOC and DONfrom throughfall. The throughfall contributionto the overall element fluxes was higher forDON than for DOC. Concentrations and fluxes ofDON were significantly correlated to DOC inthroughfall and the Oi layer. However, thecorrelation was weak in Oa leachates. Inaddition, seasonal and annual variation ofDOC/DON ratios indicated different mechanismsand release rates from the forest floor forboth components. The concentrations of DOC andDON in forest floor leachates were in mostcases dependent neither on the pH value orionic strength of the solution, nor on thewater flux or temperature changes. As aconsequence, the DOC and DON fluxes from theforest floor into the mineral soil werelargely dependent on the water flux if annualand biweekly time scales are considered.  相似文献   

17.
Changes in atmospheric deposition, stream water chemistry, and solute fluxes were assessed across 15 small forested catchments. Dramatic changes in atmospheric deposition have occurred over the last three decades, including a 70% reduction in sulphur (S) deposition. These changes in atmospheric inputs have been associated with expected changes in levels of acidity, sulphate and base cations in streams. Soil retention of S appeared to partially explain rates of chemical recovery. In addition to these changes in acid–base chemistry we also observed unexpected changes in nitrogen (N) biogeochemistry and nutrient stoichiometry of stream water, including decreased stream N concentrations. Among all catchments the average flux of dissolved inorganic nitrogen (DIN) was best predicted by average runoff, soil chemistry (forest floor C/N) and levels of acid deposition (both S and N). The rate of change in stream DIN flux, however, was much more closely correlated with reductions in rates of S deposition rather than those of DIN. Unlike DIN fluxes, the average concentrations as well as the rates of decline in streamwater nitrate (NO3) concentration over time were tightly linked to stream dissolved organic carbon/dissolved organic nitrogen ratios DOC/DON and DON/TP rather than catchment characteristics. Declines in phosphorus adsorption with increasing soil pH appear to contribute to the relationship between C, N, and P in our study catchments. Our observations suggest that catchment P availability and its alteration due to environmental changes (e.g. acidification) might have profound effects on N cycling and catchment N retention that have been largely unrecognized.  相似文献   

18.

Background

The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N) in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood.

Methodology/Principal Findings

In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP), throughfall (TF), stemflow (SF), surface runoff (SR), forest floor leachate (FFL), soil water at the depth of 40 cm (SW1) and 100 cm (SW2) were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0–1 m) were 351.7 and 7752.8 kg ha−1. Open field nitrogen deposition at the study site was 113.8 kg N ha−1 yr−1, which was one of the highest in the world. N-NH4 +, N-NO3 and dissolved organic N (DON) accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3 and DON but not N-NH4 +. The flux of total dissolved N (TDN) to the forest floor was greater than that in open field precipitation by 17.7 kg N ha−1 yr−1, due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1.

Conclusions/Significance

The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.  相似文献   

19.
Piirainen  Sirpa  Finér  Leena  Mannerkoski  Hannu  Starr  Michael 《Plant and Soil》2002,239(2):301-311
Effects of clear-cutting on the dissolved fluxes of organic C (DOC), organic N (DON), NO3 and NH4 + through surface soil horizons were studied in a Norway spruce dominated mixed boreal forest in eastern Finland. Bulk deposition, total throughfall and soil water from below the organic (including understorey vegetation and, after clear-cutting, also logging residues), eluvial and illuvial horizons were sampled weekly from 1993 to 1999. Clear-cutting was carried out in September 1996. The removal of the tree canopy decreased the deposition of DOC and DON to the forest floor and increased that of NH4 + and NO3 but did not affect the deposition of total N (DTN, <3 kg ha–1 a–1). The leaching of DOC and DON from the organic horizon increased over twofold after clear-cutting (fluxes were on an average 168 kg C and 3.3 kg N ha–1 a–1), but the increased outputs were effectively retained in the surface mineral soil horizons. Inorganic N deposition was mainly retained by the logging residues and organic horizon indicating microbial immobilization. Increased NO3 formation reflected as elevated concentrations in the percolate from below the mineral soil horizons were observed especially in the third year after clear-cutting. However, the changes were small and the increased leaching of DTN from below the illuvial horizon remained small (<0.4 kg ha–1 a–1) and mainly DON. Effects of clear-cutting on the transport of C and N to surface waters will probably be negligible.  相似文献   

20.
王全成  郑勇  宋鸽  金圣圣  贺纪正 《生态学报》2021,41(15):6245-6256
氮(N)沉降深刻影响着森林生态系统的生物多样性、生产力和稳定性。亚热带地区森林土壤磷(P)的有效性较低,N沉降将更突显P的限制作用。N、P输入对亚热带次级森林土壤的影响是否依赖于森林演替阶段知之甚少。选取两种不同演替年龄阶段(年轻林:<40 a;老年林:>85 a)的亚热带常绿阔叶林,设置模拟N和/或P沉降(10 g m-2 a-1)4个处理(Ctrl、N、P、NP),连续处理4.5年后采集表层、次表层和下底层(0-15、15-30、30-60 cm)土壤样品,综合分析了土壤微生物生物量碳(MBC)氮(MBN)和多种土壤养分含量。结果表明,MBC、MBN及土壤养分含量均随土壤深度增加而降低。N添加对两种演替阶段森林土壤中MBC和MBN均无显著影响。施P相关处理(P和NP)对年轻林表层土壤MBC和MBN无显著影响,但显著增加了老年林表层土壤MBC和MBN(P<0.05),表明老年林可能比年轻林更易受P限制。N添加显著增加了两种演替森林表层土壤可溶性有机氮(DON)、氨态氮(NH4+-N)和硝态氮(NO3--N)的含量(P<0.05);P相关处理(P和NP)显著增加两种演替阶段表层和次表层土壤速效磷(AP)以及表层土壤全磷(TP)的含量(P<0.05)。土壤MBC和MBN与土壤中各养分指标(可溶性有机碳DOC、DON、NH4+-N、NO3--N、AP、全碳TC、全氮TN和TP)呈显著正相关关系,土壤TC、TN和DOC是影响土壤微生物生物量的主要因子。研究可为评估和揭示未来全球环境变化背景下不同演替林龄亚热带森林的土肥潜力及土壤质量的演变提供一定的科学理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号