首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

We assessed the effects of native and exotic tree leaf litter on soil properties in two contrasting scenarios. The native Quercus robur and Pinus pinaster tree species coexist with the aliens Eucalyptus globulus and Acacia dealbata in acid soils of NW Spain. The native trees Fraxinus angustifolia and Ulmus minor coexist with the aliens Ailanthus altissima, Robinia pseudoacacia and Ulmus pumila in eutrophic basic riparian soils in Central Spain.

Methods

Four plastic trays per species were filled with homogenized top-soil of the site and covered with leaf litter. Before and after 9?months of incubation, litter mass, soil pH, organic matter, mineral and total N were measured. Available mineral N (NO 3 ? -N and NH 4 + -N) was assessed every 2?months.

Results

Soil biological activity was higher in the basic than in the acid soil. Litter of the exotic trees tended to decompose less than litter of native species, probably due to the presence of secondary metabolites in the former. Soil pH, mineral and total N responded differently to different litter types, irrespective of their exotic or native origin (acid soil), or was similar across litter treatments (basic riparian soil). The similar response of the basic soil to the addition of different litter types may be due to the low contrast of litter quality between the species. E. globulus litter inhibitied soil microbial activity much more than the rest of the studied litter types, leading to a drastic impoverishment of N in soils.

Conclusion

Litter of exotic N-fixing trees (A. dealbata and R. pseudoacacia) did not increase soil N pools because of the inhibition of microbial activity by secondary compounds. Therefore, secondary metabolites of the litter played a major role explaining exotic litter impact on soil properties.  相似文献   

2.
Decomposing litter is regarded as the most important source of allelochemicals released into soil. In this study, a greenhouse experiment was designed to assess the net effect of differently aged leaf litter from exotic (Ailanthus altissima, Robinia pseudoacacia and Ulmus pumila) and native riverine trees (Populus alba, Populus nigra and Ulmus minor) on the germination and growth of three herb species (Trifolium repens, Dactylis glomerata and Chenopodium album). We also characterized the chemical composition of litter samples at different litter ages (0, 1, 2 and 3 months) based on phenolic compounds, fibers and ergosterol (as a measure of fungal biomass) contents. Overall, litter from both native and exotic species had a negative effect on shoot and root growth of target species, indicating that phytotoxic effects of litter predominate over positive effects. The inhibition effect of the exotic species was similar or even lower than that of the natives, which does not support the Novel Weapons Hypothesis. Among exotic trees, U. pumila showed the highest inhibition effect on the growth of the target species. T. repens was the most sensitive target species. The importance of litter age varied with both target and donor species. In general, D. glomerata was more inhibited by fresh litter, C. album by half-decomposed litter of U. pumila and R. pseudoacacia and by fresh litter of A. altissima and T. repens was more inhibited by fresh litter of A. altissima and P. alba and by highly decomposed litter of U. minor. The concentration of total phenolics and flavonoids decreased while acid detergent fiber, lignin and ergosterol increased with increasing litter age. Hydroxybenzoic and protocatechuic acids and the flavonoid quercetin were detected in all litter species and at most of the litter ages, while gallic, chlorogenic, vanillic, coumaric and rosmarinic acids were species-specific and they were only detected in fresh litter. Ergosterol concentration appeared as the strongest constrictor of inhibitory effects of litter on understory species. The results of this study contribute to the understanding of the net effect of fresh and decomposed litter from exotic and native trees on the growth of understory species.  相似文献   

3.
Ailanthus altissima and Robinia pseudoacacia are two aggressive exotic tree species invading riparian ecosystems in Central Spain. We explored their allelopathic potentials as a possible mechanism explaining their success in these ecosystems. Specifically, we aimed (1) to compare the phytotoxic effects of the exotic and native (Fraxinus angustifolia and Populus alba) trees on the fitness of several understory plants coexisting in riparian ecosystems, and (2) to assess the capacity of the riparian soil to modulate the phytotoxic effects. In laboratory bioassays, aqueous leaf litter extracts from the donor tree species at field-realistic concentrations were tested on different fitness indicators of 13 understory target species, using germination paper and soil as substrates in petri dishes. Using germination paper, we found species-specific effects between donor and target species, but the phytotoxicity of the exotic trees as a group was not greater than that of the natives. Nevertheless, the exotic R. pseudoacacia was the most effective donor species reducing the radicle growth of the target species. Over riparian soil substrate, the aqueous leaf litter extracts did not produce any phytotoxic effect on the target species, except in one case. Altogether, our results highlight the importance of using both a native control when assessing the phytotoxicity of nonnative plants and also the natural soil in the modulation of phytotoxic effects. Ignoring both factors in laboratory bioassays would have led to the overestimation of the phytotoxicity of the exotic species as a mechanism contributing to their invasion success.  相似文献   

4.
One of the most important sources of energy in aquatic ecosystems is the allochthonous input of detritus. Replacement of native tree species by exotic ones affects the quality of detritus entering freshwater ecosystems. This replacement can alter nutrient cycles and community structure in aquatic ecosystems. The aims of our study were (1) to compare leaf litter decomposition of two widely distributed exotic species (Ailanthus altissima and Robinia pseudoacacia) with the native species they coexist with (Ulmus minor and Fraxinus angustifolia), and (2) to compare macroinvertebrate colonization among litters of the invasive and native species. Litter bags of the four tree species were placed in the water and collected every 2, 25, 39, 71, and 95 days in a lentic ecosystem. Additionally, the macroinvertebrate community on litter bags was monitored after 25, 39, and 95 days. Several leaf chemistry traits were measured at the beginning (% lignin; lignin:N, C:N, LMA) and during the study (leaf total nitrogen). We detected variable rates of decomposition among species (k values of 0.009, 0.008, 0.008, and 0.005 for F. angustifolia, U. minor, A. altissima and R. pseudoacacia, respectively), but we did not detect an effect of litter source (from native/exotic). In spite of its low decay, the highest leaf nitrogen was found in R. pseudoacacia litter. Macroinvertebrate communities colonizing litter bags were similar across species. Most of them were collectors (i.e., they feed on fine particulate organic matter), suggesting that leaf material of either invasive or native trees was used as substrate both for the animals and for the organic matter they feed on. Our results suggest that the replacement of the native Fraxinus by Robinia would imply a reduction in the rate of leaf processing and also a slower release of leaf nitrogen to water.  相似文献   

5.
Perturbations such as wildfire and exotic plant invasion have significant impacts on soils, and the extent to which invaded soils are resistant or resilient to these disturbances varies by ecosystem type. Replacement of shrublands by herbaceous exotics pre- and post-wildfire may drastically alter soil chemical and biological properties for an unknown duration. We assessed above and belowground resistance and resilience to exotic plant invasion both before and after a chaparral wildfire. We hypothesized that exotic plant species would change chemical characteristics of chaparral soils by altering litter and microbial inputs, and that controlling exotics and seeding native species would restore chemical characteristics to pre-invaded conditions. We additionally hypothesized that exotic plant species would slow succession above- and belowground, as well as recovery of post-wildfire chaparral structure and function. Plant species composition and soil nutrient pools and cycling rates were evaluated in mature and invaded chaparral pre- and post-wildfire. Exotic plant species were weeded and native species were seeded to assess impacts of exotic competition on native species recovery. Invasion did not impact all soil characteristics before fire, but increased soil C/N ratio, pH, and N cycling rates, and reduced NO3-N availability. After fire, invasives slowed succession above- and belowground. Removal of exotics and seeding natives facilitated succession and resulted in plant composition similar to uninvaded, post-wildfire chaparral. The chaparral ecosystem was not resistant to impacts of invasion as indicated by altered soil chemistry and C and N cycling rates; however, short-term restoration led to recovery of extractable nitrogen availability indicating resilience of chaparral soils. This suggests that the permanence of exotic plant species, once established, represents a greater ecological challenge than exotic plant impacts on soils.  相似文献   

6.

Background and aims

Native shrub species of southern California have a long history of displacement by exotic annual herbs and forbs. Such invasions may be mediated by interactions with the microbial community and changes in the N cycle as a result of N pollution. However, the simultaneous effects of the soil microbial community status and N fertilization on dominant native and exotic plant species growth have not been thoroughly explored in this ecosystem.

Methods

Three species of native shrubs and of exotic annuals were grown in an orthogonal two-factor greenhouse experiment. To assess the importance of the soil microbial community pre-sterilized soils were inoculated with sterilized or non-sterilized field soil; to assess the importance of N type pots were fertilized with nitrate, ammonium or glycine solutions. Plant shoot and root biomass was measured after harvesting.

Results

The natives Artemisia californica and Eriogonum fasciculatum had lower growth in sterilized soil, suggesting microbial facilitation of these species, and E. fasciculatum higher growth with ammonia than either nitrate or glycine. Salvia apiana had equal growth under all conditions. The exotics Brassica nigra and Bromus madritensis grew equally in sterilized and unsterilized soil, and B. madritensis greater growth with ammonia fertilizer. Centaurea melitensis had greater growth in sterilized soil, and with either form of inorganic N.

Conclusions

These results highlight the importance of the soil microbial community in contributing to relative success of native vs. exotic species, and could inform restoration approaches for these species.  相似文献   

7.

Background and aims

Exotic coniferous species have been used widely in restoration efforts in tropical montane forests due to their tolerance to adverse conditions and rapid growth, with little consideration given to the potential ecological benefits provided by native tree species. The aim of this study was to elucidate differences in litterfall and nutrient flow between a montane oak forest (Quercus humboldtii Bonpl.) and exotic coniferous plantations of pine (Pinus patula Schltdl. & Cham.) and cypress (Cupressus lusitanica Mill.) in the Colombian Andes.

Methods

Litter production, litter decomposition rate, and element composition of leaf litter were monitored during 3 years.

Results

Litter production in the oak forest and pine plantation was similar, but considerably lower in the cypress plantation . Similar patterns were observed for nutrient concentrations in litterfall, with the exception of Ca which was three times higher in the cypress plantation. The annual decay rate of litter was faster in the montane oak forest than in either of the exotic coniferous plantations. The potential and net return of nutrients to the forest floor were significantly higher in oak forest than in the exotic coniferous plantations.

Conclusions

Future restoration programs should consider new species that can emulate the nutrient flow of native broadleaf species instead of exotic species that tend to impoverish soil nutrient stocks in tropical montane forests.  相似文献   

8.
The question of whether species’ origins influence invasion outcomes has been a point of substantial debate in invasion ecology. Theoretically, colonization outcomes can be predicted based on how species’ traits interact with community filters, a process presumably blind to species’ origins. Yet, exotic plant introductions commonly result in monospecific plant densities not commonly seen in native assemblages, suggesting that exotic species may respond to community filters differently than natives. Here, we tested whether exotic and native species differed in their responses to a local community filter by examining how ant seed predation affected recruitment of eighteen native and exotic plant species in central Argentina. Ant seed predation proved to be an important local filter that strongly suppressed plant recruitment, but ants suppressed exotic recruitment far more than natives (89% of exotic species vs. 22% of natives). Seed size predicted ant impacts on recruitment independent of origins, with ant preference for smaller seeds resulting in smaller seeded plant species being heavily suppressed. The disproportionate effects of provenance arose because exotics had generally smaller seeds than natives. Exotics also exhibited greater emergence and earlier peak emergence than natives in the absence of ants. However, when ants had access to seeds, these potential advantages of exotics were negated due to the filtering bias against exotics. The differences in traits we observed between exotics and natives suggest that higher-order introduction filters or regional processes preselected for certain exotic traits that then interacted with the local seed predation filter. Our results suggest that the interactions between local filters and species traits can predict invasion outcomes, but understanding the role of provenance will require quantifying filtering processes at multiple hierarchical scales and evaluating interactions between filters.  相似文献   

9.
Darwin’s naturalization hypothesis predicts that successful invaders will tend to differ taxonomically from native species in recipient communities because less related species exhibit lower niche overlap and experience reduced biotic resistance. This hypothesis has garnered substantial support at coarse scales. However, at finer scales, the influence of traits and niche use on invasibility and invader impacts is poorly understood. Within grasslands of western Montana, USA, we compared morphological and phenological traits for five top exotic invasive forbs and five dominant native forbs using multivariate techniques to examine niche separation between exotics and natives. Exotic forbs differed from native forbs in multivariate space. Phenologically, native forbs synchronized vegetative growth with bolting and flowering early in spring. In contrast, exotics initiated vegetative growth concurrent with natives but bolted and flowered later. Morphologically, vegetative growth of exotics was three times shorter and narrower, but flowering stem growth was 35% taller and 65% wider than the natives. Collectively, these patterns suggest different strategies of resource uptake and allocation. Additionally, following wildfire, survival was four times higher for exotics compared to natives, and three times more of the surviving exotics flowered. The exotics we examined appeared to be exploiting an empty community-level niche. The resulting pattern of trait differences between exotics and natives suggests a predictable pattern of invasion and a predictable trajectory of community change. Our results illustrate how quantifying trait differences between invading exotics and natives at the within-community scale can improve understandings of community invasibility and invader impacts.  相似文献   

10.
Considerable research has been devoted to understanding how plant invasions are influenced by properties of the native community and to the traits of exotic species that contribute to successful invasion. Studies of invasibility are common in successionally stable grasslands, but rare in recently disturbed or seral forests. We used 16 yr of species richness and abundance data from 1 m2 plots in a clearcut and burned forest in the Cascade Range of western Oregon to address the following questions: 1) is invasion success correlated with properties of the native community? Are correlations stronger among pools of functionally similar taxa (i.e. exotic and native annuals)? Do these relationships change over successional time? 2) Does exotic abundance increase with removal of potentially dominant native species? 3) Do the population dynamics of exotic and native species differ, suggesting that exotics are more successful colonists? Exotics were primarily annual and biennial species. Regardless of the measure of success (richness, cover, biomass, or density) or successional stage, most correlations between exotics and natives were non‐significant. Exotic and native annuals showed positive correlations during mid‐succession, but these were attributed to shared associations with bare ground rather than to direct biotic interactions. At peak abundance, neither cover nor density of exotics differed between controls and plots from which native, mid‐successional dominants were removed. Tests comparing nine measures of population performance (representing the pace, magnitude, and duration of population growth) revealed no significant differences between native and exotic species. In this early successional system, local richness and abundance of exotics are not explained by properties of the native community, by the presence of dominant native species, or by superior colonizing ability among exotics species. Instead natives and exotics exhibit individualistic patterns of increase and decline suggesting similar sets of life‐history traits leading to similar successional roles.  相似文献   

11.

Aims

Non-native shrubs are important invaders of the Eastern Deciduous Forest, dramatically altering forest structure and functioning. Study of invasion mechanisms in this system has emphasized aboveground processes, and plant-soil feedbacks are relatively unexplored as a mechanism of shrub dominance. We tested whether plant-soil feedback in this habitat is affected by competition and whether arbuscular mycorrhizal fungi (AMF) are involved in plant-soil feedback.

Methods

We used a standard two-phase plant-soil feedback experiment run concurrently for each of three invasive shrub species, measuring feedback effects on AMF colonization, aboveground biomass, and the responses of native plant species in greenhouse mesocosms.

Results

Lonicera maackii and Ligustrum vulgare reduced AMF colonization of native roots, both with legacy effects (prior growth in soil) and direct effects (current growth in soil). Elaeagnus umbellata grown with natives left a legacy of increased AMF colonization of native communities.

Conclusions

Our results suggest that woody invasive species can alter the AMF associations of native plants even after the invasive is no longer present. Such consequences merit study with other native species and where environmental factors, such as light availability, might be expected to compound the effects of changes in AMF.  相似文献   

12.
Darwin's naturalisation conundrum describes the paradox that the relatedness of exotic species to native residents could either promote or hinder their success through opposing mechanisms: niche pre‐adaptation or competitive interactions. Previous studies focusing on single snapshots of invasion patterns have provided support to both sides of the conundrum. Here, by examining invasion dynamics of 480 plots over 40 years, we show that exotic species more closely related to native species were more likely to enter, establish and dominate the resident communities, and that native residents more closely related to these successful exotics were more likely to go locally extinct. Therefore, non‐random displacement of natives during invasion could weaken or even reverse the negative effects of exotic–native phylogenetic distances on invasion success. The scenario that exotics more closely related to native residents are more successful, but tend to eliminate their closely related natives, may help to reconcile the 150‐year‐old conundrum.  相似文献   

13.
Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.  相似文献   

14.
Despite widespread work documenting invasion, it remains a challenge to determine invasion mechanisms and incorporate them into invasive species management. Competition theory presents a strong model for evaluating the role of resource reduction and requirements in invasion. Additionally, alternative models suggest fluctuations in resources, niche differences, or non-resource priority effects are key factors determining invasion success. We propose a comparative framework that incorporates resource impacts of native and invasive species, performance in controlled invasion trials, and long-term natural invasion patterns to elucidate relative importance of these invasion mechanisms. To demonstrate this framework, we established monocultures of two representative native and two invasive plant species in Southern California’s coastal sage scrub (CSS), measured resource impacts (i.e., R*), and conducted invasion trials to test whether resource impacts predicted invasion success. We then related experimental results to field invasion patterns. Compared to exotic herbaceous species, native shrubs were associated with greater resource depletion of key resources: light, soil water (at multiple depths), and soil inorganic nitrogen (particularly at depth). In invasion trials, natives resisted invasion by the exotics, as resource depletion measures would predict. However, these results did not follow long-term natural invasion patterns indicating that these exotic species invade areas once dominated by native shrubland. Applying our results to the invasion framework, we conclude that disturbance, or a similar mechanism causing resources to fluctuate, is needed for exotics to invade CSS habitats. This resource-based comparative analysis of invasion mechanisms can point out important processes and help suggest effective management actions.  相似文献   

15.
Abstract How interactions between exotic species affect invasion impact is a fundamental issue on both theoretical and applied grounds. Exotics can facilitate establishment and invasion of other exotics (invasional meltdown) or they can restrict them by re‐establishing natural population control (as predicted by the enemy‐release hypothesis). We studied forest invasion on an Argentinean island where 43 species of Pinaceae, including 60% of the world's recorded invasive Pinaceae, were introduced c. 1920 but where few species are colonizing pristine areas. In this area two species of Palearctic deer, natural enemies of most Pinaceae, were introduced 80 years ago. Expecting deer to help to control the exotics, we conducted a cafeteria experiment to assess deer preferences among the two dominant native species (a conifer, Austrocedrus chilensis, and a broadleaf, Nothofagus dombeyi) and two widely introduced exotic tree species (Pseudotsuga menziesii and Pinus ponderosa). Deer browsed much more intensively on native species than on exotic conifers, in terms of number of individuals attacked and degree of browsing. Deer preference for natives could potentially facilitate invasion by exotic pines. However, we hypothesize that the low rates of invasion currently observed can result at least partly from high densities of exotic deer, which, despite their preference for natives, can prevent establishment of both native and exotic trees. Other factors, not mutually exclusive, could produce the observed pattern. Our results underscore the difficulty of predicting how one introduced species will effect impact of another one.  相似文献   

16.
We assess the hypothesis that rates of nitrogen transformations in the soil are altered upon replacement of native by exotic trees, differing in litter properties. Ailanthus altissima and Robinia pseudoacacia, two common exotic trees naturalized in the Iberian Peninsula, were compared with the native trees Ulmus minor and Fraxinus angustifolia, respectively. Naturally senesced leaves of each species were collected and C:N ratio, N and lignin content assessed. We prepared 64 litter bags per species and left them to decompose, below the canopy of the same species and below the canopy of the paired species. Dry mass, N concentration and N pool of the remaining litter were assessed after 5 and 7 months. Soil samples were collected three times during the experiment to assess soil moisture, organic matter, pH, potential mineralization rates and mineral N pools. Mineral N availability was assessed three times in the field by using ion-exchange resin-impregnated membranes. Ailanthus litter decomposed faster than Ulmus litter, probably due to the higher toughness of the latter. In spite of its high N content, Robinia litter decomposed slower than Fraxinus one, probably due to its high lignin content. In both cases, litter decomposition was faster below the exotic than the native canopies. The release of N per unit of initial litter mass was higher under both invaded situations (Ailanthus below Ailanthus and Robinia below Robinia) than under the native ones. However, soils collected below native and exotic trees neither differed in potential N mineralization rate nor in mineral N. This may be attributed to a quick plant uptake of released N and/or to a high organic matter accumulation in the soil previous to invasion that can exert a tighter control on soil N transformations than the current exotic litter.  相似文献   

17.
Robert R. Blank 《Plant and Soil》2010,326(1-2):331-343
Few studies have examined plant–soil relationships in competitive arenas between exotic and native plants in the western United States. A pair-wise competitive design was used to evaluate plant–soil relationships between seedlings of the exotic annual grasses Bromus tectorum and Taeniatherium caput-medusae and the native perennial grasses Elymus elymoides and Pseudoroegneria spicata. Two soils were tested: an arid soil (argid) occupied by E. elymoides and presently invaded by B. tectorum and a high elevation, high organic matter, soil (aquept) where none of the tested species would typically occur. Plant growth proceeded for 85 days at which time above-ground biomass and tissue nutrient concentrations were quantified. Soil also was collected from the rooting zone beneath each species and analyzed for various nutrient pools. The exotic species had significantly greater above-ground biomass than the natives and grew far better in the aquept soil than the argid soil. Growth of B. tectorum, and to some degree, T. caput-medusae was suppressed in intraspecific competition and enhanced, especially in the aquept soil, when competing with the natives. Although not significant, biomass of natives strongly trended downward when competing with the exotic grasses. Overall, concentrations of tissue nutrients were minimally affected by competition, but natives tended to be more negatively affected by competition with exotics. Except for phosphorus (P), all species had significantly greater nutrient concentrations when growing in the aquept soil compared to the argid soil. In both soils, exotics had significant greater tissue concentrations of manganese (Mn), magnesium (Mg), and iron (Fe), while natives had significantly greater nitrogen (N). Species affects on soil nutrient pools occurred mostly in the aquept soil with exotic species significantly decreasing pools of available N, potentially available N, and soil-solution pools of calcium (Ca2+), potassium (K+), and magnesium (Mg2+) relative to natives. Overall, the data suggest that, in the seedling state, B. tectorum is a superior competitor. Moreover, when the natives compete intra- or interspecifically, particularly in the aquept soil, availability of N and other nutrients in their rooting zone is consistently greater than when they compete interspecifically with the exotic grasses. These data suggest the exotics are able to co-opt nutrients in the rooting zone of the natives and perhaps gain a competitive advantage.  相似文献   

18.
Patrick L. Lilley  Mark Vellend 《Oikos》2009,118(9):1373-1382
Recent research has proposed a scale-dependence to relationships between native diversity and exotic invasions. At fine spatial scales, native–exotic richness relationships should be negative as higher native richness confers resistance to invasion. At broad scales, relationships should be positive if natives and exotics respond similarly to extrinsic factors. Yet few studies have examined both native and exotic richness patterns across gradients of human influence, where impacts could affect native and exotic species differently. We examined native–exotic richness relationships and extrinsic drivers of plant species richness and distributions across an urban development gradient in remnant oak savanna patches. In sharp contrast to most reported results, we found a negative relationship at the regional scale, and no relationship at the local scale. The negative regional-scale relationship was best explained by extrinsic factors, surrounding road density and climate, affecting natives and exotics in opposite ways, rather than a direct effect of native on exotic richness, or vice versa. Models of individual species distributions also support the result that road density and climate have largely opposite effects on native and exotic species, although simple life history traits (life form, dispersal mode) do not predict which habitat characteristics are important for particular species. Roads likely influence distributions and species richness by increasing both exotic propagule pressure and disturbance to native species. Climate may partially explain the negative relationship due to differing climatic preferences within the native and exotic species pools. As gradients of human influence are increasingly common, negative broad-scale native–exotic richness relationships may be frequent in such landscapes.  相似文献   

19.
Many systems are prone to both exotic plant invasion and frequent natural disturbances. Native species richness can buffer the effects of invasion or disturbance when imposed in isolation, but it is largely unknown whether richness provides substantial resistance against invader impact in the face of disturbance. We experimentally examined how disturbance (drought/burning) influenced the impact of three exotic invaders (Centaurea stoebe, Linaria dalmatica, or Potentilla recta) on native abundance across a gradient of species richness, using previously constructed grassland assemblages. We found that invaders had higher cover in experimentally disturbed plots than in undisturbed plots across all levels of native species richness. Although exotic species varied in cover, all three invaders had significant impacts on native cover in disturbed plots. Regardless of disturbance, however, invader cover diminished with increasing richness. Invader impacts on native cover also diminished at higher richness levels, but only in undisturbed plots. In disturbed plots, invaders strongly impacted native cover across all richness levels, as disturbance favoured invaders over native species. By examining these ecological processes concurrently, we found that disturbance exacerbated invader impacts on native abundance. Although diversity provided a buffering effect against invader impact without disturbance, the combination of invasion and disturbance markedly depressed native abundance, even in high richness assemblages.  相似文献   

20.
Invasive exotic plants can persist and successfully spread within ecosystems and negatively affect the recruitment of native species. The exotic invasive Ailanthus altissima and the native Robinia pseudoacacia are frequently found in disturbed sites and exhibit similar growth and reproductive characteristics, yet each has distinct functional roles such as allelopathy and nitrogen fixation, respectively. A four-month full additive series in the greenhouse was used to analyze the intraspecific and interspecific interference between these two species. In the greenhouse experiment, the inverse of the mean total biomass (g) response per plant for each species was regressed on the density of each species and revealed that the performance of the plants was significantly reduced by interspecific interference and not by intraspecific interference (p < 0.05). Other biomass traits such as root dry weight, shoot dry weight, stem dry weight, and leaf dry weight were also negatively affected by interspecific interference. Competition indices such as Relative Yield Total and Relative Crowding Coefficient suggested that A. altissima was the better competitor in mixed plantings. Ailanthus altissima consistently produced a larger above ground and below ground relative yield while R. pseudoacacia generated a larger aboveground relative yield in high density mixed species pots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号