首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We studied the root foraging ability and its consequences for the nutrient acquisition of five grass species that differ in relative growth rate and that occur in habitats that differ widely in nutrient availability. Foraging responses were quantified, based on the performance of the plants in homogeneous and heterogeneous soil environments of the same overall nutrient availability. Although all species tended to produce a significantly higher root length density in a nutrient-rich patch, this response was significant only for the faster-growing species. The increased root length density resulted from small, though not significant, changes in root biomass and specific root length. The effectiveness of root proliferation was determined by quantifying the total amount of nutrients (N and P) accumulated by the plants over the course of the experiment. Plants acquired more N in a heterogeneous environment than in a homogeneous environment, although the total nutrient availability was the same. The ability to acquire nutrients (N or P) in the heterogeneous environment was not related to the ability of species to increase root length density in response to local nutrient enrichment. In contrast to other studies, our results suggest that the role of morphological plasticity of roots in acquiring patchily distributed resources is limited. Possible reasons for this discrepancy are discussed. Received: 11 September 1997 / Accepted: 28 February 1998  相似文献   

3.
Clonal plants from poor habitats benefit less from morphologically plastic responses to heterogeneity than plants from more productive sites. In addition, physiological integration has been suggested to either increase or decrease the foraging efficiency of clonal plants. We tested the capacity for biomass production and morphological response in two closely related, rhizomatous species from habitats that differ in resource availability, Carex arenaria (from poor sand dunes) and C. disticha (from nutrient-richer, moister habitats). We expected lower total biomass production and reduced morphological plasticity in C. arenaria, and that both species would produce more ramets in high nutrient patches, either in response to signals transported through physiological integration, or by locally determined responses to nutrient availability. To investigate mineral nutrient heterogeneity, plants were grown in boxes divided into two compartments with homogeneous or heterogeneous supply of high (H) or low (L) nutrient levels, resulting in four treatments, H-H, H-L, L-H and L-L. Both C. arenaria and C. disticha produced similar biomass in high nutrient treatments. C. disticha responded to high nutrients by increased biomass production and branching of the young parts and by altering root:shoot ratio and rhizome lengths, while C. arenaria showed localised responses to high nutrients in terms of local biomass and branch production in high nutrient patches. The results demonstrated that although it has a conservative morphology, C. arenaria responded to nutrient heterogeneity through morphological plasticity. An analysis of costs and benefits of integration on biomass production showed that young ramets of both species benefited significantly from physiological integration, but no corresponding costs were found. This suggests that plants from resource-poor but dynamic habitats like sand dunes respond morphologically to high nutrient patches. The two species responded to nutrient heterogeneity in different traits, and this is discussed in terms of local and distant signalling of plant status.  相似文献   

4.
Ostreopsis ovata is a benthic dinoflagellate that produces palytoxin and ovatoxins. Blooms of O. ovata causing human health problems and mortality of benthic fauna have been reported from many tropical and temperate marine waters. In the present study we examined the combined effects of temperature and different nutrient conditions on the biochemical composition, growth, toxicity and carbohydrate production of an O. ovata strain originating from the Tyrrhenian Sea. O. ovata cultures with N:P ratios of 1.6, 16 and 160 (N deficient, NP sufficient and P deficient, respectively) were grown at 20 °C and 30 °C. Biomass accumulation, growth rates, cell volumes, biochemical composition, cell toxicity and carbohydrate production in each treatment were studied. Results indicated that under nutrient sufficiency O. ovata biomass accumulation increased significantly compared to N and P deficiency and also that N limitation severely affected growth. The highest growth rates were recorded at 30 °C. Cellular contents and the atomic ratios of C, N and P were higher in the cells grown at 20 °C than in those grown at 30 °C. O. ovata cell volumes increased at 20 °C. N deficiency significantly increased cell toxicity. Toxicity per cell was higher at 20 °C, but per carbon was highest at 30 °C. The highest carbohydrate production was found in conditions of N deficiency and at the lower temperature.Our study suggests that temperature increases due to global warming and nutrient enrichment of coastal waters stimulate the proliferation of O. ovata, particularly for the strains that have become adapted to warm temperate waters.  相似文献   

5.
Summary Two N-P factorial experiments, one on a site previously in bush fallow and the other previously in arable crops, were used to follow changes in the P status of Iwo soils under continuous cultivation. Marked yield response of maize to N was found at both sites, with the response being relatively small in the early crop at the fallowed site. Yield response to P was found only at the cropped site and then only if N was applied. About 25% of the organic P in the surface soil was mineralized during the two cropping periods of the rainy season which resulted in release of about 3 times as much P as was taken up by the maize. Most of the mineralized P as well as any added P was converted to Fe and Al-P. Apparently the rate of organic P mineralization in this soil is rapid enough for a few years following clearing to maintain adequate P activity for plant growth whereas N deficiency shows up very early. Lecturer, Department of Soil Science, University of Ife, Nigeria, and Professor of Soil Science, University of Wisconsin, Madison, Wisconsin, formerly Professor of Soil Science, University of Ife, respectively. Lecturer, Department of Soil Science, University of Ife, Nigeria, and Professor of Soil Science, University of Wisconsin, Madison, Wisconsin, formerly Professor of Soil Science, University of Ife, respectively.  相似文献   

6.
在黄河三角洲选取3种典型的芦苇湿地群落为对象,即:故道区(1996年改道的黄河故道河岸带芦苇群落)、新生区(现行黄河河岸带新生芦苇群落)和潮水区(远离新旧河道但受潮汐影响的潮滩芦苇群落),研究黄河改道对3种生境芦苇各器官(茎、叶、根状茎、须根)和土壤剖面碳(C)、氮(N)、磷(P)含量变化及化学计量特征的影响.结果 表...  相似文献   

7.
Hu  Yan-Yu  Wei  Hai-Wei  Zhang  Zhi-Wei  Hou  Shuang-Li  Yang  Jun-Jie  Wang  Jun-Feng    Xiao-Tao 《Plant and Soil》2020,453(1-2):503-513
Plant and Soil - Uncovering the importance of soil and plant characteristics in driving the legacy effects of nitrogen (N) deposition on plant community nutrient stoichiometry would improve our...  相似文献   

8.
9.
Han Olff 《Oecologia》1992,89(3):412-421
Summary Recent discussions on determinants of competitive success during succession require the study of the combined effect of light and nutrient availability on growth and allocation. These effects can be used to predict the outcome of competition at changing resource availabilities. This work is part of a study on the successional sequence in permanent grassland starting after fertilizer application is stopped, but with continued mowing, in order to restore former species-rich communities. This yields a successional sequence which proceeds from grasslands with a high nutrient availability and a closed canopy, to grasslands with a low nutrient availability and an open canopy. If allocation is related to competitive ability, species from the productive stages would be expected to allocate more biomass and nitrogen to leaves, which could make them better competitors for light, while species from the unproductive stages would allocate more biomass to roots, which could make them better nutrient competitors. This study reports on growth, specific leaf area (SLA), vertical display of leaves, and allocation of biomass and nitrogen of six grassland species from this successional sequence at 16 combinations of light and nutrient supply. Species from the poorer successional stages reached a lower final dry weight than species from the richer stages, over all treatment combinations. The experimental design made it possible to test for unique effects of the resource ratio effect of light and nutrients on allocation characteristics. This resource-ratio effect was defined as the ratio light intensity/(light intensity + nutrient supply rate), using standardized levels for the treatments. The within-species variation (plasticity) in both allocation of dry matter and nitrogen was linearly related to this resource-ratio effect. Some interspecific differences in this relationship were found which could be related to the position of the species along the successional gradient. However, the range of plasticity in allocation pattern expressed within each species was much larger than the differences between species. It was concluded that allocation differences between these grassland species are relatively unimportant, given the large amount of plasticity in these traits. Interspecific differences in SLA and vertical stature seemed to be more important in explaining the position of species along the successional gradient.  相似文献   

10.
Schippers  Peter  Olff  Han 《Plant Ecology》2000,149(2):219-231
Three grasses (Holcus lanatus, Anthoxanthum odoratum and Festuca ovina) and three herbs (Rumex obtusifolius, Plantago lanceolata and Hieracium pilosella) were grown in a greenhouse at 3 nutrient levels in order to evaluate plant allocation, architecture and biomass turnover in relation to fertility level of their habitats.Four harvests were done at intervals of 4 weeks. Various plant traits related to biomass partitioning, plant architecture, biomass turnover and performance were determined. Differences in nutrient supply induced a strong functional response in the species shoot:root allocation, but architecture and turnover showed little or no response. Architectural parameters like specific leaf area and specific root length, however, in general decreased during plant development.Species from more nutrient-rich successional stages were characterized by a larger specific leaf area and longer specific shoot height (height/shoot biomass), resulting in a higher RGR and total biomass in all nutrient conditions. There was no evidence that species from nutrient-poor environments had a longer specific root length or any other superior growth characteristic. The only advantage displayed by these species was a lower leaf turnover when expressed as the fraction of dead leaves and a shorter specific shoot height (SSH) which might prevent herbivory and mowing losses.The dead leaf fraction, which is a good indicator for biomass and nutrient loss, appeared to be not only determined by the leaf longevity, but was also found to be directly related to the RGR of the species. This new fact might explain the slow relative growth rates in species from a nutrient-poor habitat and should be considered in future discussions about turnover.  相似文献   

11.
Biomass of N. spumigena is distributed within the dynamic photic zone that changes in both light quantity and quality. This study was designed to determine whether nutrient status can mitigate the negative impacts of experimental radiation treatments on the photosynthetic performance of N. spumigena. Cyanobacterial suspensions were exposed to radiation consisting of photosynthetically active radiation (PAR=400-700 nm), PAR+UV-A (=PA, 320-700 nm), and PAR+UV-A+UV-B (=PAB, 280-700 nm) under different nutrient media either replete with external dissolved nitrate (N) and orthophosphate (P; designated as +N/+P), replete with P only (-N/+P), or replete with N only (+N/-P). Under low PAR (75 micromol photons m(-2) s(-1)), nutrient status had no significant effect on the photosynthetic performance of N. spumigena in terms of rETRmax, alpha, and E(k). Nodularia spumigena was able to acclimate to high PAR (300 micromol photons m(-2) s(-1)), with a corresponding increase in rETRmax and E(k). The photosynthetic performance of N. spumigena cultured with supplemental nitrogen was more susceptible to experimental PAR irradiance. Under UVR, P-enrichment in the absence of additional external N (-N/+P) induced lower photoinhibition of photosynthesis compared with +N/-P cultures. However, the induction of NPQ may have provided PSII protection under P-deplete and PAR+UVR conditions. Because N. spumigena are able to fix nitrogen, access to available P can render them less susceptible to photoinhibition, effectively promoting blooms. Under a P-deficient condition, N. spumigena were more susceptible to radiation but were capable of photosynthetic recovery immediately after removal of radiation stress. In the presence of an internal P pool in the Baltic Sea, which may be seasonally available to the diazotrophic cyanobacteria, summer blooms of the resilient N. spumigena will persist.  相似文献   

12.
13.
Forty-eight-hour experimental manipulations of zooplankton biomass were performed to examine the potential effects of zooplankton on nutrient availability and phytoplankton biomass (as measured by seston concentration) and C : N : P stoichiometry in eutrophic nearshore waters of Lake Biwa, Japan. Increasing zooplankton, both mixed-species communities and Daphnia alone, consistently reduced seston concentration, indicating that nearshore phytoplankton were generally edible. The zooplankton clearance rates of inshore phytoplankton were similar to rates measured previously for offshore phytoplankton. Increased zooplankton biomass led to increased concentrations of nutrients (NH4-N, soluble reactive phosphorus [SRP]). Net release rates were higher than those found in previous measurements made offshore, reflecting the nutrient-rich nature of inshore seston. Zooplankton nutrient recycling consistently decreased TIN : SRP ratios (TIN = NH4 + NO3 + NO2). This effect probably resulted from the low N : P ratios of nearshore seston, which were lower than those commonly found in crustacean zooplankton and thus resulted in low retention efficiency of P (relative to N) by the zooplankton. Thus, zooplankton grazing inshore may ameliorate algal blooms due to direct consumption but tends to create nutrient supply conditions with low N : P, potentially favoring cyanobacteria. In comparison with previous findings for offshore, it appears that potential zooplankton effects on phytoplankton and nutrient dynamics differ qualitatively in inshore and offshore regions of Lake Biwa. Received: September 4, 2000 / Accepted: January 23, 2001  相似文献   

14.
ABSTRACT: BACKGROUND: In food-deceptive orchids of the genera Anacamptis, Neotinea and Orchis floral isolation has been shown to be weak, whereas late-acting reproductive barriers are mostly strong, often restricting hybridization to the F1 generation. Only in a few species hybridization extends beyond the F1 generation, giving rise to hybrid swarms. However, little is known about the abundance of later-generation hybrids and what factors drive their occurrence in hybrid populations. In this study, molecular analyses were combined with detailed morphological measurements in a hybrid population of two closely related Orchis species (Orchis militaris and O. purpurea) to investigate the hypothesis that the abundance of later-generation hybrids is driven by changes in floral characters after hybridization that exert selective pressures that in turn affect hybridization. RESULTS: Both the molecular and morphological data point to extensive genetic and morphological homogenization and asymmetric introgression. Estimating genomic clines from the multi-locus genotype data and testing for deviation from neutrality revealed that 30 out of 113 (27%) AFLP markers significantly deviated from neutral expectations. Plants with large floral displays or plant with flowers that resembled more O. purpurea had higher female fitness than plants with small floral displays or plants with flowers resembling more O. militaris, suggesting that directional selection may have contributed to the observed patterns of introgression. CONCLUSIONS: These results indicate that in closely related orchid species hybridization and gene introgression may be partly driven by selection for floral traits of one of the parental types. However, because some pure individuals were still present in the studied population, the parental species appeared to be sufficiently isolated to survive the challenge of sympatry.  相似文献   

15.
Eleven microsatellites were isolated from the vairone Leuciscus souffia (Risso 1826), an endangered fish that inhabits river systems in and around the Alps in Europe. The level of genetic diversity was assessed in 29 individuals of the subspecies L. s. souffia, and their variability was further estimated in seven individuals of a different subspecies, L. s. muticellus. Eight of these microsatellite loci were also applied to seven closely related cyprinid species. Availability of the reported microsatellite loci will facilitate the investigation of population genetic structure of these species with applications for the development of conservation strategies and phylogeographical approaches.  相似文献   

16.
为探究不同生境下金花茶组植物的叶片钙形态特征,该研究以10种石灰土生境和4种酸性土生境的金花茶为对象,测定了其生境土壤的钙含量和pH值,以及该生境下金花茶组植物叶中的硝酸钙和氯化钙、水溶性有机酸钙、果胶酸钙、磷酸钙和碳酸钙、草酸钙、硅酸钙和总钙的含量。结果表明:(1)石灰土生境的土壤钙含量和土壤pH均极显著(P<0.01)高于酸性土。(2)在石灰土生境中,金花茶组植物的叶钙形态以草酸钙(41.17%)为主,而在酸性土生境中则以果胶酸钙(43.10%)为主,除硝酸钙和氯化钙、果胶酸钙外,石灰土金花茶的各叶钙形态和总钙含量均极显著(P<0.01)高于酸性土金花茶。(3)相关性分析结果显示,大部分叶钙形态含量与土壤pH和土壤钙含量呈极显著(P<0.01)正相关,表明土壤环境对金花茶组植物叶钙形态特征具有重要影响。(4)单因素方差分析结果显示,各叶钙形态含量在物种间存在极显著(P<0.01)差异,表明金花茶组植物在物种分化过程中叶钙形态特征具有多样性。(5)基于叶钙形态特征的聚类分析显示,14种金花茶可归为3大类。总体而言,不同生境背景下金花茶组植物的叶钙形态差异可能是...  相似文献   

17.
18.
Interactive effects of atmospheric CO(2) concentration ([CO(2)]), soil nutrient availability and soil nutrient spatial distribution on the structure and function of plant assemblages remain largely unexplored. Here we conducted a microcosm experiment to evaluate these interactions using a grassland assemblage formed by Lolium perenne, Plantago lanceolata, Trifolium repens, Anthoxanthum odoratum and Holcus lanatus. Assemblages exhibited precise root foraging patterns, had higher total and below-ground biomass, and captured more nitrogen when nutrients were supplied heterogeneously. Root foraging responses were modified by nutrient availability, and the patterns of N capture by interactions between nutrient distribution, availability and [CO(2)]. Greater above-ground biomass was observed under elevated CO(2) only under homogeneous conditions of nutrient supply and at the highest availability level. CO(2) interacted with nutrient distribution and availability to determine foliar percentage N and below : above-ground biomass ratios, respectively. Interactions between nutrient distribution and CO(2) determined the relative contribution to above-ground biomass of four of the species. The responses of dominant and subordinate species to [CO(2)] were dependent on the availability and distribution of nutrients. Our results suggest that soil nutrient distribution has the potential to influence the response of plant species and assemblages to changes in [CO(2)] and nutrient availability.  相似文献   

19.
Maximum and minimum soil temperatures affect belowground processes. In the past 50 years in arid regions, measured reductions in the daily temperature range of air (DTRair) most likely generated similar reductions in the unmeasured daily temperature range of soil (DTRsoil). However, the role of DTRsoil in regulating microbial and plant processes has not been well described. We experimentally reduced DTRsoil in the Chihuahuan Desert at Big Bend National Park over 3 years. We used shade cloth that effectively decreased DTRsoil by decreasing daily maximum temperature and increasing nighttime minimum temperature. A reduction in DTRsoil generated on average a twofold increase in soil microbial biomass carbon, a 42% increase in soil CO2 efflux and a 16% reduction in soil NO3?–N availability; soil available NH4+–N was reduced by 18% in the third year only. Reductions in DTRsoil increased soil moisture up to 15% a few days after a substantial rainfall. Increased soil moisture contributed to higher soil CO2 efflux, but not microbial biomass carbon, which was significantly correlated with DTRsoil. Net photosynthetic rates at saturating light (Asat) in Larrea tridentata were not affected by reductions in DTRsoil over the 3 year period. Arid ecosystems may become greater sources of C to the atmosphere with reduced DTRsoil, resulting in a positive feedback to rising global temperatures, if increased C loss is not eventually balanced by increased C uptake. Ultimately, ecosystem models of N and C fluxes will need to account for these temperature‐driven processes.  相似文献   

20.
The locomotory and ventilatory activities, oxygen consumption, and the intermediary and energy metabolism modifications of a spring and a cave population of the aquatic amphipod crustacean Gammarus minus were investigated in normoxia, severe hypoxia ( < 0.03 kPa) and subsequent recovery. The aims of this study were to compare (1) the reactions of both populations to these experimental conditions, (2) these results with those obtained on the hypogean amphipod Niphargus, and (3) the degree of adaptation to hypoxia showed by both populations of G. minus. Despite their different origins, both populations of G. minus presented identical responses in all experimental conditions. The lethal time for 50% of the population was about 6 h, and the oxygen consumption about 44 μmol O2/g dw per h in normoxic conditions. The metabolic effects of severe hypoxia and subsequent recovery were significant compared to normoxic conditions, but also similar between both populations for alanine, arginine phosphate, ATP, glycogen and lactate levels. This study (i) underlines the statement that a high resistance to lack of oxygen is not universally found in subterranean organisms, but is more related to oxygen availability and/or to the energetic state of each subterranean ecosystem, and (ii) highlight the diversity of adaptive responses to an environmental constraint expressed by hypogean crustaceans. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号