首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 741 毫秒
1.
To challenge the “conventional wisdom” that rates of net N-mineralization increase with pH, we measured net N-mineralization, respiration and/or microbial C and N in four Luxembourg beech forests with similar litter input, but different soil types, using laboratory incubation experiments. Litter input and fungal/bacterial colony ratios were also measured. To test whether the results could be explained by existing theoretical models, equations of C and N dynamics were reformulated to allow estimation of microbial growth efficiency, gross C and N release and microbial uptake, based on measured values of net N-mineralization, respiration and C:N ratios of substrate and microbes.Instead of an increase, net N-mineralization rates showed a significant sevenfold decrease from acid to calcaric soil in the organic layer, and a fourfold decrease in the mineral topsoil. At the same time, microbial N-demand increased with pH, as indicated by the significant decrease in net N-mineralization per unit microbe or unit C respired. These results could be explained by theoretical models. In organic layer and mineral topsoil, despite high gross N-release, net N-mineralization rates decreased with pH because of higher microbial immobilization. Increase in microbial N-demand was associated with a decrease in fungal/bacterial colony ratio: the more the bacteria, the higher the microbial N-demand.Acid and calcaric soils seem to have different strategies to sustain ecosystem N-fertility. In calcaric soil, N-availability to the vegetation seems indeed supported by high biological activity and gross N-release, which is needed to compensate for the potentially high immobilization by bacteria. In acid soil, however, despite low gross N-release, N-availability to the vegetation may not be lower than in calcaric soil, due to high amounts of fungi and low microbial N-demand.  相似文献   

2.

Background and aims

Two inland dunes in the Netherlands receiving low (24) and high (41 kg N ha?1 yr?1) nitrogen (N) deposition were compared for N dynamics and microbial activity to investigate the potential effect of N on succession rate of the vegetation and loss of pioneer habitats.

Methods

Primary succession stages were sampled, including bare sand, and vegetation dominated by Polytrichum piliferum, Campylopus introflexus, lichens and grasses respectively, representing a series of vegetation types in undisturbed drift sand sites with succession starting on bare sand containing virtually no organic matter. Microbial characteristics and potential N mineralization were analysed in a laboratory experiment.

Results

Organic matter accumulated during succession, resulting in a lower pH and in higher microbial biomass (bacteria and fungi), respiration and net N mineralization. The increase in respiration and N mineralization was largely due to the development of an ectorganic layer in the middle stages of succession. The observed effects of N deposition were (1) decrease of microbial biomass, (2) higher net N mineralization per m2, (3) higher levels of free nitrogen in the soil, and (4) a higher microbial N:P ratio.

Conclusions

Elevated N deposition leads to higher N availability which may cause accelerated succession.  相似文献   

3.
We investigated the changes in soil microbial biomass C (MBC), microbial biomass N (MBN) and N mineralization in Sasa kurilensis-present (SP) and S. kurilensis-removed (SR) stands in a Betula ermanii forest. The mean levels of MBC and MBN were significantly higher in the SR stand than in the SP, which may have positively influenced the N-mineralization rate as depicted by a significant positive correlation between these variables and the N-mineralization rate. N immobilization and subsequent N release along with decreased use of available soil N due to S. kurilensis removal may have ensured greater N availability in the SR stand.  相似文献   

4.

Background

Variation in microbial metabolism poses one of the greatest current uncertainties in models of global carbon cycling, and is particularly poorly understood in soils. Biological Stoichiometry theory describes biochemical mechanisms linking metabolic rates with variation in the elemental composition of cells and organisms, and has been widely observed in animals, plants, and plankton. However, this theory has not been widely tested in microbes, which are considered to have fixed ratios of major elements in soils.

Methodology/Principal Findings

To determine whether Biological Stoichiometry underlies patterns of soil microbial metabolism, we compiled published data on microbial biomass carbon (C), nitrogen (N), and phosphorus (P) pools in soils spanning the global range of climate, vegetation, and land use types. We compared element ratios in microbial biomass pools to the metabolic quotient qCO2 (respiration per unit biomass), where soil C mineralization was simultaneously measured in controlled incubations. Although microbial C, N, and P stoichiometry appeared to follow somewhat constrained allometric relationships at the global scale, we found significant variation in the C∶N∶P ratios of soil microbes across land use and habitat types, and size-dependent scaling of microbial C∶N and C∶P (but not N∶P) ratios. Microbial stoichiometry and metabolic quotients were also weakly correlated as suggested by Biological Stoichiometry theory. Importantly, we found that while soil microbial biomass appeared constrained by soil N availability, microbial metabolic rates (qCO2) were most strongly associated with inorganic P availability.

Conclusions/Significance

Our findings appear consistent with the model of cellular metabolism described by Biological Stoichiometry theory, where biomass is limited by N needed to build proteins, but rates of protein synthesis are limited by the high P demands of ribosomes. Incorporation of these physiological processes may improve models of carbon cycling and understanding of the effects of nutrient availability on soil C turnover across terrestrial and wetland habitats.  相似文献   

5.
To study vegetation feedbacks of nutrient addition on carbon sequestration capacity, we investigated vegetation and ecosystem CO2 exchange at Mer Bleue Bog, Canada in plots that had been fertilized with nitrogen (N) or with N plus phosphorus (P) and potassium (K) for 7–12 years. Gross photosynthesis, ecosystem respiration, and net CO2 exchange were measured weekly during May–September 2011 using climate‐controlled chambers. A substrate‐induced respiration technique was used to determine the functional ability of the microbial community. The highest N and NPK additions were associated with 40% less net CO2 uptake than the control. In the NPK additions, a diminished C sink potential was due to a 20–30% increase in ecosystem respiration, while gross photosynthesis rates did not change as greater vascular plant biomass compensated for the decrease in Sphagnum mosses. In the highest N‐only treatment, small reductions in gross photosynthesis and no change in ecosystem respiration led to the reduced C sink. Substrate‐induced microbial respiration was significantly higher in all levels of NPK additions compared with control. The temperature sensitivity of respiration in the plots was lower with increasing cumulative N load, suggesting more labile sources of respired CO2. The weaker C sink potential could be explained by changes in nutrient availability, higher woody : foliar ratio, moss loss, and enhanced decomposition. Stronger responses to NPK fertilization than to N‐only fertilization for both shrub biomass production and decomposition suggest that the bog ecosystem is N‐P/K colimited rather than N‐limited. Negative effects of further N‐only deposition were indicated by delayed spring CO2 uptake. In contrast to forests, increased wood formation and surface litter accumulation in bogs seem to reduce the C sink potential owing to the loss of peat‐forming Sphagnum.  相似文献   

6.
  1. Kānuka (Kunzea serotina, Myrtaceae) dryland shrubland communities of the lowland plains of South Island (Te Wai Pounamu), New Zealand (Aoteoroa), contain a ground cover largely consisting of mosses, predominantly Hypnum cupressiforme. There has been no previous study of the role of mosses in this threatened habitat which is currently being restored within a contemporary irrigated and intensively farmed landscape that may be incompatible with this component of the ecosystem.
  2. The aim of the present study was to investigate the influence of moss ground cover on hydrology, nitrogen (N) availability and vascular plant interactions, and in relation to nutrient spillover from adjacent farmland. Experimental work was a combination of glasshouse experiments and field‐based studies.
  3. Extremes of soil temperature and moisture were found to be mediated by the moss carpet, which also influenced N speciation; available N declined with moss depth. The moss layer decreased the amount of germination and establishment of vascular plants but, in some cases, enhanced their growth. Spillover of mineral nitrogen and phosphate from farmland enhanced invasion of exotic grasses which may have benefited from conditions provided by the moss carpet.
  4. Synthesis: We found the moss layer to be crucial to ecosystem functioning in these dry habitats with low nutrient substrate. However, when the moss layer is accompanied by nutrient spillover, it has the potential to increase exotic weed encroachment. Our results not only emphasize the importance of non‐vascular plant inclusion in restoration schemes but also highlights the importance of mitigating for nutrient spillover.
  相似文献   

7.
Leaf strategies and soil N across a regional humidity gradient in Patagonia   总被引:1,自引:0,他引:1  
We analyzed leaf traits related to carbon-fixation, nutrient conservation strategies, and decomposability and their relationships with potential N-mineralization and microbial N in soil in 19 species of 5 dominant life forms growing in 40 sites across a regional humidity gradient in northern Patagonia. We hypothesized that (1) the shifting of species and life forms across the humidity gradient is related to a shifting in traits of green and senesced leaves with some overlapping among life forms, and (2) leaf traits associated with litter decomposition are related to the potential dynamics of soil-N across the humidity gradient. LMA in green leaves and P-resorption efficiency decreased with humidity while concentrations of lignin and total phenolics in green and senesced leaves and P concentration in senesced leaves increased with humidity. Soil C and N concentrations were positively correlated to humidity. Increasing soil N concentration was related to increasing rates of absolute (per unit soil mass) potential net N-mineralization and microbial-N flush. Relative (per unit N mass) potential net N-mineralization and microbial-N flush decreased with soil N and were inversely correlated to lignin concentration and C/N ratio in senesced leaves. We found overlapping in N concentration and C/N ratio in green and senesced leaves, P concentration in green leaves, and N resorption among species and life forms across the humidity gradient. We concluded that (1) leaf traits related to carbon fixation and the decomposition pathway significantly varied with humidity and were not overlapped between plant life forms from dry and humid habitats, (2) the largest overlapping among species and plant life forms across the gradient occurred in those leaf traits related to N conservation in the plant, and (3) life forms from humid habitats produce more recalcitrant litter that induce lower rates of relative potential net N mineralization (per unit N) than those of dry habitats.  相似文献   

8.
Nitrogen (N) mineralization is a spatially variable and difficult component of the N cycle to quantify accurately under field conditions. Net N-mineralization was compared by direct measurement, indirect estimate, and laboratory incubation for a restored tallgrass prairie and for deficiently and optimally N-fertilized, no-tillage (NT) and chisel-plowed (CP) maize (Zea mays L.) agroecosystems on Plano silt loam soil (fine-silty, mixed, superactive, mesic Typic Argiudoll) in Wisconsin, USA. Four years of in-situ field measurements using an incubated-soil-core/ion-exchange-resin-bag technique showed that land use significantly affected net N-mineralization. Net N-mineralization was consistently smaller in the restored prairie than in the maize agroecosystems and typically larger in the CP than in the NT maize agroecosystems. Three independent methods for indirectly estimating annual net N-mineralization (i.e., N budget residual, deficiently N-fertilized plant N uptake, and profile-scaled in-situ field measurements) were relatively consistent at capturing land-use and tillage effects on net N-mineralization. Laboratory incubation and periodic leaching of Fall-sampled soils demonstrated that both mineralized N and labile C were co-limiting factors influencing N-mineralization in agricultural soils and generally supported field measurements by showing a significant difference in net N-mineralization with and without added fertilizer-N.  相似文献   

9.
Starch and carboxymethyl starch were added to forest floor samples collected from a sitka spruce stand near Aberdeen, Scotland. Samples were incubated for one month and were periodically analyzed for respiration, biomass-C, net and gross N-mineralization/immobilization. Gross mineralization/immobilization was measured by using a 15N-isotope pool dilution technique. Starch additions did not significantly affect respiration rates or biomass-C but caused net immobilization. The mechanism of this appeared to be inhibition of the decomposition of N-containing soil organic matter by the available starch-C, which resulted in decreased gross mineralization. Carboxymethyl starch acted as a biocide, probably as a result of an osmotic effect.  相似文献   

10.
Stable carbon and nitrogen isotope ratios were used to posit the relative importance of microbial processes on energy pathways in an ephemeral, humic boreal wetland compared to four clearwater lakes in northwestern Ontario, Canada. In addition to algae and dipteran larvae, odonate larvae were sampled as these latter organisms are known to predate indiscriminately on smaller invertebrates and are thus likely to have average isotope ratios reflective of their habitats. Similarities in 13C and 15N values between lake insect larvae and emerged adults suggested that littoral foodwebs in these oligotrophic lakes may rely to a considerable degree upon terrestrial carbon. Wetland insect larvae and algae were depleted in both 13C and 15N compared to biota in lakes. Carbon isotope analysis implied a substantial presence of microbial respiration from decomposition in the humic wetland, whereas nitrogen isotope analysis suggested the prevalence of microbially modified nitrogen dynamics, including the possibilty of N-fixation.  相似文献   

11.
胥娇  李强 《微生物学报》2023,63(6):2153-2172
碳酸盐岩经风化作用并在地形、植被、气候、时间及生物等因素的影响下逐渐演替出黑色石灰土、棕色石灰土、黄色石灰土和红色石灰土。【目的】研究不同演替阶段石灰土颗粒态有机质(particulate organic matter, POM)和矿物结合态有机质(mineral-associated organic matter, MAOM)的微生物群落特征,为岩溶土壤有机质稳定机制研究提供理论依据。【方法】以广西弄岗国家级自然保护区的黑色石灰土、棕色石灰土、黄色石灰土和红色石灰土为研究对象,运用湿筛法将土壤有机质(soil organic matter, SOM)分为POM和MAOM,分析其理化性质以及微生物群落特征。【结果】石灰土演替过程中POM和MAOM的有机碳、总氮、交换性钙含量均呈下降趋势,且MAOM的C/N均大于POM,POM的C/P均大于MAOM。细菌α多样性在黑色石灰土POM和MAOM中最高,且四类石灰土MAOM的真菌多样性比POM要高。Acidobacteria、Proteobacteria、Ascomycota均为石灰土演替过程中POM和MAOM的优势菌门。总磷是影响石灰土演替过...  相似文献   

12.
Previous studies have shown that the soil enzyme activity and microbial respiration intensities varied in two different types of tidal wetland in Chongming Dongtan, the first a sandy soil in a scouring bank with Phragmites australis and the second a saline-alkali clay soil in silting bank with P. australis/Spartina alterniflora/Scirpus mariqueter, resulting in different organic carbon reservation capabilities; however, their microbial biomass did not differ significantly. To clarify the microbial mechanism that explains the variability of soil respiration among different wetland areas, the community structure and abundance of soil microorganisms in different types of wetland were investigated using denaturing gradient gel electrophoresis (DGGE) plus real-time quantitative polymerase chain reaction (PCR) technologies, and the relationship between soil environmental factors and the microbial community structure and the soil respiration intensity was elucidated. The results revealed that the soil microbial diversity and community structure differed between the two typical wetland areas. The common population was uncultured bacterium in both areas, and the most abundant community was α-, β-, γ-Proteobacteria, which play an important role in the cycling of carbon in soil. However, the abundance of α-Proteobacteria in Area A was 18.2% of that in Area B (P <0.05), while the β-Proteobacteria in Area A was 3.23 times higher than that in Area B (P <0.05). In addition, one cellulose-degrading bacteria, uncultured Bacilli, was detected in Area A. PCA (Principal component analysis) revealed that γ-Proteobacteria and β-Proteobacteria had the greatest impact on soil respiration intensity. Both soil water content and salinity depressed the propagation of β-Proteobacteria. Considering the similar microbial biomass and abundance of γ-Proteobacteria between the two areas, the lower level of β-Proteobacteria, uncultured Bacilli bacterium in Area B might be important factors involved in the lower soil respiration, and hence the higher soil organic carbon reservation capability in Area B.  相似文献   

13.
Menyailo  Oleg V.  Hungate  Bruce A.  Zech  Wolfgang 《Plant and Soil》2002,242(2):183-196
The effects of grassland conversion to forest vegetation and of individual tree species on microbial activity in Siberia are largely unstudied. Here, we examined the effects of the six most commonly dominant tree species in Siberian forests (Scots pine, spruce, Arolla pine, larch, aspen and birch) on soil C and N mineralization, N2O-reduction and N2O production during denitrification 30 years after planting. We also documented the effect of grassland conversion to different tree species on microbial activities at different soil depths and their relationships to soil chemical properties. The effects of tree species and grassland conversion were more pronounced on N than on C transformations. Tree species and grassland conversion did significantly alter substrate-induced respiration (SIR) and basal respiration, but the differences were not as large as those observed for N transformations. Variances in SIR and basal respiration within species were markedly lower than those in N transformations. Net N mineralization, net nitrification, and denitrification potential were highest under Arolla pine and larch, intermediate under deciduous aspen and birch, and lowest beneath spruce and Scots pine. Tree species caused similar effects on denitrification potential, net N mineralization, and net nitrification, but effects on N2O reduction rate were idiosyncratic, indicating a decoupling of N2O production and reduction. We predict that deciduous species should produce more N2O in the field than conifers, and that Siberian forests will produce more N2O if global climate change alters tree species composition. Basal respiration and SIR showed inverse responses to tree species: when basal respiration increased in response to a given tree species, SIR declined. SIR may have been controlled by NH4 + availability and related therefore to N mineralization, which was negatively affected by grassland conversion. Basal respiration appeared to be less limited by NH4 + and controlled mostly by readily available organic C (DOC), which was higher in concentration under forests than in grassland and therefore basal respiration was higher in forested soils. We conclude that in the Siberian artificial afforestation experiment, soil C mineralization was not limited by N.  相似文献   

14.
The response of belowground biological processes to soil N availability in Larix gmelinii (larch) and Fraxinus mandshurica (ash) plantations was studied. Soil and root respiration were measured with Li-Cor 6400 and gas-phase O2 electrodes, respectively. Compared with the control, N fertilization induced the decreases of fine root biomass by 52% and 25%, and soil respiration by 30% and 24% in larch and ash plantations, respectively. The average soil microbial biomass C and N were decreased by 29% and 42% under larch stand and 39% and 47% under ash stand, respectively. While the fine root tissue N concentration under fertilized plots was higher 26% and 12% than that under control plots, respectively, the average fine root respiration rates were increased by 10% and 13% in larch and ash stands under fertilized plot, respectively. Soil respiration rates showed significantly positive exponential relationships with soil temperature, and a seasonal dynamic. These findings suggest that N fertilization can suppress fine root biomass at five branch orders (<2 mm in diameter), soil respiration, and soil microbial biomass C and N, and alter soil microbial communities in L. gmelinii and F. mandshurica plantations.  相似文献   

15.
Large migratory grazers commonly influence soil processes in tundra ecosystems. However, the extent to which grazing effects are limited to intensive grazing periods associated with migration has not previously been investigated. We analyzed seasonal patterns in soil nitrogen (N), microbial respiration and extracellular enzyme activities (EEAs) in a lightly grazed tundra and a heavily grazed tundra that has been subjected to intensive grazing during reindeer (Rangifer tarandus L.) migration for the past 50 years. We hypothesized that due to the fertilizing effect of the reindeer, microbial respiration and EEAs related to microbial C acquisition should be higher in heavily grazed areas compared to lightly grazed areas and that the effects of grazing should be strongest during reindeer migration. Reindeer migration caused a dramatic peak in soil N availability, but in contrast to our predictions, the effect of grazing was more or less constant over the growing season and the seasonal patterns of microbial activities and microbial N were strikingly uniform between the lightly and heavily grazed areas. Microbial respiration and the EEAs of β-glucosidase, acid-phosphatase, and leucine-aminopeptidase were higher, whereas that of N-acetylglucosamidase was lower in the heavily grazed area. Experimental fertilization had no effect on EEAs related to C acquisition at either level of grazing intensity. Our findings suggest that soil microbial activities were independent of grazing-induced temporal variation in soil N availability. Instead, the effect of grazing on soil microbial activities appeared to be mediated by substrate availability for soil microorganisms. Following a shift in the dominant vegetation in response to grazing from dwarf shrubs to graminoids, the effect of grazing on soil processes is no longer sensitive to temporal grazing patterns; rather, grazers exert a consistent positive effect on the soil microbial potential for soil C decomposition.  相似文献   

16.
Microbial enzymes play a critical role in organic matter decomposition and enzyme activity can dynamically respond to shifts in inorganic nutrient and substrate availability, reflecting the nutrient and energy limitation of the microbial community. We characterized microbial enzyme response to shifting nitrogen (N) and phosphorus (P) availability across terrestrial and aquatic environments at the Bear Brook Watershed in Maine, the site of a whole-watershed N enrichment experiment. We compared activity of β-1,4-glucosidase (BG); β-1,4-N-acetylglucosaminidase (NAG); acid phosphatase (AP) in soil, leaf litter in terrestrial and stream habitats and stream biofilms in a reference and N enriched watershed, representing whole-ecosystem response to chronic N enrichment. In addition, we used shorter, experimental P enrichments to address potential P limitation under ambient and elevated N availability. We found that BG and NAG activity were not affected by the long-term N enrichment in either habitat. Enhanced P limitation due to N enrichment was evident only in the aquatic habitats with 5- and 8-fold higher treated watershed AP activity in stream biofilms and stream litter, respectively. Acute P additions reduced AP activity and increased BG activity and these effects were also most pronounced in the streams. The stoichiometry of enzyme activity was constrained across ecosystem compartments with regression slopes for lnBG:lnNAG, lnBG:lnAP, and lnNAG:lnAP close to 1, ranging 1.142–1.241. We found that microbial enzyme response to shifting N and P availability varied among watershed compartments, typically with stronger effects in aquatic habitats. This suggests that understanding the response of ecosystem function to disturbance at the watershed scale requires simultaneous consideration of all compartments.  相似文献   

17.
West Coast prairies in the US are an endangered ecosystem, and effective conservation will require an understanding of how changing climate will impact nutrient cycling and availability. We examined how seasonal patterns and micro-heterogeneity in edaphic conditions (% moisture, total organic carbon, % clay, pH, and inorganic nitrogen and phosphorus) control carbon, nitrogen, and phosphorus cycling in an upland prairie in western Oregon, USA. Across the prairie, we collected soils seasonally and measured microbial respiration, net nitrogen mineralization, net nitrification, and phosphorus availability under field conditions and under experimentally varied temperature and moisture treatments. The response variables differed in the degree of temperature and moisture limitation within seasons and how these factors varied across sampling sites. In general, we found that microbial respiration was limited by low soil moisture year-round and by low temperatures in the winter. Net nitrogen mineralization and net nitrification were never limited by temperature, but both were limited by excessive soil moisture in winter, and net nitrification was also inhibited by low soil moisture in the summer. Factors that enhanced microbial respiration tended to decrease soil phosphorus availability. Edaphic factors explained 76% of the seasonal and spatial variation in microbial respiration, 35% of the variation in phosphorus availability, and 29% of the variation in net nitrification. Much of the variation in net nitrogen mineralization remained unexplained (R 2 = 0.19). This study, for the first time, demonstrates the complex seasonal controls over nutrient cycling in a Pacific Northwest prairie.  相似文献   

18.
To clarify the effects of artifical disturbances on the soil microbial respiration (SMR) of existed tidal wetlands, the SMR of three typical areas in Chongming Dongtan and Jiuduansha of the Yangtze River Estuary, China, were evaluated. The causes of the differences in the SMR were also evaluated by analyzing the microbial activity factors and community structure, as well as the physical-chemical characteristics of the different wetland soils. The results showed that the SMR of the existed wetlands in the area of siltation promotion was significantly higher (P < 0.01) than that of the natural area. Different agricultural practices on the inner land also affected the SMR of the tidal wetlands. Overall, the results indicated that the difference in soil microbial characteristics between the artificially disturbed and natural tidal wetlands may be the primary cause of their different SMR. Path analysis indicated that the correlation between soil bacterial diversity and SMR were especially strong. Phylogenetic analysis showed that the bacterial microbial community structure in wetland soil that had been subject to artificial disturbance was changed due to the alteration of the soil physicochemical characteristics, and Pseudomonas sp., Bacillus sp., Uncultured Lactococcus sp. and Streptococcus sp., which have high heterotrophic metabolism or stress tolerance capability, became the dominant bacterial flora in the artificially disturbed wetland soil, ultimately strengthening the SMR. This may be the essential cause of the higher SMR in wetland soils that have been subjected to artificial disturbance, resulting in a low organic carbon accumulation capability.  相似文献   

19.
To examine the influence of microbial carbon (C) availability on the internal soil nitrogen (N) cycles under moder and mull forest floor types within the same slope sequence, surface mineral soils (0–5cm depth) taken at upper (moder-type forest floor) and lower (mull-type forest floor) positions on a slope in a Cryptomeria japonica D. Don plantation were incubated for 300days. During the incubation, changes in net and gross N transformations, the organic C and N pools, and microbial respiration were monitored. Despite relatively small differences in net N mineralization in both soils, very rapid rates of gross N transformations were found in mull soil during the initial 15days of the experiment. A rapid net nitrification occurred after days 150 and 100 in moder and mull soils, respectively, presumably because of decreased microbial C availability. However, a rapid net nitrification also occurred in the mull soil during the initial 15days when microbial C availability was high, and gross nitrification was detected in both soils, except at day 0 in the moder soil. Changes in gross N transformations and in organic C and N pools over the experiment suggested that the start of rapid net nitrification might be influenced not only by microbial C availability, but also by the microbial availability of N relative to C.  相似文献   

20.
Climate warming in The Arctic may lead to a shift from graminoid to shrub dominance, which may, in turn, alter the structure and function of the ecosystem through shrub influences on the abiotic and/or biotic controls over biogeochemical cycles of carbon (C) and nitrogen (N). In Arctic tundra, near Toolik Lake, Alaska, we quantified net N-mineralization rates under ambient and manipulated snow treatments at three different plant communities that varied in abundance of deciduous shrubs. Our objective was twofold: (1) to test whether the amount of snow that can accumulate around Arctic deciduous shrubs maintains winter soil temperatures high enough to stimulate microbial activity and increase soil N levels (effect of soil microclimate) and (2) to compare the relative effects of snow versus shrubs on N availability via effects on the main drivers of N-mineralization: SOM quality versus microclimate. Winter snow addition had a positive effect on summer, but not winter, N-mineralization rates. Soil organic matter quality had a nine times larger effect on N-mineralization than did soil microclimate in the summer season and only SOM quality had a detectable effect on N-mineralization in the winter. Here we conclude that on a short time scale, shrub interactions with snow may play a role in increasing plant available N, primarily through effects on the summer soil microenvironment. In addition, differences in SOM quality can drive larger differences in net N-mineralization than changes in soil microclimate of the magnitude of what we saw across our three sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号