首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bailey  J.S.  Beattie  J.A.M.  Kilpatrick  D.J. 《Plant and Soil》1997,197(1):127-135
Herbage analysis offers a definitive means of determining the N, P, K and S status of perennial ryegrass swards. Unfortunately, the results of such analyses can be difficult to interpret, simply because the minimum or 'critical' concentration of a nutrient in plant tissue for optimum growth, varies both with crop age and with changes in the concentrations of other nutrients. The Diagnosis and Recommendation Integrated System (DRIS) could help to improve the reliability of such interpretations. Diagnoses made using DRIS are based on relative rather than on absolute concentrations of nutrients in plant tissue, and as such should be comparatively independent of crop age.The aim of this study was to establish and test DRIS methodology for high-yielding perennial ryegrass swards. Because of prohibitive costs, setting up a whole new series of field experiments to evaluate DRIS model parameters for perennial ryegrass was out of the question. Instead, the diagnostic norms and associated coefficients of variation for the model were evaluated using data from a single (large) multi-factorial glasshouse experiment.Of the nutrient ratios selected to form the diagnostic norms, K/N and S/N had the clearest physiological rationale, whereas those involving Ca and Mg in combination with N, P, K and S appeared to have little physiological basis. It was reasoned, though, that because Ca and Mg uptake by plants are largely passive processes (ultimately governed by plant growth), the DRIS indices for these nutrients, together reflected the degree to which growth may be limited by non-nutritional (environmental) factors relative to nutritional ones. Both indices were combined to form a single reference (Ri) index. Without such an internal reference, plant growth could be limited by multiple nutrient deficiencies, and yet N, P, K and S indices might all be close to, or equal to zero (i.e. the optimum), simply because the absolute concentrations of each nutrient (while low) had been in the correct state of balance. Moreover, by effectively using Ca and Mg as internal reference parameters in DRIS, 'nutrient concentrations' which previously formed the basis of the critical value approach, were essentially incorporated into the DRIS model, thus combining the strengths of the two diagnostic approaches; the only difference being that Ca and Mg, and not dry matter, were the internal references against which the levels of the major nutrients were compared.  相似文献   

2.
施肥对土壤潜在养分(磷和钾)和作物产量的影响   总被引:4,自引:1,他引:3  
通过 5年的田间定位试验 ,研究辽河平原土壤磷钾的自然释放速度和不同施肥制度下的肥料效应以及建立宏大养分库的过程。结果表明 ,N、P肥在下辽河平原对玉米具有极好的增产作用 ,但K肥对玉米暂时不表现增产效果 ;对大豆而言 ,P、K肥效果均很明显。不同施肥处理作物吸收养分之间的差异与产量之间的差异相似 ,但其幅度不同 ,前者明显大于后者 ,表明籽实产量的增长与养分消耗不是等比例的。豆茬土壤的供P状况要优于玉米茬 ;随着施肥年限的延长 ,残留肥料P、K进入速效养分库的量减少 ,不同元素其表现也不同。  相似文献   

3.
Glendining  M.J.  Poulton  P.R.  Powlson  D.S.  Jenkinson  D.S. 《Plant and Soil》1997,195(1):83-98
An experiment with 15N-labelled fertilizer was superimposed on the Rothamsted Hoosfield Spring Barley Experiment, started in 1852. Labelled 15NH4 15NO3 was applied in spring at (nominal) rates of 0, 48, 96 and 144 kg N ha-1. The labelled fertilizer was applied to microplots located within four treatments of the original experiment: that receiving farmyard manure (FYM) annually, that receiving inorganic nutrients (PK) annually and to two that were deficient in nutrients: applications were made in two successive years, but to different areas within these original treatments. Maximum yields in 1986 (7.1 t grain ha-1) were a little greater than in 1987. In 1987, microplots on the FYM and PK treatments gave similar yields, provided enough fertilizer N was applied, but in 1986 yields on the PK treatment were always less than those on the FYM treatment, no matter how much fertilizer N was applied. In plots with adequate crop nutrients, about 51% of the labelled N was present in above-ground crop and weed at harvest, about 30% remained in the top 70 cm of soil (mostly in the 0–23 cm layer) and about 19% was unaccounted for, all irrespective of the rate of N application and of the quantity of inorganic N in the soil at the time of application. Less than 4% of the added fertilizer N was present in inorganic form in the soil at harvest, confirming results from comparable experiments with autumn-sown cereals in south-east England. Thus, in this experiment there is no evidence that a spring-sown cereal is more likely to leave unused fertilizer in the soil than an autumn-sown one. With trace applications (ca. 2 kg N ha-1) more labelled N was retained in the soil and less was in the above-ground crop. Where P and K were deficient, yields were depressed, a smaller proportion of the labelled fertilizer N was present in the above-ground crop at harvest and more remained in the soil.Although the percentage uptake of labelled N was similar across the range of fertilizer N applications, the uptake of total N fell off at the higher N rates, particularly on the FYM treatment. This was reflected in the appearance of a negative Added Nitrogen Interaction (ANI) at the highest rate of application. Fertilizer N blocked the uptake of soil N, particularly from below 23 cm, once the capacity of the crop to take up N was exceeded. Denitrification and leaching were almost certainly insufficient to account for the 19% loss of spring-added N across the whole range of N applications and other loss processes must also have contributed.  相似文献   

4.
This paper presents the data from two years of experiments concerned with the application of aerobically-digested sewage sludge, anaerobic lagoon septic sludge, sewage sludge compost or fertilizer to soils for grass forage and feed corn (Zea mays L.) production at two different sites 45 km from Truro, Nova Scotia. Crop yields, plant tissue and Mehlich-1 extractable soil nutrients were evaluated; 15 elements were analyzed in the plant tissue and nine elements in the soil extracts. This paper describes the results of crop yields, plant N, P and K content and Mehlich-1 extractable P and K. The research demonstrated the fertilizer produced higher yields of grass forage than the sludge and the compost but equivalent to the sludge in corn yields. Forage and corn N, P and K contents, however, varied with treatment, crop and year, while the compost-amended soils were highest in extractable nutrients. Both sludges and the compost, therefore, could be effective sources of N, P and K for crop production. Compared to the conventional fertilizer, the nutrient availability from the organic amendments (especially N and P) was considerably lower than the 50% assumed at the start of the experiment; the sludges however, provided higher nutrient availability than the compost.  相似文献   

5.
Vanlauwe  B.  Aihou  K.  Houngnandan  P.  Diels  J.  Sanginga  N.  Merckx  R. 《Plant and Soil》2001,228(1):61-71
Although the West-African moist savanna zone has a high potential for crop production, yields on farmers' fields are, on average, far below this potential, mainly due to the low use of external sources of nutrients. Since the mid-1990s, it has become clear that in order to upgrade crop production to levels needed to sustain the growing population without further degrading the soil resource base, inorganic fertilizers are required. Due to the physico-chemical nature of these soils and the relatively high cost of inorganic fertilizers, a general consensus exists in the research and development community that these inorganic inputs need to be complemented with organic matter. Here, we explore options to produce organic matter in-situ and evaluate the impact of combining inorganic and organic sources of N on maize yields, focusing on the densely populated derived savanna (DS) benchmark of Benin Republic. Although most of the farmers (93%) in this benchmark use inorganic fertilizer, applications rates are low (on average, 27 kg N ha–1). A significant response to N was observed for 96% of the studied farmers' fields.Grain and herbaceous legumes were observed to produce between 383 and 8700 kg dry matter ha–1 in the benchmark area. Inoculation with Rhizobia and inorganic P additions were shown to significantly improve biomass production on sites with low contents of Rhizobia and P. Although maize grain yield was observed to increase significantly following a legume compared with following a maize crop or natural fallow, these increases were insufficient in the case of a cowpea crop or were obtained at the cost of leaving the field `idle' for a whole year in the case of a herbaceous Mucuna fallow. Topping up a cowpea haulms equivalent of 45 kg N ha–1 with 45 kg urea–N ha–1 was shown to give maize yields similar to the yields obtained after applying 90 kg urea–N ha–1 on the poorest fields. Moreover, on these fields, a positive interaction between cowpea–N and urea–N sources of 200 kg grain ha–1 was observed. On the richest fields, the effects of applied organic matter and fertilizer were additive.Agroforestry systems are alternative cropping systems that produce organic matter in-situ. As tree roots go down below the rooting depth of food crops, sub-soil fertility was observed to influence tree biomass production. Yield increases in tree-crop intercrop systems – such as alley cropping – in the absence of inorganic inputs are often reduced by the occurrence of tree-crop competition. In cut-and-carry systems, where tree prunings are harvested from a field adjacent to the crop land, increases in maize grain yield caused by addition of those prunings were observed to be on the low side. Mixing these residues with urea, however, was shown to lead to added benefits of about 500 kg grains ha–1, relative to the treatments with sole inputs of organic matter or urea. Although residue quality was shown to affect maize N uptake in a pot trial, its impact under field conditions was minimal for the range of considered residue qualities. In an alley cropping trial, maize yield was shown to be sustained on a non-degraded site and enhanced on a degraded site, when a minimal amount of mineral fertilizer was added with the prunings, whereas fertilizer application alone failed to do so in both cases.  相似文献   

6.
One-season fallows with legumes such as Crotalaria grahamiana Wight & Arn. and phosphorus (P) fertilization have been suggested to improve crop yields in sub-Saharan Africa. Assessing the sustainability of these measures requires a sound understanding of soil processes, especially transformations of P which is often the main limiting nutrient. We compared plant production, nitrogen (N) and P balances and selected soil properties during 5.5 years in a field experiment with three crop rotations (continuous maize, maize-crotalaria and maize-natural fallow rotation) at two levels of P fertilization (0 and 50 kg P ha?1 yr?1, applied as triple superphosphate) on a Kandiudalfic Eutrudox in western Kenya. The maize yield forgone during growth of the crotalaria fallow was compensated by higher post-fallow yields, but the cumulative total maize yield was not significantly different from continuous maize. In all crop rotations, P fertilization doubled total maize yields, increased N removal by maize and remained without effect on amounts of recycled biomass. Crotalaria growth decreased in the course of the experiment due to pest problems. The highest levels of soil organic and microbial C, N and P were found in the maize-crotalaria fallow rotation. The increase in organic P was not accompanied by a change in resin-extractable P, while H2SO4-extractable inorganic P was depleted by up to 38 kg P ha?1 (1% of total P) in the 0–50 cm layer. Microbial P increased substantially when soil was supplied with C and N in a laboratory experiment, confirming field observations that the microbial biomass is limited by C and N rather than P availability. Maize-legume fallow rotations result in a shift towards organic and microbial nutrients and have to be complemented by balanced additions of inorganic fertilizers. Abbreviations: BNF – biological nitrogen fixation; COM – continuous maize; LR – long rainy season; MCF – maize-crotalaria fallow rotation; MNF – maize-natural fallow rotation; SR – short rainy season; TSP – triple superphosphate.  相似文献   

7.
辽西半干旱区小麦、玉米水肥耦合效应研究   总被引:40,自引:7,他引:33  
采用312-D最优饱和设计和二次通用旋转组合设计,通过8年连续试验,对辽西半干旱区影响农业生产的水、肥因素的耦合作用进行了田间试验.讨论分析了N、P、水及其耦合作用对作物产量的影响.施N、施P、灌水和覆盖秸秆的合理匹配能够明显提高作物产量,否则,不仅增加成本,而且由于加重作物的水分或养分胁迫,造成减产.根据试验结果进行了生产要素的产量效益分析,提出了该地区小麦、玉米生产的水肥最佳经济配比:小麦为生育期供水120.2mm,N58.5kg·hm-2,P2O5123.0kg·hm-2;玉米为生育期灌水173.3mm,N256.5kg·hm-2,P2O585.5kg·hm-2,覆秸秆8509.5kg·hm-2.  相似文献   

8.
随着对气候变化和粮食安全的的日益认识,低碳农业引起了人们的广泛关注.低碳农业的研究需要综合考虑作物产量和温室气体排放,改进氮肥管理可能有助于减缓作物生产系统的温室气体排放,同时实现对作物稳产甚至高产的需求.本试验利用生命周期法研究了不同施氮量(150、225、300 kg N·hm-2)对春玉米-晚稻轮作系统碳足迹的影响.结果表明: 随着氮肥用量增加,两季作物生产过程中温室气体和碳足迹增加.在春玉米生产过程中,氮肥生产和施用引起的温室气体排放对碳足迹贡献最大,占36.2%~50.2%;而在晚稻生产中,甲烷的排放贡献最大,占42.8%~48.0%,并且随氮肥用量增加甲烷排放增加.当氮肥施用量减少25%(225 kg N·hm-2)和50%(150 kg N·hm-2)时,春玉米生产的温室气体排放分别下降了21.9%和44.3%,碳足迹分别下降了20.3%和39.1%;晚稻生产的温室气体排放分别下降了12.3%和20.4%,碳足迹分别降低了13.7%和16.7%.氮肥减量对春玉米产量无显著影响,而晚稻产量在225 kg N·hm-2施肥量下最高.因此,春玉米氮肥用量降低至150 kg N·hm-2和晚稻氮肥用量降低至225 kg N·hm-2不仅能够保持作物高产,而且还能大幅度降低作物系统的碳足迹.  相似文献   

9.
为明确长期氮磷钾肥配施下贵州典型黄壤玉米产量、氮磷钾肥增产效应及土壤养分的演变特征,利用国家贵阳黄壤肥力与肥效长期定位试验,研究氮磷钾平衡施肥(NPK)与缺素施肥(N、NK、NP、PK)对玉米相对产量、氮磷钾肥增产贡献率及土壤氮磷钾素养分可持续性指数等的影响.结果表明: 氮磷钾平衡施肥有显著增产效果,玉米相对产量均值为:NPK>NP>NK>PK>CK;氮、磷、钾肥增产贡献率和农学利用率均为氮肥>磷肥>钾肥,施肥依存度为氮、磷、钾肥配施>氮肥>磷肥>钾肥,但缺磷处理(NK)玉米相对产量以每年1.4%的速度极显著下降,磷肥贡献率和依存度则以每年2.3%和1.4%的速度极显著上升,最终磷肥对玉米生产的影响逐渐与氮肥持平;缺磷处理土壤pH值和有机质含量均最低,而缺氮处理则较高;施用化学磷肥可提高黄壤磷素可持续性指数,但氮肥和钾肥对黄壤氮素和钾素可持续性指数无显著影响.综上,平衡施肥是贵州典型黄壤地区玉米高产的重要保障,其中磷肥与氮肥同等重要,但长期单施化肥尤其是缺磷处理不利于黄壤养分的可持续利用.  相似文献   

10.
A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha−1 yr−1 for wheat and 560.6 kg ha−1 yr−1 for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha−1 yr−1. The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP.  相似文献   

11.
三倍体毛白杨叶片营养DRIS诊断   总被引:4,自引:0,他引:4  
采用L1645正交设计法对造林后的三倍体毛白杨进行了施肥试验,运用DRIS诊断法对其叶片营养元素进行了研究.结果表明,以造林第3年7~10月份三倍体毛白杨叶片N、P、K元素浓度测定值为依据,成功制定了DRIS图解法及指数法的营养诊断标准,经检验取得了较高的诊断正确率.三倍体毛白杨叶片N、P、K三元素浓度最佳比值范围为N/P=19.116±1.270;N/K=3.054±0.289;K/P=6.356±0.651.DRIS诊断标准分别经各月份林木叶片养分元素浓度回代检验,林木N、P、K需肥次序与实际施肥量基本一致,其中以9月份林木各处理为例,诊断正确率达到了80%以上.3年生三倍体毛白杨林木对N、P、K需求次序为N>K>P,与DRIS诊断结果一致.运用DRIS法诊断得到的三倍体毛白杨叶片养分浓度最佳比值范围将为三倍体毛白杨的合理施肥,大面积推广提供科学依据.  相似文献   

12.
Two NPK factorial trials, one in Vietnam and one in The Netherlands were (re-)analyzed to find causes of success or failure with regard to sustained soil productivity, using the concept of crop nutrient equivalents (CNE). A (k)CNE is the quantity of a nutrient that, under conditions of balanced nutrition, has the same effect on yield as 1 (k)g of nitrogen. The percentages the nutrients take in the (k)CNE sum of N, P and K are plotted along the sides of a triangle. Soil, crop and input NPK are indicated in the triangle. Balanced crop NPK is found in the centre of the triangle, and required NPK inputs are on a straight line in the extension of the line trough the point of soil NPK and the centre. Experimental inputs were compared with inputs required for balanced NPK. In Vietnam, responses to P and soil available N:P:K pointed to severe shortage of P. Rice yields increased over time in dry but not in wet seasons. The lower yields in wet seasons were ascribed to insufficiently long periods between the dry and the next wet seasons for replenishment of labile soil P. In the Netherlands, four crops were grown in rotation on a former sea bottom. Only N had a strong effect on yield. Soil available N:P:K revealed low N, very high K and medium P. Recovery of fertilizer N was high because of capillary rise of groundwater and absence of leaching. In both trials, first-season chemical crop analysis would directly have detected disproportions of soil available N, P and K. This knowledge could have improved the experimental designs, optimized nutrient use efficiency and minimized losses of N and K to the environment.  相似文献   

13.
种养一体规模化、集约化是华北平原农业发展的必然趋势,而氮素是连接种植养殖的主要养分资源,以河北津龙循环农业园区为例,采用文献资料、实地调查方法分析农场水平氮素流动特征及利用率,并通过情景分析方法提出农场氮素管理措施,为实现农场水平氮养分资源高效利用、提高农场生产系统生产力和改善华北平原循环农业模式提供技术支撑和科学依据.结果表明: 在农场水平下,化肥和有机肥输入氮量674.6 kg·hm-2·a-1,占总输入氮量的88.3%,氮利用率为41.5%,种植系统氮盈余量190.7 kg·hm-2·a-1,施氮量过多是造成种植系统氮利用率低和氮素盈余量高的主要原因.养殖系统中外购饲料提供氮量占饲料总输入氮量的83.2%,粪尿排氮量为776.6 t·a-1,而还田比例仅为36.3%,氮利用率19.7%.农场水平氮总利用率为40.7%.情景分析表明,农田减少化肥施氮量50%(情景1)、增加来自农场内部玉米籽粒产量(情景2)措施,可分别使种植系统氮利用率提高34.6%和15.6%,同时农场水平氮总利用率分别提高18.7%和9.8%;另外,优化养殖系统饲料结构(情景3),可使氮总利用率提高19.1%.因此,减少化肥氮施用量、调整作物种植结构、优化饲料结构等,是提高农场氮生产力和实现环境友好双赢效果的措施和途径.  相似文献   

14.
Tomato is an important field crop, and nutritional imbalances frequently reduce its yield. Diagnosis and Recommendation Integrated System (DRIS), uses ratios for nutrient deficiency diagnosis instead of absolute concentration in plant tests. In this study, local DRIS norms for the field tomatoes were established and the nutrient(s) limiting tomatoes yield were determined. Tomato leaves were analyzed for nutrients, to identify nutritional status using the DRIS approach. One hundred tomatoes fields were selected from Chatter Plain Khyber Pakhtunkhwa and the Sheikupura Punjab Pakistan. The first fully matured leaf was sampled, rinsed, dried and ground for analyzing P, K, Ca, Mg, Cu, Fe, Mn and Zn using an Inductively Coupled Plasma Atomic Emission Spectrophotometer (ICP AES). Plant tissue N and S were measured by the combustion method. The tomatoes yields were recorded at each location. The data were divided into high-yielding (≥3.79 kg/10 plant) and low-yielding (<3.79 kg/10 plant) populations and norms were computed using standard DRIS procedures. High-yielding plant population had a statistically greater mean S and Fe than the low-yielding population. The average balance index, the sum of functions, for S and Fe were −11.04 and −5.17 which reflected deficiency of S and Fe. Plant nutrients norms established may optimize plant nutrition in field tomatoes for high yield.  相似文献   

15.
To effectively manage soil fertility, knowledge is needed of how a crop uses nutrients from fertilizer applied to the soil. Soil quality is a combination of biological, chemical and physical properties and is hard to assess directly because of collective and multiple functional effects. In this paper, we focus on the application of these concepts to agriculture. We define the baseline fertility of soil as the level of fertility that a crop can acquire for growth from the soil. With this strict definition, we propose a new crop yield-fertility model that enables quantification of the process of improving baseline fertility and the effects of treatments solely from the time series of crop yields. The model was modified from Michaelis-Menten kinetics and measured the additional effects of the treatments given the baseline fertility. Using more than 30 years of experimental data, we used the Bayesian framework to estimate the improvements in baseline fertility and the effects of fertilizer and farmyard manure (FYM) on maize (Zea mays), barley (Hordeum vulgare), and soybean (Glycine max) yields. Fertilizer contributed the most to the barley yield and FYM contributed the most to the soybean yield among the three crops. The baseline fertility of the subsurface soil was very low for maize and barley prior to fertilization. In contrast, the baseline fertility in this soil approximated half-saturated fertility for the soybean crop. The long-term soil fertility was increased by adding FYM, but the effect of FYM addition was reduced by the addition of fertilizer. Our results provide evidence that long-term soil fertility under continuous farming was maintained, or increased, by the application of natural nutrients compared with the application of synthetic fertilizer.  相似文献   

16.
宇万太  马强  张璐  周桦  沈善敏 《生态学杂志》2007,26(11):1798-1803
根据1991—2002年共12年的田间试验,研究了不同施肥制度下,茬口对作物产量增益、土壤养分状况及对施肥贡献率的影响。结果表明:与重茬相比,豆茬较有利于作物的高产和稳产;施用氮肥使其产量增益减小,并且施用氮肥愈多,产量增益愈小;增施有机肥情况下,产量增益的减小更为明显。在土壤养分方面,豆茬不仅能提高土壤的供氮能力,还能改善土壤的供磷、供钾量,有助于土壤养分状况的改善;施肥制度进步能够提高作物产量;施肥贡献率随着施肥制度的进步逐渐增大,但其增幅趋缓;随着施肥制度的进步,施肥贡献率在豆茬和重茬上所表现的差异逐渐缩小,最后趋同。  相似文献   

17.
This study evaluated the effect of nutrient application on the regrowth dynamics of secondary fallow vegetation in an intensely exploited shifting cultivation area in the eastern Amazon region of Brazil. The importance of N, P, K, Ca, Mg, S and a mixture of micronutrients was tested in a minus-one-trial by comparison with a full complement of nutrients and unfertilized control plots. Fertilizers were applied three times during the experiment and their effects were monitored over a period of 2 1/2 years. Prior to the second fertilization, one third of each experimental plot was cleared of the vegetation cover and planted in maize, prior to the third fertilizer application these subplots were planted in sorghum. Biomass of maize and sorghum were used to indicate nutrient constraints and fertilizing effects due to the different treatments. Both crops were limited by P- and N-availability, with greater responses to P. The initial fertilization did not affect the biomass accumulation of the secondary vegetation during the first 15 months, but two additional applications significantly increased biomass in the complete fertilizer treatment compared to the unfertilized control. Biomass accumulation was primarily P-limited, N-limitation was apparent but not significant. The remaining nutrients did not affect plant growth. Fertilization favored production of nutrient-rich leaves. Application of readily available nutrients gave grasses a competitive edge over slower reacting woody vegetation. Fertilization also caused significant shifts in the contribution of woody species to biomass accumulation, as could be demonstrated for two prominent pioneer tree species. Growth response to fertilization as well as the primary limiting nutrient varied among seven dominant species monitored in the secondary vegetation. We conclude that growth of tropical secondary vegetation can be nutrient limited and it might respond significantly to additional nutrients by increasing biomass production.  相似文献   

18.
Critical leaf nutrient concentrations have often been used to diagnose the nutritional causes of crop underperformance. Unfortunately, these diagnostic criteria are not available for mature, tuber-bearing sweet potato plants (the word ‘tuber’ being used to describe a swollen root rather than a swollen stem). The Diagnosis and Recommendation Integrated System (DRIS), however, provides a reliable means of linking leaf nutrient concentrations to the yield of sweet potato tubers, and may be developed for this crop using existing data from regional crop surveys. In the present study, tuber yield and leaf nutrient concentration data from a survey of sweet potato gardens conducted in the Papua New Guinea (PNG) highlands in 2005 were used to establish DRIS N, P, K, and S norms and statistical parameters for sweet potato. Although the database was relatively small, the norms derived for nutrient ratios of key biological significance, i.e. N/S and K/N, were within the expected narrow ranges for higher plants, giving credibility to both the database and the DRIS model. Data from future surveys and field trials may subsequently be used to enlarge the database allowing the refinement of model parameters and hopefully an expansion of diagnostic scope to include other macro and micro-nutrients. As it stands, though, this preliminary DRIS model for sweet potato is possibly the best diagnostic tool currently available for evaluating the N, P, K and S statuses of sweet potato crops in the pacific region.  相似文献   

19.
The need to promote fertiliser use by African smallholder farmers to counteract the current decline in per capita food production is widely recognised. But soil heterogeneity results in variable responses of crops to fertilisers within single farms. We used existing databases on maize production under farmer (F-M) and researcher management (R-M) to analyse the effect of soil heterogeneity on the different components of nutrient use efficiency by maize growing on smallholder farms in western Kenya: nutrient availability, capture and conversion efficiencies and crop biomass partitioning. Subsequently, we used the simple model QUEFTS to calculate nutrient recovery efficiencies from the R-M plots and to calculate attainable yields with and without fertilisers based on measured soil properties across heterogeneous farms. The yield gap of maize between F-M and R-M varied from 0.5 to 3 t grain ha?1 season?1 across field types and localities. Poor fields under R-M yielded better than F-M, even without fertilisers. Such differences, of up to 1.1 t ha?1 greater yields under R-M conditions are attributable to improved agronomic management and germplasm. The relative response of maize to N–P–K fertilisers tended to decrease with increasing soil quality (soil C and extractable P), from a maximum of 4.4-fold to ?0.5-fold relative to the control. Soil heterogeneity affected resource use efficiencies mainly through effects on the efficiency of resource capture. Apparent recovery efficiencies varied between 0 and 70% for N, 0 and 15% for P, and 0 to 52% for K. Resource conversion efficiencies were less variable across fields and localities, with average values of 97 kg DM kg?1 N, 558 kg DM kg?1 P and 111 kg DM kg?1 K taken up. Using measured soil chemical properties QUEFTS over-estimated observed yields under F-M, indicating that variable crop performance within and across farms cannot be ascribed solely to soil nutrient availability. For the R-M plots QUEFTS predicted positive crop responses to application of 30 kg P ha?1 and 30 kg P ha?1 + 90 kg N ha?1 for a wide range of soil qualities, indicating that there is room to improve current crop productivity through fertiliser use. To ensure their efficient use in sub-Saharan Africa mineral fertilisers should be: (1) targeted to specific niches of soil fertility within heterogeneous farms; and (2) go hand-in-hand with the implementation of agronomic measures to improve their capture and utilisation.  相似文献   

20.
J Liu  F Zhang 《应用生态学报》2000,11(3):360-364
The effects of long-term applying fertilizer P and manure on the pools of soil total P and inorganic P and the crop yield in rotation of winter wheat-summer maize-->spring maize were studied. The results showed that the pool of soil total P and inorganic P were increased by applying fertilizer P and manure, and the phosphorus mostly accumulated in soil was inorganic P. The critical amounts of fertilizer P (P2O5) for balancing soil P were 94.7 kg.hm-2 to winter wheat-summer maize and 51.5 kg.hm-2 to spring maize. Based on regression equations, the application rates of fertilizer P (P2O5) for economic optimum and highest yields were 135.8 and 149.8 kg.hm-2 to winter wheat-summer maize, and 88.6 and 95.9 kg.hm-2 to spring maize, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号