共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A new Basidiomycete showed significantly higher degradation rates, 10,000 times for H2S,40 times for dimethyl sulfide(DMS),15 times for methanethiol(MT) and 4 times for dimethyl disulfide(DMDS) than any reported previously. The optimal pH for degradation activity was around 7. Degradation rate for each gas when mixed gases of H2S,MT and DMS were supplied was almost the same as that for single gas supply. H2S was oxidized to SO4 via SO3 and DMS was stoichiometrically converted to dimethyl sulfoxide(DMSO). 相似文献
2.
Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m 总被引:2,自引:0,他引:2
Methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide were efficiently removed from contaminated air by Thiobacillus thioparus TK-m and oxidized to sulfate stoichiometrically. More than 99.99% of dimethyl sulfide was removed when the load was less than 4.0 g of dimethyl sulfide per g (dry cell weight) per day. 相似文献
3.
Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens 总被引:1,自引:0,他引:1
Clara Pliego Cayo Ramos Antonio de Vicente Francisco M. Cazorla 《Plant and Soil》2011,341(1-2):505-520
Previous studies relating root systems and drought tolerance in oil palm focused mainly on biomass. Yet, total root length (TRL), total root surface area (TRS), and root distribution in the soil better determine water uptake. These morphological traits were studied on 3 oil palm genotypes displaying a contrasting drought tolerance. A new concept of potential root water extraction ratio (PRER) was developed using measured half-distances between roots and some assumptions about the distance of water migration from soil to root. PRER was determined in conjunction with soil moisture extraction efficiency (SMEE). The presumed tolerant genotype (T) had higher TRL, TRS and PRER than the susceptible genotype (S), whilst the performance of the control genotype (I) was intermediate. Surprisingly, during a period of moderate water deficit, T had a lower SMEE than S, which was interpreted successfully with PRER, as the result of a better access to a large volume of soil and of a slower drying out of the soil around the roots. PRER appears as a helpful indicator for comparing or ranking genotypes, and for addressing better the complexity of the genetic variability of drought tolerance. 相似文献
4.
Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m. 总被引:2,自引:2,他引:2
下载免费PDF全文

Methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide were efficiently removed from contaminated air by Thiobacillus thioparus TK-m and oxidized to sulfate stoichiometrically. More than 99.99% of dimethyl sulfide was removed when the load was less than 4.0 g of dimethyl sulfide per g (dry cell weight) per day. 相似文献
5.
《Journal of Marine Biotechnology》1997,5(2-3):158-161
6.
7.
The effects of soil amendment with rapeseed meal from Brassica napus cv. 'Dwarf Essex' (high glucosinolate concentrations) and 'Stonewall' (low glucosinolate concentrations) on the biological control activity of Trichoderma harzianum towards Sclerotinia sclerotiorum and Aphanomyces euteiches were evaluated. Trichoderma harzianum added to soil reduced myceliogenic germination of S. sclerotiorum by 94%, but did not affect carpogenic germination. In contrast, 100% reduction in carpogenic germination was observed in soil amended with Dwarf Essex meal, along with a 33% reduction in myceliogenic germination. With Stonewall meal as soil amendment, carpogenic germination was reduced by 44% and myceliogenic germination was not affected. Both Dwarf Essex and Stonewall meals inhibited colonization of sclerotia in soil by T. harzianum, from 100% to 0% and 8%, respectively, so that biocontrol activity of T. harzianum was reduced in the presence of either meal. Aphanomyces euteiches root rot of pea was significantly reduced by T. harzianum alone (100%), by amendment with Dwarf Essex meal alone (77%), and by T. harzianum in combination with Dwarf Essex meal (100%). Amendment with Stonewall meal alone did not control root rot, and combination of Stonewall meal with T. harzianum reduced the biocontrol efficacy of T. harzianum. 相似文献
8.
Li Pei-Feng Gao Pei-Pei Liu Chun-Ying Zhang Hong-Hai Yang Gui-Peng 《Journal of applied phycology》2022,34(1):219-230
Journal of Applied Phycology - Dimethyl sulfide (DMS) is an important and dominant trace gas that is transferred from the ocean to the atmosphere; however, the production of DMS from marine algae... 相似文献
9.
10.
The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms 总被引:5,自引:0,他引:5
Jos M. Raaijmakers Timothy C. Paulitz Christian Steinberg Claude Alabouvette Yvan Moënne-Loccoz 《Plant and Soil》2009,321(1-2):341-361
The rhizosphere is a hot spot of microbial interactions as exudates released by plant roots are a main food source for microorganisms and a driving force of their population density and activities. The rhizosphere harbors many organisms that have a neutral effect on the plant, but also attracts organisms that exert deleterious or beneficial effects on the plant. Microorganisms that adversely affect plant growth and health are the pathogenic fungi, oomycetes, bacteria and nematodes. Most of the soilborne pathogens are adapted to grow and survive in the bulk soil, but the rhizosphere is the playground and infection court where the pathogen establishes a parasitic relationship with the plant. The rhizosphere is also a battlefield where the complex rhizosphere community, both microflora and microfauna, interact with pathogens and influence the outcome of pathogen infection. A wide range of microorganisms are beneficial to the plant and include nitrogen-fixing bacteria, endo- and ectomycorrhizal fungi, and plant growth-promoting bacteria and fungi. This review focuses on the population dynamics and activity of soilborne pathogens and beneficial microorganisms. Specific attention is given to mechanisms involved in the tripartite interactions between beneficial microorganisms, pathogens and the plant. We also discuss how agricultural practices affect pathogen and antagonist populations and how these practices can be adopted to promote plant growth and health. 相似文献
11.
12.
Masae Horinouchi Takako Yoshida Hideaki Nojiri Hisakazu Yamane Toshio Omori 《Biotechnology letters》1999,21(11):929-933
As a result of the determination of dimethyl sulfide (DMS) oxidizing activity of bacterial aromatic compound oxygenases, multicomponent monooxygenases (DmpKLMNOP from Pseudomonas sp. CF600, AphKLMNOP from Comamonas testosteroni TA441, and TodABCDEF from Pseudomonas sp. JS150), single component monooxygenases (TfdB from Pseudomonas putida EST4011 and XylMA from Pseudomonas putida mt-2), and dioxygenases (CumA1A2A3A4 from Pseudomonas fluorescens IP01 and PahAaAbAcAd from Pseudomonas putida OUS82) showed DMS-oxidizing activity, while CarAaAcAd from Pseudomonas sp. CA10 and SoxC from Rhodococcus sp. IGTS8 did not. These results indicate the possibilities that these oxygenases might oxidize DMS to DMSO under the natural condition in the environment.Present address: Laboratory of Microbiology, The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan 相似文献
13.
Oxidation of dimethyl sulfide byPseudomonas acidovorans DMR-11 isolated from peat biofilter 总被引:1,自引:0,他引:1
Summary
Pseudomonas acidovorans DMR-11, capable of oxidizing dimethyl sulfide (DMS), was isolated from peat biofilter. DMS as a sole carbon or energy source was not degraded, but it was co-degraded in the medium containing organic carbon sources. The removal rate of DMS in heat-treated glucose medium was 1.12×10–17 mole/h cell at 30 °C. Dimethyl sulfoxide (DMSO) was the only product of DMS oxidation and was formed stoichiometrically. DMS was reversibly evolved in excess of DMSO. The cell free extract of strain DMR-11 oxidized DMS in presence of NADPH. 相似文献
14.
Dimethyl sulfide dehydrogenase from the purple phototrophic bacterium Rhodovulum sulfidophilum catalyzes the oxidation of dimethyl sulfide to dimethyl sulfoxide. Recent DNA sequence analysis of the ddh operon, encoding dimethyl sulfide dehydrogenase (ddhABC), and biochemical analysis (1) have revealed that it is a member of the DMSO reductase family of molybdenum enzymes and is closely related to respiratory nitrate reductase (NarGHI). Variable temperature X-band EPR spectra (120-122 K) of purified heterotrimeric dimethyl sulfide dehydrogenase showed resonances arising from multiple redox centers, Mo(V), [3Fe-4S](+), [4Fe-4S](+), and a b-type heme. A pH-dependent EPR study of the Mo(V) center in (1)H(2)O and (2)H(2)O revealed the presence of three Mo(V) species in equilibrium, Mo(V)-OH(2), Mo(V)-anion, and Mo(V)-OH. Above pH 8.2 the dominant species was Mo(V)-OH. The maximum specific activity occurred at pH 9.27. Comparison of the rhombicity and anisotropy parameters for the Mo(V) species in DMS dehydrogenase with other molybdenum enzymes of the DMSO reductase family showed that it was most similar to the low-pH nitrite spectrum of Escherichia coli nitrate reductase (NarGHI), consistent with previous sequence analysis of DdhA and NarG. A sequence comparison of DdhB and NarH has predicted the presence of four [Fe-S] clusters in DdhB. A [3Fe-4S](+) cluster was identified in dimethyl sulfide dehydrogenase whose properties resembled those of center 2 of NarH. A [4Fe-4S](+) cluster was also identified with unusual spin Hamiltonian parameters, suggesting that one of the iron atoms may have a fifth non-sulfur ligand. The g matrix for this cluster is very similar to that found for the minor conformation of center 1 in NarH [Guigliarelli, B., Asso, M., More, C., Augher, V., Blasco, F., Pommier, J., Giodano, G., and Bertrand, P. (1992) Eur. J. Biochem. 307, 63-68]. Analysis of a ddhC mutant showed that this gene encodes the b-type cytochrome in dimethyl sulfide dehydrogenase. Magnetic circular dichroism studies revealed that the axial ligands to the iron in this cytochrome are a histidine and methionine, consistent with predictions from protein sequence analysis. Redox potentiometry showed that the b-type cytochrome has a high midpoint redox potential (E degrees = +315 mV, pH 8). 相似文献
15.
A Bacillus species harvested from the environment is metalloid resistant and, when grown anaerobically in complex growth medium and amended with the selenium oxyanion selenate, selenite, or selenocyanate, produces volatile organoselenium compounds in bacterial culture headspace. Two novel compounds so far undetected in bacterial culture headspace, CH3Se2SCH3 and CH3SeSeSeCH3, are produced and can be detected using solid-phase microextraction and gas chromatography with either fluorine-induced chemiluminescence or mass spectrometric detection. Differences in the electron impact fragmentation pattern of the mixed sulfur/selenide compounds allow the tentative differentiation between the symmetric and asymmetric isomers in this bacterium’s headspace in favor of the asymmetric CH3SeSeSCH3 isomer. 相似文献
16.
Aerobic degradation of dimethyl sulfide (DMS), previously described for thiobacilli and hyphomicrobia, involves catabolism to sulfide via methanethiol (CH3SH). Methyl groups are sequentially eliminated as HCHO by incorporation of O2 catalyzed by DMS monooxygenase and methanethiol oxidase. H2O2 formed during CH3SH oxidation is destroyed by catalase. We recently isolated Thiobacillus strain ASN-1, which grows either aerobically or anaerobically with denitrification on DMS. Comparative experiments with Thiobacillus thioparus T5, which grows only aerobically on DMS, indicate a novel mechanism for aerobic DMS catabolism by Thiobacillus strain ASN-1. Evidence that both organisms initially attacked the methyl group, rather than the sulfur atom, in DMS was their conversion of ethyl methyl sulfide to ethanethiol. HCHO transiently accumulated during the aerobic use of DMS by T. thioparus but not with Thiobacillus strain ASN-1. Catalase levels in cells grown aerobically on DMS were about 100-fold lower in Thiobacillus strain ASN-1 than in T. thioparus T5, suggesting the absence of H2O2 formation during DMS catabolism. Also, aerobic growth of T. thioparus T5 on DMS was blocked by the catalase inhibitor 3-amino-1,2,4-triazole whereas that of Thiobacillus strain ASN-1 was not. Methyl butyl ether, but not CHCl3, blocked DMS catabolism by T. thioparus T5, presumably by inhibiting DMS monooxygenase and perhaps methanethiol oxidase. In contrast, DMS metabolism by Thiobacillus strain ASN-1 was unaffected by methyl butyl ether but inhibited by CHCl3. DMS catabolism by Thiobacillus strain ASN-1 probably involves methyl transfer to a cobalamin carrier and subsequent oxidation as folate-bound intermediates. 相似文献
17.
Fungi and Gram-negative bacteria as soilborne minor pathogens of goat's rue (Galega orientalis Lam.)
JARI P T VALKONEN WIPATORN von HEIROTH MERVI-LEENA SAVELA 《The Annals of applied biology》1993,123(2):257-269
Fungi and Gram-negative bacteria were isolated from inside the roots of field-grown goat's rue (Galega orientalis). Fungi were isolated from three plants out of a total of 45 tested. Two multinuclear Rhizoctonia solani isolates were identified to the anastomosis group 5 (R. solani AG-5-Gal) using pairings with known AG test cultures. One fungal isolate was identified to Phoma chrysanthemicola. Gram-negative bacteria were isolated from three plants out of 25 tested. They were identified using classical methods, the BIOLOG identification system based on the utilisation of 95 different carbon sources, and the MIDI system for the analysis of whole cell fatty acids. The two latter systems were computer-associated and utilised an extensive reference library of isolates. One bacterial isolate was identified as Enterobacter agglomerans and two isolates as Pseudomonas marginalis. R. solani AG-5-Gal reduced the emergence of Lupinus luteus, L. polyphyllus and french bean (Phaseolus vulgaris) and the growth of broad bean (Viciafaba), L. luteus and french bean, but did not cause obvious damage in goat's rue and pea (Pisum sativum). However, R. solani AG-5-Gal was re-isolated from the roots of all the test plant species following inoculation. P. chrysanthemicola reduced the emergence of L. polyphyllus and the growth of goat's rue, french bean and broad bean, and it was re-isolated from all of the test plant species (except for french bean) following inoculation. All the bacteria reduced the emergence of french bean, but not that of goat's rue and pea, when applied to the soil. When the roots were dipped into bacterial suspension, all the bacteria damaged french bean and L. polyphyllus. Additionally, P. marginalis JV3 damaged goat's rue and red clover. The pathogenicity of the fungi and bacteria were not changed when they were double-inoculated in pairs, except for R. solani AG-5-Gal and P. marginalis JV2 which reduced the emergence of goat's rue when inoculated together but not when inoculated separately. 相似文献
18.
Plant Cell, Tissue and Organ Culture (PCTOC) - 相似文献
19.