首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phosphorus (P) loss from land can impair surface water quality. Losses can occur from soil and plant components. While it is known that P losses increase with soil P concentration, it is not known how losses from pasture plants vary with soil P concentration or between different forages. We examined total P and filterable reactive P (FRP) in water extracts of plant shoots, used as a measure of potential P loss to surface runoff, in different forage species relative to soil P concentration in field trials and a glasshouse experiment. The mean total P concentration of 16 forage species in grazed field plots was greater (P?<?0.01; LSD05?=?117 mg kg?1) in legumes (3,480 mg kg?1) than for grasses (3,210 mg kg?1). Total plant P concentrations of grasses and legumes increased with soil Mehlich-3 P concentrations in both glasshouse and field trials with concentrations close to 6,000 mg kg?1 in arrowleaf clover at 680 mg kg?1 Mehlich-3 soil P. FRP in water extracts of plant shoots increased relative to plant total P as soil Mehlich-3 P increased, with the greatest concentrations shown by crimson clover and arrowleaf clover. Analysis of water extracts of ryegrass and clover herbage from a field trial showed that while FRP was increasing, phytase-available-P decreased significantly from about 70% of filterable unreactive P at the lowest Mehlich-3 P concentrations, to close to zero at 200 mg kg?1 Mehlich-3 P. The wide variation, and enrichment of FRP in water extracts and total P with increasing Mehlich-3 P among species, indicates that cultivar and site selection and sward management provide a potential option to mitigate P loss to surface waters.  相似文献   

2.
A 3-year field lysimeter experiment was performed to determine transformations of 15N-labeled cauliflower (Brassica oleracea) residues incorporated into lysimeter topsoil in a potato (Solanum tuberosum)/cauliflower rotation. Only the potato crop received 150 kg mineral N ha?1y?1. Cauliflower yields were high (12–13 t fresh matter ha?1), and N returned to the soil represented 51% of the aboveground plant N uptake. The 15N recovery by the potato/cauliflower rotation began at 46%, then decreased sharply to 12 and 6% for the second and third year, respectively. The cumulative 15N leaching rate was only 3%; 63% remained in the soil 3 years after incorporation. Soil N mineralization rates described by a parallel first-order kinetic model predicted 27, 7 and 6% of residual N lost annually during the first, second and third year, respectively. Thus, a potato/cauliflower rotation with moderate N fertilization optimizes N recovery of crop residues and can control leaching loss efficiently.  相似文献   

3.
Methanotrophs must become established and active in a landfill biocover for successful methane oxidation. A lab-scale biocover with a soil mixture was operated for removal of methane and nonmethane volatile organic compounds, such as dimethyl sulfide (DMS), benzene (B), and toluene (T). The methane elimination capacity was 211?±?40 g?m?2 d?1 at inlet loads of 330–516 g?m?2 d?1. DMS, B, and T were completely removed at the bottom layer (40–50 cm) with inlet loads of 221.6?±?92.2, 99.6?±?19.5, and 23.4?±?4.9 mg m?2 d?1, respectively. The bacterial community was examined based on DNA and RNA using ribosomal tag pyrosequencing. Interestingly, methanotrophs comprised 80 % of the active community (RNA) while 29 % of the counterpart (DNA). Types I and II methanotrophs equally contributed to methane oxidation, and Methylobacter, Methylocaldum, and Methylocystis were dominant in both communities. The DNA vs. RNA comparison suggests that DNA-based analysis alone can lead to a significant underestimation of active members.  相似文献   

4.
Greenhouse and in-situ field experiments were used to determine the potential for phytoextraction to remediate soil contaminated with Cd from municipal solid waste (MSW) and sewage sludge (SS) compost application at a Peterborough (Canada) site. For the greenhouse experiment, one native (Chenopodium album) and three naturalized (Poa compressa, Brassica juncea, Helianthus annuus) plant species were planted in soil containing no detectable Cd (<1.0 μg·g?1), and soil from the site containing low (5.0 ± 0.3 μg·g?1 Cd), and high (16.5 ± 1.2 μg?g?1 Cd) Cd concentrations. Plant uptake was low (root BAFs ≤0.5) for all species except P. compressa in the low Cd treatment (BAF 1.0). Only B. juncea accumulated Cd in its shoots, though uptake was low (BAF ≤0.3). For the field experiment, B. juncea was planted in-situ in areas of low and high Cd concentrations. Brassica juncea Cd uptake was low (root and shoot BAFs <0.2) in both treatments. Sequential extraction analysis indicated that Cd is retained primarily by low bioavailability soil fractions, and phytoextraction is therefore not feasible at this site. Though low Cd bioavailability has negative implications for Cd phytoextraction from MSW/SS compost-based soils, it may limit receptor exposure to Cd sufficiently to eliminate the potential for risk at this site.  相似文献   

5.

Aims

A comparison was performed between plant species to determine if extractable, rather than total soil Se, is more effective at predicting plant Se accumulation over a full growing season.

Methods

Durum wheat (Triticum turgidum L.) and spring canola (Brassica napus L.) were sown in potted soil amended with 0, 0.1, 1.0, or 5.0 mg kg?1 Se as SeO4 2? or SeO3 2?. In addition, SeO4 2?-amended soils were amended with 0 or 50 mg kg?1 S as SO4 2?. Soils were analyzed for extractable and total concentration of Se ([Se]). Twice during the growing season plants were harvested and tissue [Se] was determined.

Results

Plants exposed to SeO3 2? accumulated the least Se. Fitted predictive models for whole plant accumulation based on extractable soil [Se] were similar to models based on total [Se] in soil (R2?=?0.73 or 0.74, respectively) and selenium speciation and soil [S] were important soil parameters to consider. As well, soil S amendments limited Se toxicity.

Conclusions

Soil quality guidelines (SQGs) based on extractable Se should be considered for risk assessment, particularly when Se speciation is unknown. Predictive models to estimate plant Se uptake should include soil S, a modifier of Se accumulation.  相似文献   

6.
A pot experiment with acid yellow–brown soil was conducted to investigate the interactive effects of molybdenum (Mo) and phosphorus (P) fertilizers on the photosynthetic characteristics of seedlings and grain yield of Brassica napus which is sensitive to soil P and Mo deficiency. Both Mo and P fertilizers were applied at three levels (0 mg Mo kg?1, 0.15 mg Mo kg?1, 0.30 mg Mo kg?1 soil; 0 mg P kg?1, 80 mg P kg?1, 160 mg P kg?1 soil). The results showed that P fertilizer application increased grain yield, soluble sugar concentrations of seedling leaves, DM and P accumulation of seedling shoots of Brassica napus in the absence or presence of Mo fertilizer. In contrast, Mo fertilizer increased these parameters only in the presence of P fertilizer. Mo accumulation in shoots, chlorophyll concentrations and net photosynthesis rate (P n) of seedling leaves were increased by both Mo and P fertilizers, particularly with the combination of the two fertilizers. The results also showed that the Mo and P fertilizers increased photosynthetic rate through two different mechanisms, with Mo increasing photosynthetic activity of mesophyll cells, and P increasing stomatal conductance. The results demonstrate that there was a synergetic effect on photosynthesis and grain yield between Mo and P fertilizers and it is conducive for Brassica napus growth to co-apply the two fertilizers.  相似文献   

7.
Vascular plant bio-photovoltaics (VP-BPV) is a recently developed technology that uses higher plants to harvest solar energy and the metabolic activity of heterotrophic microorganisms in the plant rhizosphere to generate electrical power. In the present study, electrical output and maximum power output variations were investigated in a novel VP-BPV configuration using the crop plant rice (Oryza sativa L.) or an associated weed, Echinochloa glabrescens (Munro ex Hook. f.). In order to compare directly the physiological performances of these two species in VP-BPV systems, plants were grown in the same soil and glasshouse conditions, while the bio-electrochemical systems were operated in the absence of additional energy inputs (e.g. bias potential, injection of organic substrate and/or bacterial pre-inoculum). Diurnal oscillations were clearly observed in the electrical outputs of VP-BPV systems containing the two species over an 8-day growth period. During this 8-day period, O. sativa generated charge ~6 times faster than E. glabrescens. This greater electrogenic activity generated a total charge accumulation of 6.75?±?0.87 Coulombs for O. sativa compared to 1.12?±?0.16 for E. glabrescens. The average power output observed over a period of about 30 days for O. sativa was significantly higher (0.980?±?0.059 GJ?ha?1?year?1) than for E. glabrescens (0.088?±?0.008 GJ?ha?1?year?1). This work indicates that electrical power can be generated in both VP-BPV systems (O. sativa and E. glabrescens) when bacterial populations are self-forming. Possible reasons for the differences in power outputs between the two plant species are discussed.  相似文献   

8.
Previous field and glasshouse studies suggested that oilseed rape (Brassica napus L.) was especially sensitive to zinc (Zn) deficiency in the recovery period following transplanting. However, it is not clear whether transplanting, per se, or root damage during transplanting was primarily responsible. Three glasshouse experiments were carried out to test the hypothesis that transplanting increases external Zn requirement of canola cv. Hyola 42 during its post-transplanting recovery. Canola was either directly sown into Zn-treated soils or transplanted at four-leaf stage, and grown until harvest at 7- and 10-leaf stages. In a second experiment with chelate-buffered solution culture, direct-sown and transplanted plants were treated with three concentrations of Zn. In the third experiment, plants were given three levels of Zn supply, and either direct-sown into soils or transplanted at four-leaf stage with pruned (50% of roots removed) or unpruned root systems. Transplanted plants required higher soil Zn supply for maximum root length and root dry weight than direct-sown plants. By contrast, shoots required similarly low external Zn for maximum dry weight in both direct-sown and transplanted plants in soil. Direct-sown plants were more efficient in utilizing soil supplied Zn than transplanted plants particularly compared to those transplanted with a pruned root system, and achieved maximum growth at 100 μg Zn kg?1 soil compared to 500 μg Zn kg?1 required by transplanted plants. Since the higher external Zn requirement for the growth of transplanted plants was also obtained in well-stirred solution culture, it was concluded that it was related to the time required for transplanted plants to recover from root injury and re-establish a favourable shoot: root ratio rather than to rhizosphere modification processes. Both transplanting, per se, and root damage during transplanting appeared to contribute to higher external Zn requirements for canola growth compared to direct-sown plants.  相似文献   

9.
We compared the soil C input potential of a common catch-crop (fodder radish) established in 6-year-old direct-drilled (DD) plots with adjacent conventionally tilled (CT) plots on a Danish sandy loam soil by use of 14C-isotope labelling techniques. Intact monoliths of soil with actively growing fodder radish seedlings were extracted in Autumn of 2008 from DD and CT field plots and labelled with 14CO2 at different time intervals during fodder radish growth. Labelled monoliths were then sampled 6 and 100 days after termination of labelling by clipping above-ground biomass at soil level and separating below-ground components into macro-roots and macro-root-free soil at 0?C10, 10?C25 and 25?C45 cm soil depth. Using fodder radish 14C data and the preceding spring barley biomass yield data we estimated C input from the spring barley-fodder radish cycle in addition to evaluating the effect of the removal of spring barley harvestable straw on soil C input. Potential soil C input under straw removal scenarios with and without an established fodder radish crop was also evaluated. Relative to other depths, over 70% of labelled below-ground C was found in the 0?C10 cm soil depth in both DD and CT treatments for each of the two samplings. For both macro-root and macro-root-free soil and in both tillage treatments, labelled C decreased significantly with depth (P?<?0.05). A decline of labeled C in macro-root but an increase of labeled C in macro-root-free soil was observed from day 6 to day 100 for both tillage treatments. Over the autumn-winter growing period, total below-ground C input by fodder radish within the 0?C45 cm soil depth was approximately 1.0 and 1.2 Mg C ha?1 for CT and DD, respectively. We used data from 100 days after labelling, which coincided with the incorporation of the field fodder radish biomass, to estimate that the total fodder radish contribution to below-ground C after biomass incorporation would range between 1.6 and 1.7 Mg C ha?1 for DD and CT, respectively. The figures for spring barley straw removal with fodder radish establishment would be between 4.9 and 5.1 Mg C ha?1, while with no fodder radish establishment, C input to the soil would range between 3.2 Mg C ha?1 and 3.4 Mg C ha?1, which is approximately 0.6 Mg C ha?1 lower than the 4 Mg C ha?1 biomass C input required to maintain long-term soil organic C. In comparison, under straw retention and fodder radish catch-crop establishment the total spring barley and fodder radish C input would be approximately 6.1 and 6.5 Mg C ha?1 for DD and CT, respectively. We conclude that fodder radish catch-crops have a potential for mitigating against soil C depletion resulting from export of cereal straw to other uses.  相似文献   

10.
Biomass demand for energy will lead to utilization of marginal, low fertility soil. Application of fertilizer to such soil may increase switchgrass (Panicum virgatum L.) biomass production. In this three-way factorial field experiment, biomass yield response to potassium (K) fertilizer (0 and 68 kg?K?ha?1) on nitrogen (N)-sufficient and N-deficient switchgrass (0 and 135 kg?N?ha?1) was evaluated under two harvest systems. Harvest system included harvesting once per year after frost (December) and twice per year in summer (July) at boot stage and subsequent regrowth after frost. Under the one-cut system, there was no response to N or K only (13.4 Mg?ha?1) compared to no fertilizer (12.4 Mg?ha?1). Switchgrass receiving both N and K (14.6 Mg?ha?1) produced 18 % greater dry matter (DM) yield compared to no fertilizer check. Under the two-cut harvest system, N only (16.0 Mg?ha?1) or K only (14.1 Mg?ha?1) fertilizer produced similar DM to no fertilizer (15.1 Mg?ha?1). Switchgrass receiving both N and K in the two-cut system (19.2 Mg?ha?1) produced the greatest (P?<?0.05) DM yield, which was 32 % greater than switchgrass receiving both N and K in the one-cut system. Nutrient removal (biomass?×?nutrient concentration) was greatest in plots receiving both N and K, and the two-cut system had greater nutrient removal than the one-cut system. Based on these results, harvesting only once during winter months reduces nutrient removal in harvested biomass and requires less inorganic fertilizer for sustained yields from year to year compared to two-cut system.  相似文献   

11.
In order to understand the influence of nitrogen (N) deposition on the key processes relevant to the carbon (C) balance in a bamboo plantation, a two-year field experiment involving the simulated deposition of N in a Pleioblastus amarus plantation was conducted in the rainy region of SW China. Four levels of N treatments: control (no N added), low-N (50 kg N ha?1 year?1), medium-N (150 kg N ha?1 year?1), and high-N (300 kg N ha?1 year?1) were set in the present study. The results showed that soil respiration followed a clear seasonal pattern, with the maximum rates in mid-summer and the minimum in late winter. The annual cumulative soil respiration was 585?±?43 g CO2-C m?2 year?1 in the control plots. Simulated N deposition significantly increased the mean annual soil respiration rate, fine root biomass, soil microbial biomass C (MBC), and N concentration in fine roots and fresh leaf litter. Soil respirations exhibited a positive exponential relationship with soil temperature, and a linear relationship with MBC. The net primary production (NPP) ranged from 10.95 to 15.01 Mg C ha?1 year?1 and was higher than the annual soil respiration (5.85 to 7.62 Mg C ha?1 year?1) in all treatments. Simulated N deposition increased the net ecosystem production (NEP), and there was a significant difference between the control and high N treatment NEP, whereas, the difference of NEP among control, low-N, and medium-N was not significant. Results suggest that N controlled the primary production in this bamboo plantation ecosystem. Simulated N deposition increased the C sequestration of the P. amarus plantation ecosystem through increasing the plant C pool, though CO2 emission through soil respiration was also enhanced.  相似文献   

12.

Background and aims

Biochar additions to tropical soils have been shown to reduce N leaching and increase N use efficiency. No studies exist verifying reduced N leaching in field experiments on temperate agricultural soils or identifying the mechanism for N retention.

Methods

Biochar derived from maize stover was applied to a maize cropping system in central New York State at rates of 0, 1, 3, 12, and 30 t?ha-1 in 2007. Secondary N fertilizer was added at 100, 90, 70, and 50 % of the recommended rate (108 kg N ha-1). Nitrogen fertilizer enriched with 15?N was applied in 2009 to the 0 and 12 t?ha-1 of biochar at 100 and 50 % secondary N application.

Results

Maize yield and plant N uptake did not change with biochar additions (p?>?0.05; n?=?3). Less N (by 82 %; p?<?0.05) was lost after biochar application through leaching only at 100 %?N fertilization. The reason for an observed 140 % greater retention of applied 15?N in the topsoil may have been the incorporation of added 15?N into microbial biomass which increased approximately three-fold which warrants further research. The low leaching of applied fertilizer 15?N (0.42 % of applied N; p?<?0.05) and comparatively high recovery of applied 15?N in the soil (39 %) after biochar additions after one cropping season may also indicate greater overall N retention through lower gaseous or erosion N losses with biochar.

Conclusions

Addition of biochar to fertile soil in a temperate climate did not improve crop growth or N use efficiency, but increased retention of fertilizer N in the topsoil.  相似文献   

13.
Aboveground and belowground changes during vegetation restoration and vegetation successions need to be characterized in relation to their individual responses to changes in soil resources. We examined above- and belowground vegetation characteristics, soil moisture, and nutrient status at the end of the growing season in 2006 in plots with vegetation succession ages of 2, 4, 6, and 8 years (two replicates each) that had been established on abandoned cropland, where potatoes had been grown for 3 years, using hoe and plow cultivation, immediately prior to vegetation clearance and subsequent natural plant colonization. A plant community comprising pioneer species [e.g., Artemisia capillaries, (subshrub)] was characterized by low levels of species richness (7.5?±?1.4 species m?2), plant density (35.7?±?4.2 stems m?2), fine root length density (940.1?±?90.1 m m?2), and root area density (2.3?±?0.3 m2 m?2) that increased rapidly with time. Aboveground and belowground characteristics of both A. capillaries and the later successional species, Stipa bungeana (C3 perennial grass), increased in the first 6 years, but in the following 2 years A. capillaries declined while S. bungeana thrived. Thus, the fine root length density of A. capillaries, 812.4 m m?2 after 2 years, changed by a factor of 1.7, 2.0, and 0.4 in the 4th, 6th, and 8th years, whereas that of S. bungeana changed from 278.4 m m?2, after 4 years, and by 1.7 and 23.3 times in the 6th and 8th years, respectively. Secondary vegetation succession resulted in reduced soil moisture contents. Soil available P and N mainly influenced aboveground characteristics, while soil moisture mainly influenced belowground characteristics. However, soil moisture had no significant affect on S. bungeana belowground characteristics at the population level in this semiarid region.  相似文献   

14.
The lack of more sustainable options for inducing bud break in grapevines in mild winter regions is a limiting factor for local viticulture due to restrictions on the use of agrochemicals. Within this context, an experiment was conducted to evaluate the effects of a hydrolate obtained from Gallesia integrifolia (a native Brazilian tree) on the bud break of grapevines cv. Ives. The experiment was conducted in a vineyard located in Marialva, Paraná, Brazil, over two consecutive crop cycles: 2011 (September/December) and 2012 (February/May). The treatments consisted of the following doses of Gallesia hydrolate (GH): 0, 100, 150, 200, and 250 mL L?1, as well as 30 mL L?1 of garlic extract and 20 mL L?1 of hydrogen cyanamide, which were used as positive controls. The following variables were evaluated: sprouting percentage per plant, number of clusters per plant, cluster mass, yield (t ha?1), catalase and peroxidase activities. The GH treatments improved bud break in cv. Ives during both crop cycles, demonstrating quadratic effects relative to the applied doses. The same effect was verified for the number of clusters and for the yield. Twenty-four hours after the treatments, a quadratic effect for peroxidase and catalase activity was verified relative to the GH doses applied. For peroxidase activity, the treatment at 200 mL L?1 GH resulted in a 57 % reduction relative to the control. The most abundant component found in GH was dimethyl disulfide. Based on these results, GH at 150 mL L?1 could be a promising alternative to the currently used methods for promoting bud break in cv. Ives, representing a cheaper and more environmentally friendly option for viticulture.  相似文献   

15.

Background and Aims

Increased plant density improves grain yield and nitrogen (N)–use efficiency in winter wheat (Triticum aestivum L.) by increasing the root length density (RLD) in the soil and aboveground N–uptake (AGN) at maturity. However, how the root distribution and N–uptake at different soil depths is affected by plant density is largely unknown.

Methods

A 2–year field study using the winter wheat cultivar Tainong 18 was conducted by injecting 15?N–labeled urea into soil at depths of 0.2, 0.6, and 1.0 m under four plant densities of 135 m?2, 270 m?2,405 m?2, and 540 m?2.

Results

We observed significant RLD and 15?N–uptake increases at each soil depth as the plant density increased from 135 to 405 m?2. 15?N–uptake increased with plant density as the soil depth increased, although the corresponding RLD value fell with depth. The 15?N–uptake at each soil depth was positively related to the RLD at the same depth. The total AGN was positively related to RLD in deep soil, especially at 0.8–1.2 m.

Conclusions

Increasing the plant density from 135 m?2 to the optimum increases AGN primarily by increasing the RLD in deep soil and therefore increasing the plant density of winter wheat can be used to efficiently recover N leached to deep soil. Moreover, the total root numbers per unit area and RLD still increased at supraoptimal density while shoot number and N uptake stagnated.  相似文献   

16.
The integration of multipurpose legumes into low-input tropical agricultural systems is needed because they are a nitrogen (N) input through symbiotic fixation. The drought-tolerant cover legume canavalia (Canavalia brasiliensis) has been introduced for use either as forage or as a green manure into the crop-livestock system of the Nicaraguan hillsides. To evaluate its impact on the subsequent maize crop, an in-depth study on N dynamics in the soil-plant system was conducted. Microplots were installed in a 6-year old field experiment with maize-canavalia rotation. Direct and indirect 15N-labelling techniques were used to determine N uptake by maize from canavalia residues and canavalia-fed cows?? manure compared to mineral fertilizer. Litter bags were used to determine the N release from canavalia residues. The incorporation of N from the amendment into different soil N pools (total N, mineral N, microbial biomass) was followed during the maize cropping season. Maize took up an average of 13.3 g?N?m?2, within which 1.0 g?N?m?2 was from canavalia residues and 2.6 g?N?m?2 was from mineral fertilizer, corresponding to an amendment N recovery of 12% and 32%, respectively. Recoveries in maize would probably be higher at a site with lower soil available N content. Most of the amendment N remained in the soil. Mineral N and microbial N were composed mainly of N derived from the soil. Combined total 15N recovery in maize and soil at harvest was highest for the canavalia residue treatment with 98% recovery, followed by the mineral fertilizer treatment with 83% recovery. Despite similar initial enrichment of soil microbial and mineral N pools, the indirect labelling technique failed to assess the N fertilizer value of mineral and organic amendments due to a high N mineralization from the soil organic matter.  相似文献   

17.
Phosphorus (P) deficiency is a major problem for Australian agriculture. Development of new perennial pasture legumes that acquire or use P more efficiently than the current major perennial pasture legume, lucerne (Medicago sativa L.), is urgent. A glasshouse experiment compared the response of ten perennial herbaceous legume species to a series of P supplies ranging from 0 to 384 µg g?1 soil, with lucerne as the control. Under low-P conditions, several legumes produced more biomass than lucerne. Four species (Lotononis bainesii Baker, Kennedia prorepens F.Muell, K. prostrata R.Br, Bituminaria bituminosa (L.) C.H.Stirt) achieved maximum growth at 12 µg P g?1 soil, while other species required 24 µg P g?1. In most tested legumes, biomass production was reduced when P supply was ≥192 µg g?1, due to P toxicity, while L. bainesii and K. prorepens showed reduced biomass when P was ≥24 µg g?1 and K. prostrata at ≥48 µg P g?1 soil. B. bituminosa and Glycine canescens F.J.Herm required less soil P to achieve 0.5 g dry mass than the other species did. Lucerne performed poorly with low P supply and our results suggest that some novel perennial legumes may perform better on low-P soils.  相似文献   

18.
We inoculated lodgepole pine (Pinus contorta var. latifolia (Dougl.) Engelm.) with Paenibacillus polymyxa P2b-2R, a diazotrophic bacterium previously isolated from internal stem tissue of a naturally regenerating pine seedling to evaluate biological nitrogen fixation and seedling growth promotion by this microorganism. Seedlings generated from pine seed inoculated with strain P2b-2R were grown for up to 13 months in a N-limited soil mix containing 0.7 mM available N labeled as Ca(15NO3)2 to facilitate detection of N2-fixation. Strain P2b-2R developed a persistent endophytic population comprising 102–106?cfu?g?1 plant tissue inside pine roots, stems, and needles during the experiment. At the end of the growth period, P2b-2R had reduced seedling mortality by 14 % and 15N foliar N abundance 79 % and doubled foliar N concentration and seedling biomass compared to controls. Our results suggest that N2-fixation by P. polymyxa enhanced growth of pine seedlings and support the hypothesis that plant-associated diazotrophs capable of endophytic colonization can satisfy a significant proportion of the N required by tree seedlings growing under N-limited conditions.  相似文献   

19.

Background and aims

Wetlands are important carbon sinks across the planet. However, soil carbon sequestration in tropical freshwater wetlands has been studied less than its counterpart in temperate wetlands. We compared carbon stocks and carbon sequestration in freshwater wetlands with various geomorphic features (estuarine, perilacustrine and depressional) and various plant communities (marshes and swamps) on the tropical coastal plain of the Gulf of Mexico in the state of Veracruz, Mexico. These swamps are dominated by Ficus insipida, Pachira aquatic and Annona glabra and the marshes by Typha domingensis, Thalia geniculata, Cyperus giganteus, and Pontederia sagittata.

Methods

The soil carbon concentration and bulk density were measured every 2 cm along 80 cm soil profiles in five swamps and five marshes. Short-term sediment accretion rates were measured during a year using horizontal makers in three of the five swamps and marshes, the carbon sequestration was calculated using the accretion rates, and the bulk density and the percentage of organic carbon in the surficial layer was measured.

Results

The average carbon concentration ranged from 50 to 150 gC kg?1 in the marshes and 50 to 225 gC kg?1 in the swamps. When the wetlands were grouped according to their geomorphic features, no significant differences in the carbon stock (P?=?0.095) were found (estuarine (25.50?±?2.26 kgC m?2), perilacustrine (28.33?±?2.74 kgC m?2) and depressional wetlands (34.93?±?4.56 kgC m?2)). However, the carbon stock was significantly higher (P?=?0.030) in the swamps (34.96?±?1.3 kgC m?2) than in the marshes (25.85?±?1.19 kgC m?2). The average sediment accretion rates were 1.55?±?0.09 cm yr?1 in the swamps and 0.84?±?0.02 cm yr?1 in the marshes with significant differences (P?=?0.040). The rate of carbon sequestration was higher (P?=?0.001) in swamp soils (0.92?±?0.12 kgC m?2 yr?1) than marsh soils (0.31?±?0.08 kgC m?2 yr?1). Differences in the rates of carbon sequestration associated with geomorphic features were found between the swamp ecosystems (P?<?0.05); i.e., higher values were found in the swamps than in the marshes in perilacustrine and estuarine wetlands (P?<?0.05). However, no significant differences (P?=?0.324) in carbon sequestration rates were found between the marsh and swamp areas of the depressional site.

Conclusions

Swamp soils are more important contributors to the carbon stock and sequestration than are marsh soils, resulting in a reduction in global warming, which suggests that the plant community is an important factor that needs to be considered in global carbon budgets and projects of restoration and conservation of wetlands.  相似文献   

20.
The objectives of the present paper were: (i) to determine isotopically exchangeable zinc using two isotopic exchange methods (E and L values) in a series of polluted and non-polluted Swiss agricultural soils, and (ii) to evaluate the ability of chemical extraction methods to estimate plant-available soil Zn using isotopic techniques. The surface horizon (0–20 cm) of seven polluted and non-polluted soils representing a wide range in physico-chemical properties and Zn contents were sampled. An isotopic exchange kinetics (IEK) approach was used to assess, in a batch experiment, the isotopically exchangeable Zn content (E value). In order to determine the L values, a pot experiment was carried out with Lolium multiflorum (cv. Axis) in a growth chamber using a 65Zn-isotope dilution technique. Total Zn uptake and the isotopic composition (65Zn/stableZn) were determined in Lolium multiflorum for five successive cuts. The amounts of zinc extracted by different chemicals were compared with L values and regression parameters were estimated. The isotopic composition in soil extracted by DTPA and EDTAAc at the end of the pot experiment was also determined. Results showed that the equation describing the increase of isotopically exchangeable Zn with time could be extrapolated to three months for polluted and non-polluted neutral and acidic soils, and that the results were not different from the amount of isotopically exchangeable Zn experimentally determined with Lolium multiflorum (L value). In alkaline soils however, results suggest that either 65Zn sorption occurred in the batch experiment or that the concentration of Zn in the soil solution had been overestimated, leading to an overestimation of the E value compared to the L values. Furthermore, the specific activities measured in DTPA and EDTA extractions at the end of the pot experiment were significantly different compared to the specific activity of the plant, showing that both these chelating agents extract neither all the available soil Zn nor only the available soil Zn for plants. Abbreviations: C Zn– concentration of Zn in a soil water extract (mg Zn L?1); C Zn?Plant– concentration of Zn in plant shoots (mg Zn kg?1 DM); DTPA – diethylene triamine pentaacetic acid; E 1\min– amount of Zn isotopically exchangeable within one min (mg Zn kg?1 soil); E (t)\exp– amount of Zn isotopically exchangeable after t min derived from experimental results (mg Zn kg?1 soil); E (t)pred– amount of Zn isotopically exchangeable after t min predicted using kinetic parameters derived from a 100 min long isotope exchange kinetic experiment together with C Zn, and ZnHNO3 (mg Zn kg?1 soil); EDTA – ethylene diamine tetraacetic acid; ICP– isotopic composition of Zn in plant shoots; ICDTPA– isotopic composition of Zn in the soil DTPA extract; ICEDTA– isotopic composition of Zn in the soil EDTA extract; ICSE– isotopic composition of Zn in the soil extracts; IEK – isotope exchange kinetics; L value – amount of plant available Zn (mg Zn kg?1 soil); Lolium multiflorum; TEA – Triethanolamine; ZnDTPA– Zn extractable by 0.005 M DTPA + 0.01 M CaCl2 + 0.1 M TEA; ZnEDTA?NH4Ac– Zn extractable by 0.5 M NH4Ac, 0.02 M EDTA; ZnEDTA?Ca(NO3)2– Zn extractable by 0.005 M EDTA, 0.01 M Ca(NO3)2; ZnKCl– Zn extractable by 1 M KCl; ZnCaCl2– Zn extractable by 0.01 M CaCl2; ZnNaNO3– Zn extractable by 0.1 M NaNO3; ZnHNO3– Zn extractable by 2 M HNO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号