首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
The tomato Cf9 resistance gene induces an Avr9-dependent hypersensitive response (HR) in tomato and transgenic Solanaceae spp. We studied whether the Cf9 gene product responded functionally to the corresponding Avr9 gene product when introduced in a heterologous plant species. We successfully expressed the Cf9 gene under control of its own promoter and the Avr9 or Avr9R8K genes under control of the p35S1 promoter in transgenic oilseed rape. We demonstrated that the transgenic oilseed rape plants produced the Avr9 elicitor with the same specific necrosis-inducing activity as reported for Cladosporium fulvum. An Avr9-dependent HR was induced in Cf9 oilseed rape upon injection of intercellular fluid containing Avr9. We showed Avr9-specific induction of PR1, PR2, and Cxc750 defense genes in oilseed rape expressing CJ9. Cf9 x Avr9 oilseed rape did not result in seedling death of the F1 progeny, independent of the promoters used to express the genes. The F1 (Cf9 x Avr9) plants, however, were quantitatively more resistant to Leptosphaeria maculans. Phytopathological analyses revealed that disease development of L. maculans was delayed when the pathogen was applied on an Avr9-mediated HR site. We demonstrate that the CJ9 and Avr9 gene can be functionally expressed in a heterologous plant species and that the two components confer an increase in disease resistance.  相似文献   

3.
油菜黑胫病是造成油菜产量损失的病害之一,致病菌为Leptosphaeria biglobosa.该研究采用形态学观察和转录组测序技术,分析油菜接种病原菌Leptosphaeria biglobosa 4、12、24、36、48和96 h后的表型及基因表达变化情况,以探讨响应死体营养型真菌L.biglobosa侵染时油菜...  相似文献   

4.
Dong X  Ji R  Guo X  Foster SJ  Chen H  Dong C  Liu Y  Hu Q  Liu S 《Planta》2008,228(2):331-340
Sclerotinia sclerotiorum causes a highly destructive disease in oilseed rape (Brassica napus). Oxalic acid (OA) secreted by the pathogen is a key pathogenicity factor. Oxalate oxidase (OXO) can oxidize OA into CO2 and H2O2. In this study, we show that transgenic oilseed rape (sixth generation lines) constitutively expressing wheat (Triticum aestivum) OXO displays considerably increased OXO activity and enhanced resistance to S. sclerotiorum (with up to 90.2 and 88.4% disease reductions compared with the untransformed parent line and a resistant control, respectively). Upon application of exogenous OA, the pH values in transgenic plants were maintained at levels slightly lower than 5.58 measured prior to OA treatment, whereas the pH values in untransformed plants decreased rapidly and were markedly lower than 5.63 measured prior to OA treatment. Following pathogen inoculation, H2O2 levels were higher in transgenic plants than in untransformed plants. These results indicate that the enhanced resistance of the OXO transgenic oilseed rape to Sclerotinia is probably mediated by OA detoxification. We believe that enhancing the OA metabolism of oilseed rape in this way will be an effective strategy for improving resistance to S. sclerotiorum. Xiangbai Dong and Ruiqin Ji contributed equally to this paper.  相似文献   

5.
The reduction of atmospheric sulphur dioxide pollution is causing increasing problems of sulphur deficiency in sulphur‐demanding crop plants in northern Europe. Elemental sulphur and many sulphur containing compounds such as cysteine‐rich antifungal proteins, glucosinolates (GSL) and phytoalexins play important roles in plant disease resistance. The aim of this work was to analyse the effect of inadequate sulphur supply on disease resistance of oilseed rape (Brassica napus). Compared with fertilized oilseed rape, healthy looking S‐deficient plants showed increased susceptibility to the blackleg fungus Leptosphaeria maculans, to the generalist necrotroph Botrytis cinerea and to the oomycete Phytophthora brassicae. To analyse possible causes of the increased disease susceptibility of S‐deficient plants, protein extracts and methanolic extracts of secondary metabolites of plants grown with and without adequate sulphur supply were tested for antimicrobial activity. None of the protein extracts showed antimicrobial activity. However, extracts containing secondary metabolites from normally grown plants showed a strong antimicrobial activity in in vitro tests with various fungal and bacterial pathogens. This activity was almost totally lost in extracts derived from S‐deficient plants. The antimicrobial activity did not appear to be based on the activity of phytoalexins because it was present in healthy plants and was not increased by a previous inoculation with Botrytis cinerea. The loss of antifungal activity in S‐deficient plants correlated with a strong reduction of various GSL, thus suggesting a reduced level of GSL as a possible cause of the reduced antimicrobial potential. However, limited tests of commercially available GSL or their degradation products did not demonstrate a causal link. Our results show that S‐deficiency of oilseed rape negatively affects disease resistance and suggest that this effect is at least partially caused by a reduction of sulphur‐dependent phytoanticipins.  相似文献   

6.
7.
8.
Hybrid plants resistant to phosphinothricin (PPT) are obtained as a result of experiments with somatic hybridization between Brassica napus L. cv. Kalinins’kyy and Orychophragmus violaceus L. O.E. Shulz. The hybrids inherited PPT resistance from O. violaceus plants that had been previously transformed by a vector containing the maize transposon system Spm/dSPm with bar gene located within the nonautonomous transposon. The morphologically obtained plants occupy an intermediate position between the initial forms, which is in agreement with the results of isoenzyme analyses (analysis of multiple forms of amylase and esterase) and PCR analysis (presence of the genes bar, gus, and SpmTPase). Inheritance of the plastome occurs from oilseed rape, while that of the mitochondrion, from O. violaceus, which is proved by means of PCR-RFLP analysis. The plant hybrids may be utilized for further selection research with oilseed rape following determination of the edible quality of its oil as well as in experiments with chloroplast transformation, a topic which is of critical importance for oilseed rape.  相似文献   

9.
Sclerotinia sclerotiorum causes serious yield losses in oilseed crops worldwide. Bacillus subtilis Tu-100 significantly reduced (P≤0.05) the incidence of disease caused by S. sclerotiorum on oilseed rape at harvest in two trials conducted in fields artificially infested with this pathogen. Mean plant dry weight was significantly greater (P≤0.05) and mean plant length was significantly greater (P≤0.07) at the seven-true-leaf stage with the Tu-100 treatment than with the control. Mean seed yield per 120 plants at harvest was significantly greater (P≤0.05) in the second field trial with treatments containing isolate Tu-100. B. subtilis Tu-100 also promoted the growth of hydroponically grown oilseed rape. Plants were approximately 15% greater in dry weight (P≤0.0001) and 6% greater in length (P≤0.0025) when grown in the presence of isolate Tu-100 in Hoagland’s solution, compared with the noninoculated control. In gnotobiotic studies, the lacZ-tagged strain B. subtilis Tu-100(pUC18) was detected within all roots of oilseed rape. Isolate Tu-100 did not persist in the ectorhizosphere of oilseed rape. Populations of this isolate decreased from 8.5×108 colony-forming units (CFU) per seed to approximately 102 CFU in the plant ectorhizosphere within 30 days of sowing in autoclaved soil.  相似文献   

10.
The selection of desirable genotypes with recessive characteristics, such as self-incompatible plants, is often difficult or even impossible and represents a crucial barrier in accelerating the breeding process. Molecular approaches and selection based on molecular markers can allow breeders to overcome this limitation. The use of self-incompatibility is an alternative in hybrid breeding of oilseed rape. Unfortunately, stable self-incompatibility is recessive and phenotype-based selection is very difficult and time-consuming. The development of reliable molecular markers for detecting desirable plants with functional self-incompatible genes is of great importance for breeders and allows selection at early stages of plant growth. Because most of these reliable molecular markers are based on discrimination of class I S-locus genes that are present in self-compatible plants, there is a need to use an internal control in order to detect possible PCR inhibition that gives false results during genotyping. In this study, 269 double haploid F2 oilseed rape plants obtained by microspore embryogenesis were used to verify the applicability of an improved PCR assay based on the detection of the class I SLG gene along with an internal control. Comparative analysis of the PCR genotyping results vs. S phenotype analysis confirmed the applicability of this molecular approach in hybrid breeding programs. This approach allows accurate detection of self-incompatible plants via a different amplification profile.  相似文献   

11.
12.
13.
14.
15.
16.
Increasing cultivation of oilseed rape may have consequences for pollinators and wild plant pollination. By providing pollinating insects with pollen and nectar, oilseed rape benefits short-tongued, generalist insect species. Long-tongued bumble bee species, specialized to other flower types, may instead be negatively affected by increased competition from the generalists (e.g. due to nectar-robbing of long-tubed flowers) after oilseed rape flowering has ceased. We expected that the increased abundance of short-tongued pollinators and reduced abundance of long-tongued bumble bees in landscapes with a high proportion of oilseed rape would impact the pollination of later flowering wild plant species. In addition, we expected contrasting effects on plants pollinated by short-tongued pollinators and those pollinated by long-tongued bumble bees. We predicted that semi-natural grasslands, which provide insects with alternative floral resources, would reduce both negative and positive effects on pollination by mitigating competition between pollinators.In 16 semi-natural grasslands, surrounded by agricultural landscapes, with a variation in both the proportion of oilseed rape and the proportion of semi-natural grassland within 1 km, we studied reproductive output in two species of potted plants with different pollination strategies: the woodland strawberry (Fragaria vesca) and red clover (Trifolium pratense). The first species is mainly pollinated by short-tongued pollinators, e.g. hoverflies and solitary bees, and the latter by long-tongued bumble bees. Both species flowered after oilseed rape.Strawberry weight was higher in landscapes with a high proportion of oilseed rape, but only in landscapes with a low proportion of semi-natural grassland. The proportion of developed achenes was also positively related to the proportion of oilseed rape, but only during the latest flowering period. In contrast, red clover seed set was unrelated to the proportion of oilseed rape. Whereas the discrepancy between the two strawberry measurements calls for further research, this study suggests that oilseed rape can affect later flowering plants and that the impact differs among species.  相似文献   

17.
18.
19.
The infection of plants with pathogens results in the induction of defence reactions as well as changes in carbohydrate metabolism. On the one hand, the pathogen attempts to manipulate the carbohydrate metabolism of the plant for its own advantage. On the other, the plant has to reorganize carbon fluxes to ensure fight against the pathogen. In order to further investigate the connection between pathogen infection and carbohydrate metabolism, the effects of two types of pathogen, biotrophic and necrotrophic, on gene expression, endogenous sugar levels and photosynthesis of tomato plants were analysed. Photosynthetic gene expression was downregulated on infection with Pseudomonas syringae and Botrytis cinerea . In contrast, expression of a sink-specific gene encoding a cell wall invertase and of defence genes was induced by both pathogens. These results provide evidence for a co-regulation of defence, sink and photosynthetic gene expression in planta in response to both types of pathogen. The brassinosteroid-containing plant restorative ComCat enhanced resistance against B. cinerea and counter-regulated the repression of photosynthetic gene expression. Endogenous sugar levels decreased and the hexose to sucrose ratio increased on treatment with B. cinerea . The application of chlorophyll fluorescence imaging revealed the spatio-temporal heterogeneity of the pathogen response. At 24 h after infection, inhibition of photosynthetic electron transport was restricted to the direct vicinity of the infection site, which was surrounded by a circle of increased photosynthetic activity. The photosynthesis of the remaining leaf was not affected at this stage. These results show the usefulness of chlorophyll fluorescence imaging for the assessment of the complex spatio-temporal changes and for the definition of the areas relevant for other types of determination, e.g. gene expression.  相似文献   

20.
The efficiency ofAgrobacterium-based transformation technique in oilseed rape and cauliflower was influenced by cultivar specificity, donor plant age and explant type. Marked differences in demands for plant hormone contents in the regeneration medium were recorded already among different types of nontransformed explants. The highest regeneration capacity was recorded with stem and leaf segments isolated from one-month-old aseptically grown plants. The regeneration was markedly species-dependent. Regeneration of transformed plants from stem segments and thin layers isolated from field-grown oilseed rape plants (at the most 2% of regenerating explants) and from oilseed rape hypocotyls (0.8% of regenerating explants) and cauliflower (1.2% of explant regenerated transformed shoots) was achieved after disarmedAgrobacterium treatment. Hypersensitive reaction of explants could be prevented by using prolongedin vitro precultivation and delayed application of the selective agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号