首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Thlaspi praecox (Brassicaceae) is a recently discovered metal hyperaccumulating plant species colonized by arbuscular mycorrhizal fungi (AMF). The identity and diversity of the AMF colonizing its roots have not been determined so far. Therefore, T. praecox was inoculated with an indigenous fungal mixture from a metal polluted site and grown in original polluted soil/ commercial substrate mixtures (i.e., 100%, 50%, and 25%). Low to moderate mycorrhizal frequencies (F = 33–68%) and only rare arbuscules were observed. Densities of vesicles and microsclerotia, typical structures of dark septate endophytes (DSE), were greater in pots with 100% original polluted soil. In contrast, the highest diversity of fungal genotypes was observed in the roots from 25% polluted soil/ commercial substrate mixture, with the lowest soil concentrations of Cd, Zn, and Pb. The sequences obtained corresponded to Glomus species (Glomeromycota), to putative DSE Phialophora verrucosa and Rhizoctonia sp. and to some other fungi from Asco- and Basidiomycota, that are known to associate with plants, namely Capnobotryella sp., Penicillium brevicompactum, Rodotorula aurantiaca and Rodotorula slooffiae. This is the first report of DSE occurrence in roots of hyperaccumulating T. praecox, a promising candidate for phytoextraction.  相似文献   

2.
Roots of Phragmites australis from three polluted soils and sediments (a periodically flooded stream bank containing organic pollutants, a high-pH drying sedimentation pond and an acidic, periodically flooded sand polluted by industrial effluents) were sampled over a 1-year cycle of plant growth to assess the degree of colonisation by arbuscular mycorrhizal fungi (AMF). At the dry sedimentation pond, root samples of Juncus effusus and Salix atrocinerea were also taken to assess the presence of AMF throughout the year. Root colonisation was low (<5% root length colonised) but arbuscule presence peaked in P. australis during the spring and autumn prior to flowering. These changes in arbuscule abundance were also seen in a parallel greenhouse trial using seed taken from one of the sites. Roots of J. effusus contained mainly vesicular colonisation but arbuscule activity peaked during the winter months (December–March). S. atrocinerea roots were found to be ectomycorrhizal throughout the year but the fine feeder roots were colonised by AMF. The results confirm that semi-aquatics, like P. australis, can become arbuscular mycorrhizal but that this status changes during the year depending on soil moisture content and plant phenology. The influence of AMF in these polluted soils is uncertain but the potential exists to establish a more diverse plant ecosystem during the landscaping of these areas (phytostabilisation) by management of adapted plant and AMF ecotypes. Accepted: 6 November 2000  相似文献   

3.
Goat willow (Salix caprea L.) was selected in a previous vegetation screening study as a potential candidate for the later-stage phytostabilisation efforts at a heavily metal polluted site in Slovenia. The aims of this study were to identify the fungi colonising roots of S. caprea along the gradient of vegetation succession and to estimate their colonisation levels in relation to metal pollution in order to reveal its mycorrhizal status at the site. Additionally the metal accumulation capacity of S. caprea and photosynthetic pigments were analysed as indications of its fitness at four differentially polluted plots. Despite high concentrations of leaf accumulated Cd, no significant differences in photosynthetic pigment concentrations were observed. The roots were colonised by arbuscular mycorrhizal (AM) fungi, ectomycorrhizal (EM) fungi, and dark septate endophytes (DSE), with EM as the dominant type on all the plots. Molecular characterisation showed poor correlation of the root EM community with the above-ground sporocarp diversity. Members of Sordariaceae were the most frequent colonisers with an average colonisation of 21% of all root tips, followed by Thelephoraceae with 10%. DSE colonisation increased with increasing Pb concentrations and decreasing organic matter (OM).  相似文献   

4.
We investigated if the limited development of Trifolium repens growing in a heavy metal (HM) multicontaminated soil was increased by selected native microorganisms, bacteria (Bacillus cereus (Bc)), yeast (Candida parapsilosis (Cp)), or arbuscular mycorrhizal fungi (AMF), used either as single or dual inoculants. These microbial inoculants were assayed to ascertain whether the selection of HM-tolerant microorganisms can benefit plant growth and nutrient uptake and depress HM acquisition. The inoculated microorganisms, particularly in dual associations, increased plant biomass by 148% (Bc), 162%, (Cp), and 204% (AMF), concomitantly producing the highest symbiotic (AMF colonisation and nodulation) rates. The lack of AMF colonisation and nodulation in plants growing in this natural, polluted soil was compensated by adapted microbial inoculants. The metal bioaccumulation abilities of the inoculated microorganisms and particularly the microbial effect on decreasing metal concentrations in shoot biomass seem to be involved in such effects. Regarding microbial HM tolerance, the activities of antioxidant enzymes known to play an important role in cell protection by alleviating cellular oxidative damage, such as superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase, were here considered as an index of microbial metal tolerance. Enzymatic mechanisms slightly changed in the HM-adapted B. cereus or C. parapsilosis in the presence of metals. Antioxidants seem to be directly involved in the adaptative microbial response and survival in HM-polluted sites. Microbial inoculations showed a bioremediation potential and helped plants to develop in the multicontaminated soil. Thus, they could be used as a biotechnological tool to improve plant development in HM-contaminated environments.  相似文献   

5.
Al-Asbahi AA 《Gene》2012,494(2):209-213
Association between arbuscular mycorrhizal fungi (AMF) and majority of terrestrial plant species provides many benefits to plants that range from stress alleviation and bioremediation in soils polluted with heavy metals to plant growth promotion and yield quantity. Some non-arbuscular mycorrhizal fungi such as, Trichoderma harzianum, are known to enhance the AMF symbiosis with vascular plants. However, information about their role in AMF symbiosis is still limited. Shoots of (Avocet S) wheat seedlings were sprayed with the fungal culture filtrate and gene expression patterns were analyzed in the treated tissues. An increase in the level of mRNA of arbuscular mycorrhizal protein comparing with control was found. The over-expression of this protein in wheat tissues might contribute in initiation of AMF colonization in wheat tissues. The result of this study can spark future researches to elucidate possible role of this protein in the symbiotic interaction mechanisms between soil AMF and various plant roots.  相似文献   

6.
Arbuscular mycorrhizal fungi (AMF) and their bioprotective aspects are of great interest in the context of sustainable agriculture. Combining the benefits of AMF with the utilisation of plant species diversity shows great promise for the management of plant diseases in environmentally compatible agriculture. In the present study, AMF were tested against Fusarium oxysporum f. sp. lycopersici with tomato intercropped with either leek, cucumber, basil, fennel or tomato itself. Arbuscular mycorrhizal (AM) root colonisation of tomato was clearly affected by its intercropping partners. Tomato intercropped with leek showed even a 20 % higher AM colonisation rate than tomato intercropped with tomato. Positive effects of AMF expressed as an increase of tomato biomass compared to the untreated control treatment could be observed in root as well as in shoot weights. A compensation of negative effects of F. oxysporum f. sp. lycopersici on tomato biomass by AMF was observed in the tomato/leek combination. The intercropping partners leek, cucumber, basil and tomato had no effect on F. oxysporum f. sp. lycopersici disease incidence or disease severity indicating no allelopathic suppression; however, tomato co-cultivated with tomato clearly showed a negative effect on one plant/pot with regard to biomass and disease severity of F. oxysporum f. sp. lycopersici. Nonetheless, bioprotective effects of AMF resulting in the decrease of F. oxysporum f. sp. lycopersici disease severity were evident in treatments with AMF and F. oxysporum f. sp. lycopersici co-inoculation. However, these bioprotective effects depended on the intercropping partner since these effects were only observed in the tomato/leek and tomato/basil combination and for the better developed plant of tomato/tomato. In conclusion, the effects of the intercropping partner on AMF colonisation of tomato are of great interest for crop plant communities and for the influences on each other. The outcome of the bioprotective effects of AMF resulting in the decrease on F. oxysporum f. sp. lycopersici disease severity and/or compensation of plant biomass does not depend on the degree of AM colonisation but more on the intercropping partner.  相似文献   

7.
A study was conducted with the vine rootstock Richter 110 (Vitis berlandieri Planch. x Vitis rupestris L.) in order to assess whether the colonisation by the arbuscular mycorrhizal fungus (AMF) Glomus intraradices (BEG 72) can delay the disease development in plants inoculated with the root-rot fungus Armillaria mellea (Vahl:Fr) Kummer, and to elucidate if the levels of polyamines (PAs) are modified in response to G. intraradices, A. mellea or by the dual infection. Four treatments were considered: control and G. intraradices-inoculated plants infected or not with A. mellea. Plant growth, mycorrhizal colonisation and disease development were monitored throughout the experiment. High performance liquid chromatography (HPLC) in combination with fluorescence spectrophotometry was used to separate and quantify free root and leaf polyamines. The slower development of pathogenic symptoms and the higher plant biomass of mycorrhizal plants inoculated with A. mellea indicate an increase of tolerance due to the AMF inoculation. The variations in free PA levels detected at the beginning of the pathogenic infection suggest that PAs may have a potential role in the signalling mechanisms of the tolerance of mycorrhizal plants against A. mellea.  相似文献   

8.
Both Impatiens glandulifera and Fallopia japonica are highly invasive plant species that have detrimental impacts on native biodiversity in areas where they invade and form dense monocultures. Both species are weakly dependent on arbuscular mycorrhizal fungi (AMF) for their growth and, therefore, under monotypic stands, the AMF network can become depauperate. We evaluated the impact of I. glandulifera and F. japonica on the performance (expressed as shoot biomass) of three UK native species (Plantago lanceolata, Lotus corniculatus and Trifolium pratense) grown in soil collected from under stands of both invasive plants and compared to plants grown in soil from under stands of the corresponding native vegetation. All native species had a higher percentage colonisation of AMF when grown in uninvaded soil compared to the corresponding invaded soil. P. lanceolata and L. corniculatus had a higher biomass when grown in uninvaded soil compared to corresponding invaded soil indicating an indirect impact from the non-native species. However, for T. pratense there was no difference in biomass between soil types related to I. glandulifera, suggesting that the species is more reliant on rhizobial bacteria. We conclude that simply managing invasive populations of non-native species that are weakly, or non-dependent, on AMF is inadequate for habitat restoration as native plant colonisation and establishment may be hindered by the depleted levels of AMF in the soil below invaded monocultures. We suggest that the reintroduction of native plants to promote AMF proliferation should be incorporated into future management plans for habitats degraded by non-native plant species.  相似文献   

9.
接种AMF对菌根植物和非菌根植物竞争的影响   总被引:4,自引:0,他引:4  
张宇亭  王文华  申鸿  郭涛 《生态学报》2012,32(5):1428-1435
为了研究丛枝菌根真菌(arbuscular mycorrhizal fungus, AMF)对菌根植物与非菌根植物种间竞争的影响,以玉米(菌根植物)和油菜(非菌根植物)作为供试植物,分别进行间作、尼龙网分隔和单作,模拟这两种植物之间不同的竞争状态,接种丛枝菌根真菌Glomus intraradicesGlomus mosseae,比较菌根植物和非菌根植物的生长和磷营养状况,分析AMF侵染对植物种间竞争作用的影响。结果显示,与单作相比,间作模式下玉米的生物量及磷营养状况有所降低,但其菌根依赖性却有所提高。与不接种相比,接种处理显著降低了间作体系油菜根系的磷含量和磷吸收量,但趋于改善菌根植物玉米的磷营养状况。因此,接种AMF可以降低非菌根植物的磷营养状况及生物量,使得菌根植物的相对竞争能力明显提高,说明AMF在维持物种多样性方面有着重要的作用。  相似文献   

10.
The colonisation and diversity of arbuscular mycorrhizal fungi (AMF) on roots of grapevines were investigated in production vineyards located along a 500-km-long stretch of karst along the coast of the Adriatic Sea. AMF communities on roots of grapevines were analysed using temporal temperature gel electrophoresis and sequencing of the 18S and internal transcribed spacer segments of the rDNA operon. The AMF colonisation of these grapevines roots was consistent along the whole of this east Adriatic karst region, at 64 to 82 % of fine roots. The comparison of the AMF communities on the roots of these grapevines showed that the fungal community associated with grapevine roots seems to be relatively stable, with inter-vineyard variability comparable to intra-vineyard variability. Some of the changes in the fungal communities were attributed to environmental factors (plant-available P) and location of the vineyard, although the latter could also have been influenced by an unmeasured environmental factor. A total of 27 taxa of fungi were identified, including taxa from Glomus group B, based on the sequencing of 18S rDNA. Sequencing of the internal transcribed spacer rDNA yielded 30 different fungal taxa, which comprised eight different Glomeromycota taxa, including Glomus sinuosum and Glomus indicum. To our knowledge, this is the first report of grapevine colonisation by G. indicum.  相似文献   

11.
It is known that vegetation plays an important role in the retention of heavy metals in salt marshes by taking up and accumulating the metals. In this study, we investigated whether arbuscular mycorrhizal fungi (AMF) increase Cd and Cu uptake and accumulation in the root system of the salt marsh species Aster tripolium L., and whether indigenous AMF isolated from polluted salt marshes have higher capacity to resist and alleviate metal stress in A. tripolium than isolates of the same species originated from non-polluted sites. Plants inoculated with Glomus geosporum, either isolated from a polluted salt marsh site (PL isolate) or from a non-polluted site (NP isolate), and non-mycorrhizal (NM) plants were compared in a pot experiment at four different Cd and Cu concentrations. Cd had no effect in root colonization, whereas high concentrations of Cu decreased colonization level in plants inoculated with the NP isolate. AM colonization did not increase plant dry weight or P concentration but influenced root Cd and Cu concentrations. Inoculation with PL and NP isolates enhanced root Cd and Cu concentrations, especially at highest metal addition levels, as compared to NM plants, without increasing shoot Cd and Cu concentrations. There was no evidence of intraspecific variation in the effects between AMF isolated from polluted and non-polluted sites, since there were no differences between plants inoculated with PL or NP isolate in any of the tested plant variables. The results of this study showed that AMF enhance metal accumulation in the root system of A. tripolium, suggesting a contribution of AMF to the sink of metals within vegetation in the salt marshes.  相似文献   

12.
Many plant populations have adapted to local soil conditions. However, the role of arbuscular mycorrhizal fungi is often overlooked in this context. Only a few studies have used reciprocal transplant experiments to study the relationships between soil conditions, mycorrhizal colonisation and plant growth. Furthermore, most of the studies were conducted under controlled greenhouse conditions. However, long-term field experiments can provide more realistic insights into this issue. We conducted a five-year field reciprocal transplant experiment to study the relationships between soil conditions, arbuscular mycorrhizal fungi and plant growth in the obligate mycotrophic herb Aster amellus. We conducted this study in two regions in the Czech Republic that differ significantly in their soil nutrient content, namely Czech Karst (region K) and Ceske Stredohori (region S). Plants that originated from region S had significantly higher mycorrhizal colonisation than plants from region K, indicating that the percentage of mycorrhizal colonisation has a genetic basis. We found no evidence of local adaptation in Aster amellus. Instead, plants from region S outperformed the plants from region K in both target regions. Similarly, plants from region S showed more mycorrhizal colonisation in all cases, which was likely driven by the lower nutrient content in the soil from that region. Thus, plant aboveground biomass and mycorrhizal colonisation exhibited corresponding differences between the two target regions and regions of origin. Higher mycorrhizal colonisation in the plants from region with lower soil nutrient content (region S) in both target regions indicates that mycorrhizal colonisation is an adaptive trait. However, lower aboveground biomass in the plants with lower mycorrhizal colonisation suggests that the plants from region K are in fact maladapted by their low inherent mycorrhizal colonization. We conclude that including mycorrhizal symbiosis in local adaptation studies may increase our understanding of the mechanisms by which plants adapt to their environment.  相似文献   

13.
The use of commercial inoculants containing non-resident arbuscular mycorrhizal fungi (AMF) is an emerging technology in field crop production in Canada. The objective of this study was to assess the impact of AMF inoculants containing either a single species (Glomus irregulare) or mixed species (G. irregulare, Glomus mosseae, and Glomus clarum) on AMF root colonization and consequent plant growth parameters of field pea grown using pot cultures. Field pea was grown in both sterilized and non-sterile (i.e., natural) field-collected soil containing resident AMF and received three inoculation treatments: uninoculated control, G. irregulare only, and a mixture of AMF species of G. irregulare, G. mosseae, and G. clarum. After 42 days, the AMF community assembled in field pea roots was assessed by cloning and sequencing analysis on the LSU-ITS-SSU rDNA gene, together with a microscopic assessment of colonization, biomass production, nutrient uptake, and N2 fixation. The identity of AMF inoculants had a significant effect on field pea performance. The mixed species AMF inoculant performed better than the single species G. irregulare alone by promoting mycorrhizal colonization, field pea biomass, N and P uptake, and N2 fixation and did not result in a significant compositional change of the AMF community that subsequently assembled in field pea roots. In contrast, the single species G. irregulare inoculant did not significantly enhance field pea biomass, N and P uptake, and N2 fixation, although a significant compositional change of the subsequent AMF community was observed. No significant interactions affecting these measurements were detected between the resident AMF and the introduced AMF inoculants. The observation that the mixed species AMF inoculant promoted plant growth parameters without necessarily affecting the subsequent AMF community may have important implications regarding the use of non-resident AMF inoculants in agricultural production.  相似文献   

14.
Arbuscular mycorrhiza and fungal root endophytes of three weeds, Galium tricornutum, Lycopsis orientalis and Scandix pecten-veneris, were studied in an altitudinal gradient of the Pamir Alai Mountains. Colonisation by arbuscular mycorrhizal fungi (AMF) was found in all species. Only in the case of G. tricornutum was there a rise in mycorrhizal parameters values found for the medium altitude range. Similar tendencies were observed in the case of the AMF colonisation potential assessment. This suggests that plant species' identity, dependency on symbiosis and interactions with soil properties determine root colonisation and the abundance of AMF in soils at the elevations in question. Four AMF species, Claroideoglomus claroideum, Funneliformis mosseae, Scutellospora dipurpurescens and Septoglomus constrictum, were isolated from trap cultures established on soil taken from under the weeds. Dark septate endophytes (DSE) accompanied the AMF in the roots of G. tricornutum and S. pecten-veneris; however, they were neither frequently occurring nor abundant. The sporangia of Olpidium spp. were observed with low frequency occurrence in G. tricornutum and S. pecten-veneris and more often in the roots of L. orientalis. However, in both cases, they were low in abundance. No differences were found for the presence of DSE and Olpidium in the altitudinal gradient.  相似文献   

15.
Grapevine (Vitis vinifera L.) and two selected weeds from Mediterranean Croatian vineyards (Plantago lanceolata L. and Tanacetum cinerariifolium (Trevir.) Sch.Bip.) were examined in pot culture experiments, individually or when combined, to see whether multiple hosts influenced the formation of the symbiosis with arbuscular mycorrhizal fungi (AMF). The results after six-month period showed that plant identity and density significantly influenced development of mycorrhizal intra- and extraradical mycelium and/or sporulation. Grapevine and T. cinerariifolium individually and in combination resulted in a greater development of arbuscular mycorrhizae in terms of spore production, extraradical mycelium length and root colonization compared with pots containing P. lanceolata. Herbaceous weed species seemed to promote a different set of dominant AMF, potentially providing a wider spectrum of AMF for colonising grapevine roots. This indicates the value of encouraging host plant diversity in vineyards. AMF sequences obtained in this study are the first data reported for soils in Croatia.  相似文献   

16.
1. Arbuscular mycorrhizal fungi (AMF) commonly colonise isoetid species inhabiting oxygenated sediments in oligotrophic lakes but are usually absent in other submerged plants. We hypothesised that organic enrichment of oligotrophic lake sediments reduces AMF colonisation and hyphal growth because of sediment O2 depletion and low carbon supply from stressed host plants. 2. We added organic matter to sediments inhabited by isoetids and measured pore‐water chemistry (dissolved O2, inorganic carbon, Fe2+ and ), colonisation intensity of roots and hyphal density after 135 days of exposure. 3. Addition of organic matter reduced AMF colonisation of roots of both Lobelia dortmanna and Littorella uniflora, and high additions stressed the plants. Even small additions of organic matter almost stopped AMF colonisation of initially un‐colonised L. uniflora, though without reducing plant growth. Mean hyphal density in sediments was high (6 and 15 m cm?3) and comparable with that in terrestrial soils (2–40 m cm?3). Hyphal density was low in the upper 1 cm of isoetid sediments, high in the main root zone between 1 and 8 cm and positively related to root density. Hyphal surface area exceeded root surface area by 1.7–3.2 times. 4. We conclude that AMF efficiently colonise isoetids in oligotrophic sediments and form extensive hyphal networks. Small additions of organic matter to sediments induce sediment anoxia and reduce AMF colonisation of roots but cause no apparent plant stress. High organic addition induces night‐time anoxia in both the sediment and the plant tissue. Tissue anoxia reduces root growth and AMF colonisation, probably because of restricted translocation of nutrient ions and organic solutes between roots and leaves. Isoetids should rely on AMF for P uptake on nutrient‐poor mineral sediments but are capable of growing without AMF on organic sediments.  相似文献   

17.
Decomposers and arbuscular mycorrhizal fungi (AMF) both determine plant nutrition; however, little is known about their interactive effects on plant communities. We set up a greenhouse experiment to study effects of plant competition (one- and two-species treatments), Collembola (Heteromurus nitidus and Protaphorura armata), and AMF (Glomus intraradices) on the performance (above- and belowground productivity and nutrient uptake) of three grassland plant species (Lolium perenne, Trifolium pratense, and Plantago lanceolata) belonging to three dominant plant functional groups (grasses, legumes, and herbs). Generally, L. perenne benefited from being released from intraspecific competition in the presence of T. pratense and P. lanceolata. However, the presence of AMF increased the competitive strength of P. lanceolata and T. pratense against L. perenne and also modified the effects of Collembola on plant productivity. The colonization of roots by AMF was reduced in treatments with two plant species suggesting that plant infection by AMF was modified by interspecific plant interactions. Collembola did not affect total colonization of roots by AMF, but increased the number of mycorrhizal vesicles in P. lanceolata. AMF and Collembola both enhanced the amount of N and P in plant shoot tissue, but impacts of Collembola were less pronounced in the presence of AMF. Overall, the results suggest that, by differentially affecting the nutrient acquisition and performance of plant species, AMF and Collembola interactively modify plant competition and shape the composition of grassland plant communities. The results suggest that mechanisms shaping plant community composition can only be understood when complex belowground interactions are considered.  相似文献   

18.
19.

Background  

Arbuscular mycorrhizal fungi (AMF) are important symbionts of most plant species, promoting plant diversity and productivity. This symbiosis is thought to have contributed to the early colonisation of land by plants. Morphological stasis over 400 million years and the lack of an observed sexual stage in any member of the phylum Glomeromycota led to the controversial suggestion of AMF being ancients asexuals. Evidence for recombination in AMF is contradictory.  相似文献   

20.
Arbuscular mycorrhizal fungi are widespread plant symbionts occurring in most agricultural crops, where they can play key roles in the growth and health of their plant hosts. Plant benefits can depend on the identity of the associated arbuscular mycorrhizal fungi (AMF), but little is known about the identity of the fungal partners in most agricultural systems. In this study, we describe the AMF assemblages associated with four cultivars of strawberry in an outdoor experiment using two field soils with different origin and management history. Assemblages were characterised by clone library sequencing of 18S rRNA gene fragments. Soil dramatically influenced the degree of mycorrhizal colonisation and AMF assemblage structure in the roots. No differences were observed between cultivars. Fungi belonging to the genus Acaulospora dominated the AMF assemblages in one soil, but they were not detected in the other. These results suggest that physicochemical soil characteristics and management can play a role in determining the identity and structure of microbial communities associated with particular hosts in agricultural systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号