首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elemental composition of plant tissue culture media was studied in response to (1) different levels of Gelrite and activated carbon (AC) in semisolid media and (2) different levels and types of AC in liquid media. Doubling the level of Gelrite from 2 g/l to 4 g/l reduced available magnesium (20%), calcium (16%), zinc (17%) and manganese (24%) and increased potassium (6%). AC adsorbed copper (90-95%) and zinc (35-51%) from both liquid and semisolid media. Two significantly different ACs gave minor differences in adsorption. No adsorption was indicated for inorganic anions. Nonacid-washed AC released significant levels of magnesium (44% increase), calcium (16% increase) and silica (a 75% increase to 1.8 mg/l). The elemental composition of media may need to be adjusted when increasing the Gelrite level or adding AC.  相似文献   

2.
禾-豆混播草地种间竞争与共存   总被引:5,自引:0,他引:5  
王平  周道玮  张宝田 《生态学报》2009,29(5):2560-2567
以羊草分别与沙打旺、兴安胡枝子、花苜蓿、紫花苜蓿、山野豌豆5种豆科牧草在混播数量比为1:0、2:1、1:2、0:1的条件下建立两物种混播草地,以相对产量、相对密度和相对产量总值为指标,比较各个混播草地中种间竞争的相对激烈程度;各个物种组合的种间竞争优势以及是否发生氮素资源分离;并探索不同禾-豆混播群落达到共存状态的可能途径.研究结果表明,各个禾-豆组合的相对产量总值分别在不同收获时期大于1,禾草与豆科牧草的生态位发生了不同程度的分离.沙打旺和紫花苜蓿对羊草具有显著的竞争优势,即使其种内竞争大于种间竞争时,混生的羊草亦受到强烈的种间竞争压力.与此相反,羊草对兴安胡枝子、花苜蓿和山野豌豆具有种间竞争优势.刈割对竞争双方的优劣地位产生很大影响,减少强竞争力物种的混播比例,可促进混播物种双方均受益,形成共存格局.实验采用的相对密度指标在预测未来混播种群组成上比相对产量更为可行,并且具有维持低个体大小、高构件密度能力是竞争关系中忍耐型物种能够长期存在的可能原因之一.  相似文献   

3.
This study considered the elemental composition of plant tissue culture media in response to pH and two different types of activated C (AC; tissue culture and non acid-washed grades) in liquid media. When tissue culture medium is supplemented with AC the method of AC addition and pH adjustment can greatly impact the final medium pH, in turn, altering mineral availability. Over the pH range of 4–7, Cu and Zn adsorbed (95% and 50%) onto the two physically different ACs to the same extent. As the pH exceeded 5.8, precipitation became pronounced, resulting in 50% reductions in Mn and Fe and smaller reductions in Ca (20%), and P (15%), independent of AC. Non acid-washed AC released significant levels of Mg (65% increase) and Ca (10% increase) at pH 5.8 compared to the no-AC control. No adsorption was indicated for inorganic anions. Low levels for Cu and Zn are a concern when using AC, and low levels of Fe and Mn are a concern when the pH of the medium exceeds 5.8. Due to its impurity content and difficulty associated with its neutralization, non-acid-washed AC may be a poor choice for use in tissue culture medium.Communicated by W.A. Parrott  相似文献   

4.
Aims Release of carbon from plant roots initiates a chain of reactions involving the soil microbial community and microbial predators, eventually leading to nutrient enrichment, a process known as the 'microbial loop'. However, root exudation has also been shown to stimulate nutrient immobilization, thereby reducing plant growth. Both mechanisms depend on carbon exudation, but generate two opposite soil nutrient dynamics. We suggest here that this difference might arise from temporal variation in soil carbon inputs.Methods We examined how continuous and pulsed carbon inputs affect the performance of wheat (Triticum aestivum), a fast-growing annual, while competing with sage (Salvia officinalis), a slow-growing perennial. We manipulated the temporal mode of soil carbon inputs under different soil organic matter (SOM) and nitrogen availabilities. Carbon treatment included the following two carbon input modes: (i) Continuous: a daily release of minute amounts of glucose, and (ii) Pulsed: once every 3 days, a short release of high amounts of glucose. The two carbon input modes differed only in the temporal dynamic of glucose, but not in total amount of glucose added. We predicted that pulsed carbon inputs should result in nutrient enrichment, creating favorable conditions for the wheat plants.Important findings Carbon addition caused a reduction in the sage total biomass, while increasing the total wheat biomass. In SOM-poor soil without nitrogen and in SOM-rich soil with nitrogen, wheat root allocation was higher under continuous than under pulsed carbon input. Such an allocation shift is a common response of plants to reduced nutrient availability. We thus suggest that the continuous carbon supply stimulated the proliferation of soil microorganisms, which in turn competed with the plants over available soil nutrients. The fact that bacterial abundance was at its peak under this carbon input mode support this assertion. Multivariate analyses indicated that besides the above described changes in plant biomasses and bacterial abundances, carbon supply led to an accumulation of organic matter, reduction in NO 3 levels and increased levels of NH 4 in the soil. The overall difference between the two carbon input modes resulted primarily from the lower total wheat biomass, and lower levels of NO 3 and soil PH characterizing pots submitted to carbon pulses, compared to those subjected to continuous carbon supply. Carbon supply, in general, and carbon input mode, in particular, can lead to belowground chain reactions cascading up to affect plant performance.  相似文献   

5.

Aims

The objective of this study was to investigate the effects of future warming and drought on (1) the biochemical composition of above-ground biomass of forage plants (Festuca arundinacea and Dactylis glomerata), (2) the potential mineralization of this material in soil, and (3) its priming effect on native soil organic matter.

Methods

We sampled above-ground plant material from spring regrowth and summer regrowth of a climate change experiment. While in spring, the plants were well watered, the summer regrowth was exposed to drought and elevated temperature (+3 °C) by infrared heating of the canopy during 3 weeks. We assessed the elemental and isotopic composition, lignin and non-cellulosic carbohydrate content and composition of plant material grown under all three conditions. Its mineralization potential in soil and priming effects were evaluated during laboratory incubation.

Results

Warming had no significant effect on elemental and stable isotope composition of both plant materials. In contrast, it resulted in reduction of lignin content for both plant species and decrease of the lignin-to-N ratio for F. arundinacea and increased non-cellulosic carbohydrate content for D. glomerata. Summer regrowth was characterised by increase of δ13C values, which is consistent with variations in stomatal conductance due to water shortage. Moreover, summer drought induced an increase in N content leading to decrease of the C/N ratio and increase of lignin-to-N ratio of summer regrowth compared to spring regrowth. Differences in decomposition were small, while priming effects were more strongly altered by the different exposure to enviromental.

Conclusion

Our results provide direct experimental evidence that extreme climatic events (high temperature and precipitation deficit) have an influence on soil carbon storage particularly through their effect on priming of native soil organic matter induced by altered plant litter. These effects seem to be governed by alterations of stoichiometry and to a smaller extent by alterations of plant chemical composition.  相似文献   

6.
The vertical variation in soil microbial respiratory activity and its relationship to organic carbon pools is critical for modeling soil C stock and predicting impacts of climate change, but is not well understood. Mineral soil samples, taken from four Scottish soils at different depths (0–8, 8–16, 16–24, 24–32 cm), were analyzed and incubated in the laboratory under constant temperature and environmental conditions. The vegetation type/plant species showed significant effects on the absolute concentration of C components and microbial activity, but the relative distribution of C and respiration rate with soil depth are similar across sites. Soil C pools and microbial respiratory activity declined rapidly with soil depth, with about 30% of total organic carbon (TOC) and dissolved organic carbon (DOC), and about half microbial carbon (Cmic) and respired CO2 observed in the top 8 cm. The ratio of CO2:TOC generally decreased with soil depth, but CO2:DOC was significantly higher in the top 8 cm of soil than in the subsoil (8–32 cm). No general pattern between qCO2 (CO2:Cmic) and soil depth was found. The vertical distributions of soil C pools and microbial respiratory activity were best fitted with a single exponential equation. Compared with TOC and DOC, Cmic appears to be an adequate predictor for the variation in microbial respiration rate with soil depth, with 95% of variation in normalized respiration rate accounted for by a linear relationship.  相似文献   

7.
新型大颗粒活化腐植酸肥(LAF)在苹果化肥减量和果实稳产方面的效果显著,探明其对土壤团聚体和有机碳的影响是揭示该新型肥料对苹果土壤结构影响的重要依据。本研究设置4个LAF处理:LAF1[全量施肥,施肥时期及重量比(下同):萌芽期∶膨果期∶成熟期=3∶4∶3]、LAF2(全量施肥,萌芽期∶膨果期∶成熟期=2∶3∶5)、LAF3(减量1/4施肥,萌芽期∶膨果期∶成熟期=2∶3∶5)、LAF4(减量1/3施肥,萌芽期∶膨果期∶成熟期=2∶3∶5),以不施肥(CK)处理为对照。通过4年盆栽试验,研究苹果土壤团聚体组成、稳定性和有机碳对不同施肥处理的响应。结果表明: 1)与CK相比,LAF各处理显著提高了土壤水稳性大团聚体含量,>2 mm和2~0.25 mm粒径团聚体含量分别提高了53.4%~77.5%和12.3%~17.0%,且提高幅度随施肥量的增加而增大,其中LAF1处理土壤水稳性大团聚体含量最高。2)LAF各处理在各粒径团聚体含量上差异不显著,其中2~0.25 mm粒径团聚体含量所占的比例最高。3)与CK相比,LAF各处理均显著提高了团聚体平均重量直径(MWD)和几何平均直径(GMD),降低了分形维数(D),其中LAF1处理的MWD和GMD值最高,对土壤团聚体稳定性提升效果最好。4)除LAF4外,其他LAF处理土壤有机碳含量均显著高于CK,其中LAF2处理土壤有机碳含量最高;LAF各处理均增加了土壤各粒径团聚体有机碳含量,LAF1、LAF2、LAF3处理显著提高了>2 mm粒径团聚体有机碳含量,且>2 mm团聚体有机碳对总有机碳的贡献率最大;LAF各处理的水稳性大团聚体有机碳对总有机碳的贡献率均显著高于CK,且贡献率均在66.0%以上,其中LAF1处理最高。综上,施用LAF在促进苹果土壤水稳性大团聚体形成和稳定性、提高团聚体有机碳含量上应用效果显著,其中全量施用效果最好。施用LAF可作为改善苹果土壤结构和提升土壤肥力的有效措施。  相似文献   

8.
Plant and Soil - Arsenic (As) cycling in flooded rice paddies is driven by soil microbes which among other transformations can cause conversion between inorganic and organic As species. Silicon...  相似文献   

9.
土壤碳库构成研究进展   总被引:35,自引:5,他引:35  
余健  房莉  卞正富  汪青  俞元春 《生态学报》2014,34(17):4829-4838
土壤碳库是陆地生态系统中最大的碳库。土壤碳库的构成影响其累积和分解,并直接影响全球陆地生态系统碳平衡,同时也影响土壤质量变化。弄清土壤碳库的组分及构成,是进一步研究土壤碳库变化机制的关键。综述了土壤碳库的组分和构成,对有机碳库进行不稳定性有机碳库和稳定有机碳库归类,描述各类碳库的性质,并对各类碳库的分析测定方法进行了评述。提出在土壤碳构成中增加黑碳和煤炭(碳)以完善土壤有机碳构成框架。在未来研究中,应加强土壤无机碳及湿地土壤和新开发新复垦的重构土壤碳库构成及变化,各类碳库化学构成,交叉重叠的定量关系,碳库之间的转化及在土壤中的迁移,黑碳对土壤碳库稳定性及土壤质量的影响,煤开采扰动区煤炭(碳)对土壤质量的影响及环境效应等科学问题的研究。  相似文献   

10.
Community databases have become crucial to the collection, ordering and retrieval of data gathered on model organisms, as well as to the ways in which these data are interpreted and used across a range of research contexts. This paper analyses the impact of community databases on research practices in model organism biology by focusing on the history and current use of four community databases: FlyBase, Mouse Genome Informatics, WormBase and The Arabidopsis Information Resource. We discuss the standards used by the curators of these databases for what counts as reliable evidence, acceptable terminology, appropriate experimental set-ups and adequate materials (e.g., specimens). On the one hand, these choices are informed by the collaborative research ethos characterising most model organism communities. On the other hand, the deployment of these standards in databases reinforces this ethos and gives it concrete and precise instantiations by shaping the skills, practices, values and background knowledge required of the database users. We conclude that the increasing reliance on community databases as vehicles to circulate data is having a major impact on how researchers conduct and communicate their research, which affects how they understand the biology of model organisms and its relation to the biology of other species.  相似文献   

11.
Evolutionary theory argues that ecological interactions between pathogens within an infection can be a potent source of selection shaping traits such as virulence, drug resistance, and infectiousness. In humans, malaria infections are frequently genetically diverse, with mixed genotype infections the norm. A wide variety of evidence shows that crowding occurs within infections, with the population densities of individual genotypes suppressed by the presence of others. Public health interventions are expected to impact on levels of immunity experienced by pathogens, indirectly by reducing the rate of acquisition of natural immunity by reducing the force of infection, and directly in the case of vaccination programs. Here we ask how enhanced host immunity affects competitive interactions between malaria parasites within hosts and thus the strength of in-host selection on traits such as virulence. We used a model malaria system, Plasmodium chabaudi in laboratory mice, where it has been previously shown that less virulent parasites are competitively suppressed by more virulent strains, generating within-host selection for increased virulence. We found that immunization with either a recombinant antigen or with live parasites suppressed parasite densities, but that there was no evidence that immunization relieved or exacerbated competitive suppression, or affected the relative frequency of clones within infections. There is thus no reason to think that immunization strengthens or alleviates the potentially very potent selection on parasite traits arising from interactions between pathogen genotypes within infections.  相似文献   

12.
Leachate from a municipal landfill was combined with domestic wastewater and treated in batch, semi-continuously fed-batch (SCFB) and continuous-flow (CF) activated sludge systems with and without powdered activated carbon (PAC) addition. In the absence of PAC, nitrification was severely inhibited and nitrite accumulated to about 85–100% of the total NOx-N. Addition of PAC to activated sludge reactors enhanced nitrification. In continuous-flow operation, nitrite accumulation could be completely prevented by PAC addition.  相似文献   

13.
14.
Effects of organism size and community composition on ecosystem functioning   总被引:1,自引:0,他引:1  
We tested (1) if the size of dominant species influenced ecosystem functioning in food webs consisting of bacteria, algae, and protozoa; (2) whether those effects changed in importance through time; and (3) how those effects compared with differences in diversity among experimental food webs. We constructed food webs using two size fractions of organisms that differed in individual mass by approximately two orders of magnitude. We measured total biomass and respiration (total CO2 production) as two aspects of ecosystem functioning. We also compared these size‐dependent patterns in functioning across two levels of species richness. Initially, organism size strongly influenced total community biomass. With time, however, biomass and respiration eventually converged in communities dominated by large or small species. We conclude that after sufficient time for community development any differences in ecosystem functioning resulted from differences in community composition, including species richness, but not the size of the dominant organisms.  相似文献   

15.
以入侵植物空心莲子草(Alternanthera philoxeroides(Mart.)Griseb)、本土近缘种莲子草(Alternan-thera sessilis(L.)DC)、生防昆虫莲草直胸跳甲(Agasicles hygrophila(Selman&Vogt))和本地昆虫虾钳菜披龟甲(Cassida pi...  相似文献   

16.
Soil is a highly heterogeneous matrix, which can contain thousands of different bacterial species per gram. Only a small component of this diversity (maybe <1%) is commonly captured using standard isolation techniques, although indications are that a larger proportion of the soil community is in fact culturable. Better isolation techniques yielding greater bacterial diversity would be of benefit for understanding the metabolic activity and capability of many soil microorganisms. We studied the response of soil bacterial communities to carbon source enrichment in small matrices by means of terminal restriction fragment length polymorphism (TRFLP) analysis. The community composition of replicate enrichments from soil displayed high variability, likely attributable to soil heterogeneity. An analysis of TRFLP data indicated that enrichment on structurally similar carbon sources selected for similar bacterial communities. The same analysis indicated that communities first enriched on glucose or benzoate and subsequently transferred into medium containing an alternate carbon source retained a distinct community signature induced by the carbon source used in the primary enrichment. Enrichment on leucine presented a selective challenge that was able to override the imprint left by primary enrichment on acetate. In a time series experiment community change was most rapid 18 hours after inoculation, corresponding to exponential growth. Community composition did not stabilize even 4 days after secondary enrichment. Four different soil types were enriched on four different carbon sources. TRFLP analysis indicated that in three out of four cases communities enriched on the same carbon source were more similar regardless of which soil type was used. Conversely, the garden soil samples yielded similar enrichment communities regardless of the enrichment carbon source. Our results indicate that in order to maximize the diversity of bacteria recovered from the environment, multiple enrichments should be performed using a chemically diverse set of carbon sources.  相似文献   

17.
Root carbon (C) inputs may regulate decomposition rates in soil, and in this study we ask: how do labile C inputs regulate decomposition of plant residues, and soil microbial communities? In a 14 d laboratory incubation, we added C compounds often found in root exudates in seven different concentrations (0, 0.7, 1.4, 3.6, 7.2, 14.4 and 21.7 mg C g(-1) soil) to soils amended with and without (13) C-labeled plant residue. We measured CO(2) respiration and shifts in relative fungal and bacterial rRNA gene copy numbers using quantitative polymerase chain reaction (qPCR). Increased labile C input enhanced total C respiration, but only addition of C at low concentrations (0.7 mg C g(-1)) stimulated plant residue decomposition (+2%). Intermediate concentrations (1.4, 3.6 mg C g(-1)) had no impact on plant residue decomposition, while greater concentrations of C (>7.2 mg C g(-1)) reduced decomposition (-50%). Concurrently, high exudate concentrations (>3.6 mg C g(-1)) increased fungal and bacterial gene copy numbers, whereas low exudate concentrations (<3.6 mg C g(-1)) increased metabolic activity rather than gene copy numbers. These results underscore that labile soil C inputs can regulate decomposition of more recalcitrant soil C by controlling the activity and relative abundance of fungi and bacteria.  相似文献   

18.
Recent evidence suggests that, similar to larger organisms, dispersal is a key driver of microbiome assembly; however, our understanding of the rates and taxonomic composition of microbial dispersal in natural environments is limited. Here, we characterized the rate and composition of bacteria dispersing into surface soil via three dispersal routes (from the air above the vegetation, from nearby vegetation and leaf litter near the soil surface, and from the bulk soil and litter below the top layer). We then quantified the impact of those routes on microbial community composition and functioning in the topmost litter layer. The bacterial dispersal rate onto the surface layer was low (7900 cells/cm2/day) relative to the abundance of the resident community. While bacteria dispersed through all three routes at the same rate, only dispersal from above and near the soil surface impacted microbiome composition, suggesting that the composition, not rate, of dispersal influenced community assembly. Dispersal also impacted microbiome functioning. When exposed to dispersal, leaf litter decomposed faster than when dispersal was excluded, although neither decomposition rate nor litter chemistry differed by route. Overall, we conclude that the dispersal routes transport distinct bacterial communities that differentially influence the composition of the surface soil microbiome.Subject terms: Community ecology, Microbial ecology, Bacteria, Fungal ecology, Soil microbiology  相似文献   

19.
One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO2. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO2 conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO2. PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. Also, the signal intensity of five phyla (Crenarchaeota, Chloroflexi, OP10, OP9/JS1, Verrucomicrobia) significantly decreased at eCO2, and such significant effects of eCO2 on microbial composition were also observed at the class or lower taxonomic levels for most abundant phyla, such as Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria, suggesting a shift in microbial community composition at eCO2. Additionally, statistical analyses showed that the overall taxonomic structure of soil microbial communities was altered at eCO2. Mantel tests indicated that such changes in species richness, composition and structure of soil microbial communities were closely correlated with soil and plant properties. This study provides insights into our understanding of shifts in the richness, composition and structure of soil microbial communities under eCO2 and environmental factors shaping the microbial community structure.  相似文献   

20.
Interest in bioenergy crops is increasing due to their potential to reduce greenhouse gas emissions and dependence on fossil fuels. We combined process‐based and geospatial models to estimate the potential biomass productivity of miscanthus and its potential impact on soil carbon stocks in the croplands of the continental United States. The optimum (climatic potential) rainfed productivity for field‐dried miscanthus biomass ranged from 1 to 23 Mg biomass ha?1 yr?1, with a spatial average of 13 Mg ha?1 yr?1 and a coefficient of variation of 30%. This variation resulted primarily from the spatial heterogeneity of effective rainfall, growing degree days, temperature, and solar radiation interception. Cultivating miscanthus would result in a soil organic carbon (SOC) sequestration at the rate of 0.16–0.82 Mg C ha?1 yr?1 across the croplands due to cessation of tillage and increased biomass carbon input into the soil system. We identified about 81 million ha of cropland, primarily in the eastern United States, that could sustain economically viable (>10 Mg ha?1 yr?1) production without supplemental irrigation, of which about 14 million ha would reach optimal miscanthus growth. To meet targets of the US Energy Independence and Security Act of 2007 using miscanthus as feedstock, 19 million ha of cropland would be needed (spatial average 13 Mg ha?1 yr?1) or about 16% less than is currently dedicated to US corn‐based ethanol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号