首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 964 毫秒
1.
Four-year-old beech seedlings were fumigated with three levels of ozone for 2 consecutive years in open-top chambers. During the second growth season different physiological measurements were conducted before and during daily fumigation. A 25–40% decrease in net photosynthesis was seen during fumigation, whereas no differences were detected before fumigation in July. In August lasting effects in net photosynthesis were seen. The apparent quantum yield was decreased after fumigation. Stomatal conductance was generally decreased during fumigation, but transpiration was reduced relatively less than net photosynthesis indicating a lower water use efficiency of the trees exposed to ozone. Chlorophyll fluorescence (Fv/Fm) showed additive reductions in relation to ozone and light.  相似文献   

2.
This study attempted to detect the impact of ozone on adult trees of Norway spruce ( Picea abies [L.] Karst.) and European beech ( Fagus sylvatica L.) in an experimental mixed stand in Southern Bavaria, Germany. The aim was to examine whether there is a decrease in growth when trees are exposed to higher than atmospheric concentrations of ozone. This exposure was put into effect using a free-air fumigation system at tree crown level. Growth analysis was carried out on a group of 47 spruce and 36 beech trees, where radial stem increment at breast height - a sensitive index for stress - was measured. The ozone monitoring system allowed values to be obtained for the accumulated ozone exposure (SUM00) of each individual tree, so that their radial increment over three years could be correlated with the corresponding ozone exposure for the same time period. Correlation and regression analysis were then carried out to test the influence of ozone on diameter increment. In both spruce and beech, the initial stem diameter was the most influential factor on radial increment in the following year. A linear model was applied, including the diameter of the preceding year and the ozone exposure of the current year as predicting factors. For spruce trees, a significant negative influence of ozone exposure was found. In contrast, no significant ozone effect on diameter increment of beech was detected. The effect of ozone stress on a large spruce tree can lead to a decrease in potential radial increment of 22 %. The results are discussed in relation to other stress factors such as drought and lack of light.  相似文献   

3.
Puc M 《Aerobiologia》2011,27(3):191-202
The dynamics of Poaceae pollen season, in particularly that of the Secale genus, in Szczecin (western Poland) 2004–2008 was analysed to establish a relationship between the meteorological variables, air pollution and the pollen count of the taxa studied. Consecutive phases during the pollen season were defined for each taxon (1, 2.5, 5, 25, 50, 75, 95, 97.5, 99% of annual total), and duration of the season was determined using the 98% method. On the basis of this analysis, the temporary differences in the dynamics of the seasons were most evident for Secale in 2005 and 2006 with the longest main pollen season (90% total pollen). The pollen season of Poaceae started the earliest in 2007, when thermal conditions were the most favourable. Correlation analysis with meteorological factors demonstrated that the relative humidity, mean and maximum air temperature, and rainfall were the factors influencing the average daily pollen concentrations in the atmosphere; also, the presence of air pollutants such as ozone, PM10 and SO2 was statistically related to the pollen count in the air. However, multiple regression models explained little part of the total variance. Atmospheric pollution induces aggravation of symptoms of grass pollen allergy.  相似文献   

4.
The impact of chronic free air ozone (O3) exposure and belowground pathogen stress on growth and total biomass development of young beech trees (Fagus sylvatica L.) was investigated in a lysimeter study. Plants were growing during four years under ambient or elevated atmospheric O3 concentrations. Additionally, in the last vegetation period the root rot pathogen Phytophthora citricola was introduced to study the interaction of ozone exposure and pathogen stress in the soil-plant system. A complete harvest at the end of the experiment enabled for the first time the assessment of fine and coarse root biomass of individual trees with a high vertical resolution down to two meter depth. Plant growth was significantly reduced by elevated ozone but not affected by P. citricola. Biomass partitioning between fine and coarse roots as well as vertical root distribution were significantly affected by both factors, whereas changes in root/shoot biomass ratio were not observed.  相似文献   

5.
Long-term variation in tree-ring widths (1873–2006) and intra-annual dynamics of cambial activity and tree-ring formation in 2006 were studied in mature beech (Fagus sylvatica L.) trees at a typical forest site near Ljubljana (46°N, 14°40′E, 400 m a.s.l.) and related to leaf phenology and climate data. Tree-ring widths were negatively affected by minimum March and maximum August temperatures and favoured by May and July precipitation. Precipitation of the previous August and temperature of the previous November also had a positive effect. Leaf unfolding was affected by March and April temperatures, occurring later if they were low. Leaf yellowing was positively affected by minimum July temperatures and negatively by September precipitation. In 2006, leaf unfolding occurred on 16 April and was immediately followed by reactivation of cambium at breast height of the trees. One week later, the cambium obtained its maximum width (around 11 cell layers) and the rate of division increased until the end of May/beginning of June. By the end of June, 75% of the tree-ring was formed. Cambial cell divisions stopped from the end of July to mid-August. The average time of cambial activity was 100 days. Leaf yellowing occurred at the end of October, i.e. nearly 2 months after the cessation of cambial cell division. We discuss the usefulness of a combination of long-term (tree-ring width and phenology) and short-term (wood formation at a cellular level) data to understand better the environmental signals registered by a tree during growth.  相似文献   

6.
The aim was to analyze functional changes in the mycorrhizosphere (MR) of juvenile spruce and beech grown in a mixture under ambient and twice ambient ozone and inoculated with the root pathogen Phytophthora citricola. The phytotron experiment was performed over two vegetation periods, adding the pathogen at the end of the first growing season. Root biomass data suggest that the combined treatment affected spruce more than beech and that the negative influence of ozone on stress tolerance against the root pathogen P. citricola was greater for spruce than for beech. In contrast, beech was more affected when the pathogen was the sole stressor. The functional soil parameter chosen for studies of MR soil samples was activity of extracellular enzymes. After the first year of ozone exposure, MR soil samples of both species showed increased activity of almost all measured enzymes (acid phosphatase, chitinase, beta-glucosidase, cellobiohydrolase) in the O3 treatment. Species-specific differences were observed, with a stronger effect of P. citricola on beech MR and a stronger ozone effect on spruce MR. In the second year, the effects of the combined treatment (ozone and P. citricola) were a significant increase in the activity of most enzymes (except cellobiohydrolase) for both tree species. The results indicated that responsiveness of MR soils towards ozone and P. citricola was related to the severity of infection of the plants and the reduction of belowground biomass, suggesting a strong, direct influence of plant stress on MR soil enzyme activity. Additional research is needed using different species and combined stresses to determine the broader ecological relevance of shifts in rhizosphere enzymes.  相似文献   

7.
Ozone is the most damaging air pollutant to crops, currently reducing Midwest US maize production by up to 10%, yet there has been very little effort to adapt germplasm for ozone tolerance. Ozone enters plants through stomata, reacts to form reactive oxygen species in the apoplast and ultimately decreases photosynthetic C gain. In this study, 10 diverse inbred parents were crossed in a half‐diallel design to create 45 F1 hybrids, which were tested for ozone response in the field using free air concentration enrichment (FACE). Ozone stress increased the heritability of photosynthetic traits and altered genetic correlations among traits. Hybrids from parents Hp301 and NC338 showed greater sensitivity to ozone stress, and disrupted relationships among photosynthetic traits. The physiological responses underlying sensitivity to ozone differed in hybrids from the two parents, suggesting multiple mechanisms of response to oxidative stress. FACE technology was essential to this evaluation because genetic variation in photosynthesis under elevated ozone was not predictable based on performance at ambient ozone. These findings suggest that selection under elevated ozone is needed to identify deleterious alleles in the world's largest commodity crop.  相似文献   

8.
Concentrations of the antioxidants ascorbate and glutathione were measured in the apoplast of beech (Fagus sylvatica L.) leaves and in leaf tissue. During early leaf development, reduced ascorbate (ASC) was almost absent from the apoplast, whereas levels of oxidized ascorbate (DHA) were high. Less than 20% of the apoplastic ascorbate was reduced. ASC increased towards midsummer, reaching top levels of about 4molm?3 apoplast volume in July and August. Reduction increased to 60–75% in summer. Neither DHA reductase nor glutathione was detected in the apoplast of beech leaves. Levels of apoplastic ascorbate were compared with ambient concentrations of ozone in air. Statistical analysis indicated a significant interrelation between atmospheric ozone and apoplastic ascorbate. In midsummer of 1993, contents of DHA were increased in the apoplast when ozone concentrations were high. Apoplastic ASC was also positively correlated with ambient ozone concentrations, but with a delay of 3 to 7d. In leaf tissue, levels of ascorbate were between 17 and 21 μmolg?1 FW in summer. Except for late April and November, more than 95% of the intracellular ascorbate was reduced. Glutathione contents were lowest during the summer. Oxidation was increased in spring and autumn, when apoplastic ascorbate was also largely oxidized. Usually, 80 to 90% of the glutathione was reduced. During the summer, intracellular concentrations of oxidized glutathione (GSSG) were increased, with a delay of about 1d following periods of high ambient ozone concentrations. The transitory accumulation of GSSG may be explained by slow enzymatic regeneration of glutathione.  相似文献   

9.
安庆褐飞虱近三个大发生年虫源和气候条件的比较分析   总被引:1,自引:0,他引:1  
比较并分析安庆市1997,2005年和2006年褐飞虱Nilaparvata lugehs(Stal)大发生的虫源、气候条件。1997年,迁入期偏早,初迁虫量大,到7月26日止,单灯累计诱量为1228~8698头;7、8月份气温比历史均值低0.2~1.3℃,导致单季稻上基数适温协同暴发型;再迁补充虫源峰次较多,但9月份气温比历史均值低1.0℃,抑制了双季晚稻褐飞虱发生。2005年,迁入期较早,但初迁虫量低,到7月26日止,单灯累计诱量为200~3334头;7月中旬至8月份气温比历史均值低0.4~0.8℃,9月至10月中旬气温比历史均值高1.8~2.2℃,有利褐飞虱发生的气候条件长达3个月;同时,夏、秋季台风暴雨频繁,再迁补充虫源丰富,8月16日~9月25日每侯灯下≥1000头的回迁峰次多达5个,分别比1997年和2006年多1个和2个,导致多代连续重发。2006年,迁入期早,6月底以前的早迁虫量分别是1997年和2005年同期的6.4倍和2.1倍,初迁虫量大,到7月26日止,单灯累计诱量为1595~7181头;虽然7、8月份气温比历史均值高1.0~2.0℃,但单季稻田间小气候适宜,构成单季稻基数暴发型;再迁补充虫源峰次较少,但8月底~9月初短期内大量集中迁入,9月下旬至10月份气温异常偏高,高于历史均值1.5~3.0℃,引起晚稻持续重发。  相似文献   

10.
11.
Ozone-sensitive and tolerant genotypes of snap bean ( Phaseolus vulgaris L.) were compared for differences in leaf ascorbic acid (vitamin C), glutathione and α -tocopherol (vitamin E) content to determine whether antioxidant levels were related to ozone tolerance. Seven genotypes were grown in pots under field conditions during the months of June and July. Open top chambers were used to establish either a charcoal filtered (CF) air control (36 nmol mol−1 ozone) or a treatment where CF air was supplemented with ozone from 8:00 to 20:00 h with a daily 12 h mean of 77 nmol mol−1. Fully expanded leaves were analyzed for ascorbic acid, chlorophyll, glutathione, guaiacol peroxidase (EC 1.11.1.7) and α -tocopherol. Leaf ascorbic acid was the only variable identified as a potential factor in ozone tolerance. Tolerant genotypes contained more ascorbic acid than sensitive lines, but the differences were not always statistically significant. Genetic differences in glutathione and α -tocopherol were also observed, but no relationship with ozone tolerance was found. Guaiacol peroxidase activity and leaf α -tocopherol content increased in all genotypes following a one week ozone exposure, indicative of a general ozone stress response. Ozone had little effect on the other variables tested. Overall, ozone sensitive and tolerant plants were not clearly distinguished by differences in leaf antioxidant content. The evidence suggests that screening for ozone tolerance based on antioxidant content is not a reliable approach.  相似文献   

12.

Background and Aims

Resistance of plants to ozone stress can be classified as either avoidance or tolerance. Avoidance of ozone stress may be explained by decreased stomatal conductance during ozone exposure because stomata are the principal interface for entry of ozone into plants. In this study, a coupled photosynthesis–stomatal model was modified to test whether the presence of ozone can induce avoidance of ozone stress by stomatal closure.

Methods

The response of Siebold''s beech (Fagus crenata), a representative deciduous tree species, to ozone was studied in a free-air ozone exposure experiment in Japan. Photosynthesis and stomatal conductance were measured under ambient and elevated ozone. An optimization model of stomata involving water, CO2 and ozone flux was tested using the leaf gas exchange data.

Key Results

The data suggest that there are two phases in the avoidance of ozone stress via stomatal closure for Siebold''s beech: (1) in early summer ozone influx is efficiently limited by a reduction in stomatal conductance, without any clear effect on photosynthetic capacity; and (2) in late summer and autumn the efficiency of ozone stress avoidance was decreased because the decrease in stomatal conductance was small and accompanied by an ozone-induced decline of photosynthetic capacity.

Conclusions

Ozone-induced stomatal closure in Siebold''s beech during early summer reduces ozone influx and allows the maximum photosynthetic capacity to be reached, but is not sufficient in older leaves to protect the photosynthetic system.  相似文献   

13.
From April 1988 to October 1991 3-year-old seed propagated beech (Fagus sylvatica L.) trees were exposed in open-top chambers to four different levels of air pollution: (1) charcoal filtered air, (2) ambient air, (3) ambient air plus 30 nl 1-1 ozone during the summer, and (4) ambient air plus 30 nl 1-1 ozone during the summer and 20 nl 1-1 SO2 and NO2 during the winter. Leaf colour was studied in the autumns of 1989 and 1991 and a close relationship between ozone dose and premature senescence was found. A correlation also exists between the colour groups and chlorophyll fluorescence (Fv/Fm). Ozone fumigation increases the size and speeds up the development of the plastoglobules. This is described using an index based on the volume of plastoglobules as a percentage of chloroplast volume. The index was significantly higher for ozone fumigated plants than for control plants during August to November 1989. According to all three methods it is concluded that low levels of ozone accelerate leaf senescence processes inF. sylvatica. There are indications that leaves of the first and the second flush react differently to the ozone treatment. Irrespective of the ozone treatment a special cell wall structure, probably a local suberization, is confined to the subsidiary cells in leaves of the first flush.  相似文献   

14.
Expressed sequence tags (ESTs) from the marine red alga Gracilaria gracilis   总被引:2,自引:0,他引:2  
Expressed sequence tags (ESTs) are partial sequences of cDNAs, and can be used to characterize gene expression in organisms or tissues. We have constructed a 200-sequence EST database from vegetative thalli of Gracilaria gracilis, the first ESTs reported from any alga. This database contains recognizable ESTs corresponding to genes of carbohydrate metabolism (seven), amino acid metabolism (three), photosynthesis (five), nucleic acid synthesis, repair and processing (three), protein synthesis (14), protein degradation (six), cellular maintenance and stress response (three), other identifiable protein-coding genes (13) and 146 sequences for which significant matches were not found in existing sequence databases. We have already used this EST database to recover genes of carbohydrate biosynthesis from G. gracilis. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The investigation of airborne fungal spore concentrations was carried out in Szczecin, Poland between 2004 and 2006. The objective of the studies was to determine a seasonal variation in concentrations of selected fungal spore types due to meteorological parameters. The presence of spores of ten taxa: Cladosporium, Ganoderma, Alternaria, Epicoccum, Didymella, Torula, Dreschlera‐type, Polythrincium, Stemphylium and Pithomyces was recorded in Szczecin using a volumetric method (Hirst type). Fungal spores were present in the air in large numbers in summer. The highest concentrations were noted in June, July and August. The peak period was recorded in August for most of the studied spore types: Ganoderma, Alternaria, Epicoccum, Dreschlera‐type, Polythrincium and Stemphylium. Cladosporium and Didymella spores reached their highest concentrations in July while concentrations of Torula were highest in May and Pithomyces in September. Multiple regression analysis was performed for three fungal seasons: 2004, 2005, and 2006. Spore concentrations were positively correlated with minimum temperature for seven spore types in 2004, for five spore types in 2005, and for eight spore types in 2006 (significance level of α = 0.05). Some spore types are also significantly correlation among their concentrations, pressure, relative humidity and rain. Minimum temperature appeared to be the most influential factor for most spore types.  相似文献   

16.
17.
To test the involvement of ethylene in mediating ozone-induced cell death and leaf loss in European beech ( Fagus sylvatica L.), tree seedlings were exposed to proportionally increased or decreased field ozone levels for up to 6 months. Ozone treatment caused cell death and accelerated leaf loss at higher than ambient levels, but had only minor effects at ambient and no effects at subambient ozone levels. The emission of ethylene, the levels of its precursor, 1-aminocyclopropane-1-carboxylate (ACC), and mRNA levels of specific ACC synthase ( FS-ACS2 ) and ACC oxidase ( FS-ACO1 ) isoforms showed a persistent increase and preceded cell death by approximately 2 weeks. Inhibition of ethylene biosynthesis led to reduced lesion formation whereas application of ACC accelerated ozone-induced cell death and leaf loss. Similar results were obtained when adult beech trees were exposed to 2 × ozone by a whole tree free-air canopy exposure system. The results suggest a role of ethylene in amplifying ozone effects under field conditions in this major European broad-leaved tree species.  相似文献   

18.
19.
A lysimeter study was performed to monitor long term effects of chronic ozone enrichment on saplings of European beech (Fagus sylvatica L). After 3 years of ozone exposure a root infection with Phytophthora citricola Swada was established in the fourth year to study the interaction between elevated ozone and the root infection on the carbon budget of beech saplings. By using quantitative PCR no differences in root infection with P. citricola were observed between the ozone treatments. In contrast to the first 3 years of ozone exposure, sucrose and starch concentrations in leaves were diminished in ozone treated plants in the fourth year. The root infection reduced sucrose concentrations in leaves. Starch reserves of the heterotrophic biomass were not affected by any treatments. Thus 4 years of ozone exposure and 1 year of P. citricola root infection had only limited effect on carbohydrate metabolism in beech saplings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号