首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A 3-year field lysimeter experiment was performed to determine transformations of 15N-labeled cauliflower (Brassica oleracea) residues incorporated into lysimeter topsoil in a potato (Solanum tuberosum)/cauliflower rotation. Only the potato crop received 150 kg mineral N ha?1y?1. Cauliflower yields were high (12–13 t fresh matter ha?1), and N returned to the soil represented 51% of the aboveground plant N uptake. The 15N recovery by the potato/cauliflower rotation began at 46%, then decreased sharply to 12 and 6% for the second and third year, respectively. The cumulative 15N leaching rate was only 3%; 63% remained in the soil 3 years after incorporation. Soil N mineralization rates described by a parallel first-order kinetic model predicted 27, 7 and 6% of residual N lost annually during the first, second and third year, respectively. Thus, a potato/cauliflower rotation with moderate N fertilization optimizes N recovery of crop residues and can control leaching loss efficiently.  相似文献   

2.
Høgh-Jensen  H.  Schjoerring  J.K. 《Plant and Soil》1997,197(2):187-199
Seasonal variation in N2 fixation, N transfer from clover to ryegrass, and soil N absorption in white clover–ryegrass swards were investigated under field conditions over three consecutive years. The plots were established with different seeding ratios of clover and ryegrass and contrasting fertilizer N ranging from 3 to 72 kg ha-1 year-1.An initially poor clover population needed at least one growing season to reach the same yield output as an initially well established clover population. The clover content of the sward decreased by the annual application of 72 kg N ha-1 but not by smaller N dressings.The total amount of atmospherically derived N in clover growing in mixture with ryegrass was, on average over the three years equal to 83, 71, 68 and 60 kg N ha-1 for the treatments of 3, 24, 48 and 72 kg N ha-1, respectively. The proportion of atmospherically derived N declined with increasing N application, but never became smaller than 80% of total clover N. The proportion of atmospherically derived N in a pure stand white clover amounted to 60–80% of the total N content, equivalent to 109, 110, 103 and 90 kg N ha-1 for the treatments of 3, 24, 48 and 72 kg N ha-1, respectively.Only small amounts of atmospherically derived N was transferred to the associated ryegrass during the first production year, while in each of the following years up to 21 kg ha-1 was transferred. The average amount of N transferred from clover to ryegrass was equivalent to 3, 16 and 31% of the N accumulated in ryegrass in the first, second and third production year, respectively. Expressed relative to the total amount of fixed N2 in the clover–ryegrass mixture, the transfer amounted to 3, 17 and 22% in the first, second and third production year, respectively. Thus transfer of atmospherically derived N from clover contributed significantly to the N economy of the associated ryegrass.The clover–ryegrass mixture absorbed constantly higher amount of soil derived N than the pure stands of the two species. Only 11% of the total accumulated fertilizer N and soil derived N in the mixture was contained within the clover component. Lower water use efficiencies for the plants grown in mixture compared to pure stands were mainly related to the increased N uptake in the mixture, with the subsequent increase in growth compared to the pure stands.It is concluded that positive interactions between clover and ryegrass growing in mixture ensure a more efficient fixation of atmospheric N2 and absorption of fertilizer N and soil derived N than pure stands of the same species.  相似文献   

3.
A field study was carried out near Zürich (Switzerland) to determine the yield of symbiotically fixed nitrogen (15N dilution) from white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L) and from red clover (Trifolium pratense L.) grown with Italian ryegrass (Lolium multiflorum Lam.). A zero N fertilizer treatment was compared to a 30 kg N/ha per cut regime (90 to 150 kg ha−1 annually). The annual yield of clover N derived from symbiosis averaged 131 kg ha−1 (49 to 227 kg) without N fertilization and 83 kg ha−1 (21 to 173 kg) with 30 kg of fertilizer N ha−1 per cut in the seeding year. Values for the first production year were 308 kg ha−1 (268 to 373 kg) without N fertilization and 232 kg ha−1 (165 to 305 kg) with 30 kg fertilizer N ha−1 per cut. The variation between years was associated mainly with the proportion of clover in the mixtures. Apparent clover-to-grass transfer of fixed N contributed up to 52 kg N ha−1 per year (17 kg N ha−1 on average) to the N yield of the mixtures. Percentage N derived from symbiosis averaged 75% for white and 86% for red clover. These percentages were affected only slightly by supplemental nitrogen, but declined markedly during late summer for white clover. It is concluded that the annual yield of symbiotically fixed N from clover/grass mixtures can be very high, provided that the proportion of clover in the mixtures exceeds 50% of total dry mass yield.  相似文献   

4.
Winter cover crops can affect N nutrition of the following maize crop. Although legumes have been recommend for maize rotations, in tropical areas grasses may be more interesting because they provide a longer protection of soil surface. Legumes can add N to the system and grasses can compete with maize for the available nutrient. An experiment was conducted in Botucatu, São Paulo State, Brazil, to study N dynamics in the soil surface straw-maize system as affected by N fertilization management and species included in the no-till rotation. Treatments were fallow, black oat (Avena strigosa), pearl millet (Pennisetum glaucum), white lupins (Lupinus albus), black oat fertilized with N. and pearl millet fertilized with N. Maize was grown afterwards in the same plots, receiving 0.0, 60.0 and 120.0 kg ha?1 of N sidedressed 30 days after plant emergence. Soil, straw and maize samples were taken periodically. The highest corn yields were observed when it was cropped after pearl millet fertilized with N. Nitrogen side dressed application up to 120 kg ha?1 was not able to avoid corn yield decrease caused by black oat. Grasses can be recommended in maize rotations in tropical areas, provided they receive nitrogen fertilizer and show no allelopathy. Due to its higher C/N ratio and dry matter yield they are better than legumes, protecting the soil surface for a longer period. Pearl millet is particularly interesting because it enhances N use efficiency by the following maize crop. For a better N availability/demand synchronism, the cover crops should be desiccated right before maize planting  相似文献   

5.
In order to understand the influence of nitrogen (N) deposition on the key processes relevant to the carbon (C) balance in a bamboo plantation, a two-year field experiment involving the simulated deposition of N in a Pleioblastus amarus plantation was conducted in the rainy region of SW China. Four levels of N treatments: control (no N added), low-N (50 kg N ha?1 year?1), medium-N (150 kg N ha?1 year?1), and high-N (300 kg N ha?1 year?1) were set in the present study. The results showed that soil respiration followed a clear seasonal pattern, with the maximum rates in mid-summer and the minimum in late winter. The annual cumulative soil respiration was 585?±?43 g CO2-C m?2 year?1 in the control plots. Simulated N deposition significantly increased the mean annual soil respiration rate, fine root biomass, soil microbial biomass C (MBC), and N concentration in fine roots and fresh leaf litter. Soil respirations exhibited a positive exponential relationship with soil temperature, and a linear relationship with MBC. The net primary production (NPP) ranged from 10.95 to 15.01 Mg C ha?1 year?1 and was higher than the annual soil respiration (5.85 to 7.62 Mg C ha?1 year?1) in all treatments. Simulated N deposition increased the net ecosystem production (NEP), and there was a significant difference between the control and high N treatment NEP, whereas, the difference of NEP among control, low-N, and medium-N was not significant. Results suggest that N controlled the primary production in this bamboo plantation ecosystem. Simulated N deposition increased the C sequestration of the P. amarus plantation ecosystem through increasing the plant C pool, though CO2 emission through soil respiration was also enhanced.  相似文献   

6.
Short rotation coppice (SRC) willow is a promising bioenergy feedstock. Fertilization is an integrated part of the production system, but knowledge about the effects in consecutive rotations is scarce. The objective of this study was to identify an appropriate fertilization regime for achieving high yields, reducing risks of nutrient leaching and maintaining the soil nutrient stocks in SRC willow on a former arable land. Ten different fertilization treatments were applied, with different application frequencies, fertilizer types and doses over three consecutive 2-year rotations. The biomass production was determined at harvest, soil solution samples were collected monthly, water fluxes were modelled using CoupModel and nutrient budgets were calculated. The unfertilized control had a mean biomass production of 8.3, 8.3 and 9.5 odt ha?1 year?1, respectively, in the three rotations. This indicated that nutrients were adequately available to maintain production for at least 6 years without fertilization. When adding 60 kg N ha?1 year?1, biomass production tended to be higher than the control, by 33% (p = 0.055), and the treatment where 360 kg N ha?1 rotation?1 was added, by 31% (p = 0.08). Treatments with one-time addition of 240 and 360 kg N ha?1 rotation?1 had significantly higher nitrogen leaching than all other treatments. Organic fertilizers did not increase biomass production nor N leaching significantly compared to the control, but nutrient budgets indicated a nutrient build-up in the soil. We concluded that application of 60 kg N ha?1 year?1 is recommendable, for achieving high biomass yields, low nitrogen leaching and maintenance of the soil nutrient stock.  相似文献   

7.
Legume‐containing leys are commonly used to improve soil fertility in the 2‐year conversion period from conventional to organic production. While in‐conversion land may be grazed, in stockless farming systems, land is effectively out of production, leading to a reduction in income and pressure on cash flow. The impacts of seven organic conversion strategies on the first organic crop (winter wheat) were previously reported. This study investigates the effect of the conversion strategies on the second (winter beans) and third (winter oats) organic crops, thereby extending the analysis throughout the first complete rotation. The strategies were (a) 2‐years’ red clover–ryegrass green manure, (b) 2‐years’ hairy vetch green manure, (c) red clover for seed production then a red clover–ryegrass green manure, (d) spring wheat undersown with red clover, then a red clover green manure, (e) spring oats, then winter beans, (f) spring wheat, then winter beans and (g) spring wheat undersown with red clover, then a barley–pea intercrop. Conversion strategy had a significant impact on organic bean yield, which ranged from 2.78 to 3.62 t ha?1, and organic oat yield, which ranged from 3.24 to 4.17 t ha?1. In the organic bean crop, weed abundance prior to harvest, along with soil texture, accounted for 70% of yield variation. For the oats, soil mineral nitrogen in November together with weed abundance in April accounted for 72% of the variation in yield. The impacts of conversion strategies on soil mineral nitrogen levels were still detectable 3 years after conversion. The results from this study indicate that the choice of conversion crop has important long‐term implications. More exploitative conversion strategies, that is those with a higher proportion of cash cropping, had an increased weed burden and decreased levels of soil mineral nitrogen, leading to reduced yields of beans and oats, 2 and 3 years after conversion.  相似文献   

8.
The contribution of below ground plant root tissue to soil carbon (C) pools is attracting considerable interest in the context of greenhouse gas mitigation options. A field experiment was conducted on a perennial ryegrass/white clover pasture in the Manawatu, New Zealand, to examine the effect of differing soil nitrogen (N) and phosphorus (P) fertility status on root dynamics. Root standing mass, shoot and root dry matter (DM) accumulation and root tissue decomposition were measured at 6–8 week intervals over one year at moderate (Olsen P?=?24, no added N) and high (Olsen P?=?49, 400 kgN ha?1y?1 added N) soil fertility levels. Shoot production was significantly greater in the high fertility treatment (2550 cf. 1890 gDM m?2y?1) but differences in root dynamics were confined to two periods in spring and winter. In late spring the pattern was for lower root mass (183 cf. 231 gDM m?2 between 0–80 mm depth) and higher root production (0.71 cf. 0.52 gDM m?2 d?1 between 0–120 mm depth) under higher fertility. In winter the reverse was observed. There is some evidence that the soil type used in the root in-growth cores underestimated root production values for this site by a factor of approx. one third. Short-term differences between the two fertiity treatments in standing root mass and root production did not lead to treatment differences in topsoil C and N changes over four years. This may reflect insufficient separation in the two soil fertility treatments and a low overall root tissue input to soil organic matter.  相似文献   

9.
One-season fallows with legumes such as Crotalaria grahamiana Wight & Arn. and phosphorus (P) fertilization have been suggested to improve crop yields in sub-Saharan Africa. Assessing the sustainability of these measures requires a sound understanding of soil processes, especially transformations of P which is often the main limiting nutrient. We compared plant production, nitrogen (N) and P balances and selected soil properties during 5.5 years in a field experiment with three crop rotations (continuous maize, maize-crotalaria and maize-natural fallow rotation) at two levels of P fertilization (0 and 50 kg P ha?1 yr?1, applied as triple superphosphate) on a Kandiudalfic Eutrudox in western Kenya. The maize yield forgone during growth of the crotalaria fallow was compensated by higher post-fallow yields, but the cumulative total maize yield was not significantly different from continuous maize. In all crop rotations, P fertilization doubled total maize yields, increased N removal by maize and remained without effect on amounts of recycled biomass. Crotalaria growth decreased in the course of the experiment due to pest problems. The highest levels of soil organic and microbial C, N and P were found in the maize-crotalaria fallow rotation. The increase in organic P was not accompanied by a change in resin-extractable P, while H2SO4-extractable inorganic P was depleted by up to 38 kg P ha?1 (1% of total P) in the 0–50 cm layer. Microbial P increased substantially when soil was supplied with C and N in a laboratory experiment, confirming field observations that the microbial biomass is limited by C and N rather than P availability. Maize-legume fallow rotations result in a shift towards organic and microbial nutrients and have to be complemented by balanced additions of inorganic fertilizers. Abbreviations: BNF – biological nitrogen fixation; COM – continuous maize; LR – long rainy season; MCF – maize-crotalaria fallow rotation; MNF – maize-natural fallow rotation; SR – short rainy season; TSP – triple superphosphate.  相似文献   

10.
Elgersma  Anjo  Hassink  Jan 《Plant and Soil》1997,197(2):177-186
To increase our insight into the above- and belowground N flows in grass and grass-clover swards relations between crop and soil parameters were studied in a cutting trial with perennial ryegrass (Lolium perenne) monocultures and ryegrass–white clover (Trifolium repens) mixtures. The effects of clover cultivar on herbage yield, the amount of clover-derived nitrogen, apparent N transfer to companion grass, dynamics of N and organic matter in the soil were estimated.The grass monocultures had very low DM yields (<2.1 t ha-1) and a low N concentration in the harvested herbage. During 1992–1995 the annual herbage DM yield in the mixtures ranged from 7.0 to 14.3 t ha-1, the white clover DM yield from 2.4 to 11.2 t ha-1 and the mean annual clover content in the herbage DM harvested from 34 to 78%. Mixtures with the large-leaved clover cv. Alice yielded significantly more herbage and clover DM and had a higher clover content than mixtures with small/medium-leaved cvs. Gwenda and Retor. Grass cultivar did not consistently affect yield, botanical composition or soil characteristics.The apparent N2 fixation was very high, ranging from 150 to 545 kg N ha-1 in the different mixtures. For each tonne of clover DM in the harvested herbage 49 to 63 kg N was harvested, while the apparent N transfer from clover to grass varied between 55 and 113 kg N ha-1 year-1.The net N mineralization rate was lower under monocultures than under mixtures. The C mineralization and the amounts of C and N in active soil organic matter fractions were similar for monocultures and mixtures, but the C:N ratio of the active soil organic matter fractions were higher under grass than under mixtures. This explains the lower N mineralization under grass.  相似文献   

11.
The effect of nitrogen (N) and phosphorus (P) fertilization on composition of rhizobacterial communities of volcanic soils (Andisols) from southern Chile at molecular level is poorly understood. This paper investigates the composition of rhizobacterial communities of two Andisols under pasture after 1- and 6-year applications of N (urea) and P (triple superphosphate). Soil samples were collected from two previously established sites and the composition of rhizobacterial communities was determined by denaturing gradient gel electrophoresis (PCR–DGGE). The difference in the composition and diversity between rhizobacterial communities was assessed by nonmetric multidimensional scaling (MDS) analysis and the Shannon–Wiener index. In Site 1 (fertilized for 1 year), PCR–DGGE targeting 16S rRNA genes and MDS analysis showed that moderate N application (270 kg N ha?1 year?1) without P significantly changed the composition of rhizobacterial communities. However, no significant community changes were observed with P (240 kg P ha?1 year?1) and N–P application (270 kg N ha?1 year?1 plus 240 kg P ha?1 year?1). In Site 2 (fertilized for 6 years with P; 400 kg P ha?1 year?1), PCR–DGGE targeting rpoB, nifH, amoA and alkaline phosphatase genes and MDS analysis showed changes in rhizobacterial communities only at the highest rate of N application (600 kg N ha?1 year?1). Quantitative PCR targeting 16S rRNA genes also showed higher abundance of bacteria at higher N application. In samples from both sites, the Shannon–Wiener index did not show significant difference in the diversity of rhizobacterial communities. The changes observed in rhizobacterial communities coincide in N fertilized pastures with lower soil pH and higher pasture yields. This study indicates that N–P application affects the soil bacterial populations at molecular level and needs to be considered when developing fertilizer practices for Chilean pastoral Andisols.  相似文献   

12.
Nitrogen (N) deficiency is a major constraint to the productivity of the African smallholder farming systems. Grain, green manure and forage legumes have the potential to improve the soil N fertility of smallholder farming systems through biological N2-fixation. The N2-fixation of bean (Phaseolus vulgaris), soyabean (Glycine max), groundnut (Arachis hypogaea), Lima bean (Phaseolus lunatus), lablab (Lablab purpureus), velvet bean (Mucuna pruriens), crotalaria (Crotalaria ochroleuca), jackbean (Canavalia ensiformis), desmodium (Desmodium uncinatum), stylo (Stylosanthes guianensis) and siratro (Macroptilium atropurpureum) was assessed using the 15N natural abundance method. The experiments were conducted at three sites in western Kenya, selected on an agro-ecological zone (AEZ) gradient defined by rainfall. On a relative scale, Museno represents high potential AEZ 1, Majengo medium potential AEZ 2 and Ndori low potential AEZ 3. Rainfall in the year of experimentation was highest in AEZ 2, followed by AEZ 1 and AEZ 3. Experimental fields were classified into high, medium and low fertility classes, to assess the influence of soil fertility on N2-fixation performance. The legumes were planted with triple super phosphate (TSP) at 30 kg P ha?1, with an extra soyabean plot planted without TSP (soyabean-P), to assess response to P, and no artificial inoculation was done. Legume grain yield, shoot N accumulation, %N derived from N2-fixation, N2-fixation and net N inputs differed significantly (P<0.01) with rainfall and soil fertility. Mean grain yield ranged from 0.86 Mg ha?1, in AEZ 2, to 0.30 Mg ha?1, in AEZ 3, and from 0.78 Mg ha?1, in the high fertility field, to 0.48 Mg ha?1, in the low fertility field. Shoot N accumulation ranged from a maximum of 486 kg N ha?1 in AEZ 2, to a minimum of 10 kg N ha?1 in AEZ 3. Based on shoot biomass estimates, the species fixed 25–90% of their N requirements in AEZ 2, 23–90% in AEZ 1, and 7–77% in AEZ 3. Mean N2-fixation by green manure legumes ranged from 319 kg ha?1 (velvet bean) in AEZ 2 to 29 kg ha?1 (jackbean) in AEZ 3. For the forage legumes, mean N2-fixation ranged from 97 kg N ha?1 for desmodium in AEZ 2 to 39 kg N ha?1 for siratro in AEZ 3, while for the grain legumes, the range was from 172 kg N ha?1 for lablab in AEZ 1 to 3 kg N ha?1 for soyabean-P in AEZ 3. Lablab and groundnut showed consistently greater N2-fixation and net N inputs across agro-ecological and soil fertility gradients. The use of maize as reference crop resulted in lower N2-fixation values than when broad-leaved weed plants were used. The results demonstrate differential contributions of the green manure, forage and grain legume species to soil fertility improvement in different biophysical niches in smallholder farming systems and suggest that appropriate selection is needed to match species with the niches and farmers’ needs.  相似文献   

13.
The objective of this study was to determine the effects of plant growth regulator (PGR) (no PGR, trinexapac-ethyl, and paclobutrazol) and N fertilizer (zero N, an average of 37 kg N ha?1 month?1, 6 and 12 kg N ha?1 week?1) on soil organic C (SOC) and soil N in creeping bentgrass (Agrostis stolonifera L.) fairway turf. After 4 years of field experiments soil samples were obtained from soil depths of 0–2.5, 2.5–5, 5–7.5, 7.5–10, 10–15, 15–20, and 20–30 cm. Soil bulk density, SOC, total N, NO 3 ? –N, and NH 4 + –N concentrations were determined. Paclobutrazol and trinexapac-ethyl application increased SOC. The 37 kg N ha?1 month?1 application increased SOC at the 0–2.5 cm depth with both PGRs. When paclobutrazol was used, N fertilizer always increased SOC; however, the greatest increase was observed with the 12 kg N ha?1 week?1 application when compared to other rates, inversely related to the NH 4 + –N concentration. Nitrogen application increased soil total N and NO 3 ? –N in the upper three depths. The application of PGRs and N fertilizer to creeping bentgrass fairway turf is an effective strategy for promoting C sequestration.  相似文献   

14.

Background and aims

The selection of legume species and species mixtures influences agroecosystem nitrogen (N) and carbon cycling. We utilized a fertility gradient to investigate the effects of plant species interactions on biological N fixation of an annual and perennial legume in response to shifting soil resource availability.

Methods

Legume N fixation of annual field pea (Pisum sativum) and perennial red clover (Trifolium pratense) grown in monoculture and mixtures with oats (Avena sativa) or orchardgrass (Dactylis glomerata) was estimated using the 15N natural abundance method across 15 farm fields and we measured six soil N pools ranging from labile to more recalcitrant.

Results

Evidence of complementary and facilitative species interactions was stronger for the perennial red clover-orchardgrass mixture than for the annual field pea-oat mixture (N Land Equivalency Ratios were 1.6 and 1.2, respectively). We estimated that the transfer of fixed N from red clover to orchardgrass increased aboveground N fixation estimates by 15% from 33 to 38?kg?N ha?1. Despite a more than 2-fold range in soil organic matter levels and more than 3-fold range in labile soil N pools across field sites, the N fertility gradient was not a strong predictor of N fixation. While grass N assimilation was positively correlated with soil N pools, we found only weak, inverse correlations between legume N fixation and soil N availability. In grass-legume mixtures, soil N availability indirectly influenced N fixation through plant competition.

Conclusions

These results suggest that increasing diversity of cropping systems, particularly through the incorporation of perennial mixtures into rotations, could improve overall agroecosystem N cycling efficiency.  相似文献   

15.
Croplands mainly act as net sources of the greenhouse gases carbon dioxide (CO2) and nitrous oxide (N2O), as well as nitrogen oxide (NO), a precursor of troposheric ozone. We determined the carbon (C) and nitrogen (N) balance of a four-year crop rotation, including maize, wheat, barley and mustard, to provide a base for exploring mitigation options of net emissions. The crop rotation had a positive net ecosystem production (NEP) of 4.4?±?0.7 Mg C ha-1 y-1 but represented a net source of carbon with a net biome production (NBP) of -1.3?±?1.1 Mg C?ha-1 y-1. The nitrogen balance of the rotation was correlated with the carbon balance and resulted in net loss (?24?±?28 kg N ha-1 y-1). The main nitrogen losses were nitrate leaching (?11.7?±1.0 kg N ha-1 y-1) and ammonia volatilization (?9 kg N ha-1 y-1). Dry and wet depositions were 6.7?±?3.0 and 5.9?±0.1 kg N ha-1 y-1, respectively. Fluxes of nitrous (N2O) and nitric (NO) oxides did not contribute significantly to the N budget (N2O: -1.8?±?0.04; NO: -0.7?±?0.04 kg N ha-1 y-1) but N2O fluxes equaled 16% of the total greenhouse gas balance. The link between the carbon and nitrogen balances are discussed. Longer term experiments would be necessary to capture the trends in the carbon and nitrogen budgets within the variability of agricultural ecosystems.  相似文献   

16.

Background and aims

The association of the legume Anthyllis vulneraria and the grass Festuca arvernensis, was found to be very efficient for the phytostabilisation of highly multi-metal contaminated mine tailings. Our objective was to quantify the contribution of Anthyllis inoculated with its symbiotic bacteria Mesorhizobium metallidurans to the soil N pool and to test whether a starter nitrogen fertilization may improve symbiotic nitrogen fixation and the growth of Festuca.

Methods

Plants of Festuca and of Anthyllis inoculated with M. metallidurans were grown separately during eight months in pots filled with mine contaminated soil. Estimation of the N fluxes was realized using 15?N isotopic methods.

Results

Starter N fertilization (28 kg N ha?1) improved symbiotic N2 fixation and the growth of both species. Belowground N balance (N rhizodeposition – soil N uptake) of the non-fertilized Anthyllis at maturity was negative (?30.6 kg N ha?1). However, the amount of N derived from fixation, including above- and belowground parts, was 78.6 kg N ha?1, demonstrating the ability of this symbiotic association to improve soil N content after senescence.

Conclusions

i) soil N enrichment by the N2-fixing symbiotic association occurs after plant senescence, when decaying leaves and shoots are incorporated into the soil; ii) application of a starter fertilization is an efficient solution to improve phytostabilisation of highly contaminated sites.  相似文献   

17.
The research is focused on an ecologically sound and highly productive cultivation system for fodder and/or biomass for thermal power generation on the basis of winter legumes and maize as subsequent summer crop, managed without additional nitrogen fertiliser. Therefore the yield of biomass and N-fixing capacity of a winter pea (Pisum sativum L.) and crimson clover (Trifolium incarnatum L.) monocropped and intercropped with rye (Secale cereale L.) were examined for five years in a field trial. In mid-June above-ground biomass of winter crops was removed and maize transplanted. The winter crops achieved maximum dry matter yield about three to five weeks before maturity. Mixed stands yielded more biomass than pure stands and exhibited greater yield stability. The relative advantage of intercropping, expressed as land equivalent ratio (LER), determined for intercropped winter pea/rye were 1.1 to 1.2 and for crimson clover/rye 1.3. At maturity, the amount of fixed nitrogen ranged between 178 kg N for crimson clover and 242 kg N ha-1 for winter pea, respectively. At the end of anthesis (middle of June, harvesting stage for silage fodder) 75% and 88% of the total fixed nitrogen was achieved, for clover and pea, respectively. In intercropping the amount of fixed nitrogen was lower than in pure stands due to a lower seed density of the legume; however, the N-fixing efficiency was greater than in pure stands. N-release of the winter pea in a pure stand produced a maximum yield in maize (Zea mays L.) without additional N-fertiliser. An additional N mineral fertilisation of 75 to 150 kg N and 75 to 225 kg N was necessary to achieve maximum yields in maize following intercropped winter pea and crimson clover, respectively. Legumes in mixed stands with rye resulted in lower amounts of residual nitrogen after maize harvest. The beneficial effect of legumes on maize can be divided into N-effects and rotation effects. Both effects were positive regarding winter pea. The rotation effect of crimson clover in pure stands on maize was negative. Allelopathic effects and the high sensitivity of crimson clover to mineral nitrogen in the soil, released by residues of the preceding crop, winter rape (Brassica rapa L.), were discussed as the reason for this observation. The combination of the winter pea in pure stand and maize achieved the highest total biomass yield from winter and summer crops, unfertilised (156 dt ha-1 dry). The combinations of intercropped legumes and maize produced biomass yields of 142 to 145 dt ha-1. Because winter pea is highly susceptible to lodging, intercropping with low seed density of rye is recommended (3/4 winter pea, 1/4 rye). The rye crop prevents lodging by providing support and high rates of N-fixation are achieved with high seed density of pea. Intercropping with crimson clover and rye should be based on high seed densities of legumes, too because rye is highly competitive within those mixtures. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.

Background

Although plant growth in alpine steppes on the Tibetan Plateau has been suggested to be sensitive to nitrogen (N) addition, the N limitation conditions of alpine steppes remain uncertain.

Methods

After 2 years of fertilization with NH4NO3 at six rates (0, 10, 20, 40, 80 and 160 kg N ha?1 yr?1), the responses of plant and soil parameters as well as N2O fluxes were measured.

Results

At the vegetation level, N addition resulted in an increase in the aboveground N pool from 0.5?±?0.1 g m?2 in the control plots to 1.9?±?0.2 g m?2 in the plots at the highest N input rate. The aboveground C pool, biomass N concentration, foliar δ15N, soil NO3 ?-N and N2O flux were also increased by N addition. However, as the N fertilization rate increased from 10 kg N ha?1 yr?1 to 160 kg N ha?1 yr?1, the N-use efficiency decreased from 12.3?±?4.6 kg C kg N?1 to 1.6?±?0.2 kg C kg N?1, and the N-uptake efficiency decreased from 43.2?±?9.7 % to 9.1?±?1.1 %. Biomass N:P ratios increased from 14.4?±?2.6 in the control plots to 20.5?±?0.8 in the plots with the highest N input rate. Biomass N:P ratios, N-uptake efficiency and N-use efficiency flattened out at 40 kg N ha?1 yr?1. Above this level, soil NO3 ?-N began to accumulate. The seasonal average N2O flux of growing season nonlinearly increased with increased N fertilization rate and linearly increased with the weighted average foliar δ15N. At the species level, N uptake responses to relative N availability were species-specific. Biomass N concentration of seven out of the eight non-legume species increased significantly with N fertilization rates, while Kobresia macrantha and the one legume species (Oxytropics glacialis) remained stable. Both the non-legume and the legume species showed significant 15N enrichment with increasing N fertilization rate. All non-legume species showed significant increased N:P ratios with increased N fertilization rate, but not the legume species.

Conclusions

Our findings suggest that the Tibetan alpine steppes might be N-saturated above a critical N load of 40 kg N ha?1 yr?1. For the entire Tibetan Plateau (ca. 2.57 million km2), a low N deposition rate (10 kg N ha?1 yr?1) could enhance plant growth, and stimulate aboveground N and C storage by at least 1.1?±?0.3 Tg N yr?1 and 31.5?±?11.8 Tg C yr?1, respectively. The non-legume species was N-limited, but the legume species was not limited by N.  相似文献   

19.
Grassland canopy management (spring burn, mowing and residue removal in late-summer, or no management) and native tallgrass species composition (cool season mixture, warm season mixture, or combined cool and warm mixture) effects on C and N in aboveground biomass and soil were investigated at Brookings SD on a previously-plowed Barnes clay loam (fine-loamy, superactive, frigid Calcic Hapludoll). During the last 2 yr of the 9-yr experiment, shoot biomass was affected by canopy management with the burn (2,730 kg ha?1) and mow (3,421 kg ha?1) treatments containing less than no management (4,655 kg ha?1). Burn treatment biomass contained 1,189 kg ha?1 and 25 kg ha?1 of C and N, mow contained 1,433 kg ha?1 and 33 kg ha?1 of C and N, while no management contained 2,014 kg ha?1 and 39 kg ha?1 of C and N, respectively. Soil C accumulation was independent of grass species composition. Soil C accumulation rates, which increased in strong linear fashion (r 2 of 0.89 to 0.92) after initial grass establishment, were 387 kg C ha?1 yr?1, 503 kg C ha?1 yr?1, and 711 kg C ha?1 yr?1 for burn, mow, and no management treatments, respectively. Thus, grassland management methods used after conversion of cropland to grassland have important effects on grass biomass and soil C accumulation.  相似文献   

20.
Biomass demand for energy will lead to utilization of marginal, low fertility soil. Application of fertilizer to such soil may increase switchgrass (Panicum virgatum L.) biomass production. In this three-way factorial field experiment, biomass yield response to potassium (K) fertilizer (0 and 68 kg?K?ha?1) on nitrogen (N)-sufficient and N-deficient switchgrass (0 and 135 kg?N?ha?1) was evaluated under two harvest systems. Harvest system included harvesting once per year after frost (December) and twice per year in summer (July) at boot stage and subsequent regrowth after frost. Under the one-cut system, there was no response to N or K only (13.4 Mg?ha?1) compared to no fertilizer (12.4 Mg?ha?1). Switchgrass receiving both N and K (14.6 Mg?ha?1) produced 18 % greater dry matter (DM) yield compared to no fertilizer check. Under the two-cut harvest system, N only (16.0 Mg?ha?1) or K only (14.1 Mg?ha?1) fertilizer produced similar DM to no fertilizer (15.1 Mg?ha?1). Switchgrass receiving both N and K in the two-cut system (19.2 Mg?ha?1) produced the greatest (P?<?0.05) DM yield, which was 32 % greater than switchgrass receiving both N and K in the one-cut system. Nutrient removal (biomass?×?nutrient concentration) was greatest in plots receiving both N and K, and the two-cut system had greater nutrient removal than the one-cut system. Based on these results, harvesting only once during winter months reduces nutrient removal in harvested biomass and requires less inorganic fertilizer for sustained yields from year to year compared to two-cut system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号