首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An architectural analysis of the root system of young oil-palm (Elaeis guineensis Jacq.) seedlings was made. In this analysis, root branching was modelled by a Markov chain (discrete-time, discrete-state space stochastic process). This study has been realized on radicles of young oil-palm seedlings which were considered as main axes which branch. We defined an elementary length unit as the smallest length between two successive lateral roots. The model was based on the analysis of a sequence of events, each event being indexed by the rank of the elementary length unit on the main axis. An event was defined as the state of the length unit, chosen between unbranched state and three branched-state categories. The branching process of the oil-palm radicle was modelled by a four-state first-order Markov chain. Consequently, the state of an elementary length unit depended only on the state of the previous one. The Markov chain was homogeneous, i.e. the transition probabilities did not depend on the rank of the elementary length unit.This study allowed us to identify a probabilistic model of root branching which was the first step in the elaboration of a stochastic model of the architecture of the oil-palm root system.  相似文献   

2.
3.
怀地黄块根的形态发生和结构发育   总被引:13,自引:3,他引:10  
观察了怀地黄(Rehmannia glutinosa cv.Hueichingensis Hsiao.)块根的形态发生和生长发育过程中的形态结构变化。采用怀地黄的传统栽培方法,即用上一年的块根作母根进行繁殖,分别从母根和不定芽的茎基部发生不定根。怀地黄不定根的初生结构和维管形成层的发生与一般双子叶植物相同,但其次生生长却有两种方式,即正常次生生长和异常次生生长。一类不定根的形成层产生的次生结构与一般双子叶植物相同,即次生木质部中主要是导管,而薄壁细胞较少。这类不定根其次生生长为正常次生生长(normal secondary growth),是担负吸收和固着作用的正常根。另一种类型的不定根,其形成层产生的次生木质部含有大量的薄壁细胞,少量的导管分散在薄壁细胞之间。这种次生生长为异常次生生长(anomalous secondary growth),从而使不定根膨大,形成块根。因此,怀地黄的药用部分在起源和结构上都属于根的性质,其药用部分应称为块根。  相似文献   

4.
Jourdan  Christophe  Rey  Hervé 《Plant and Soil》1997,190(2):217-233
The objective of this work was to model the architecture and growth dynamics of the oil-palm root system. The morphological and functional unit of the root system, called root architectural unit and its development sequence enabled us to establish the basis of a mathematical formalization of the root system architecture. The topology of the branched structures and the processes of growth, branching and mortality were described and modelled by stochastic processes (graph model, automata, laws of probability). The models obtained were then combined with geometrical parameters in an overall mathematical model: the reference axis. Simulation of this model provided 3-D numerical models. Validations of the overall model based on comparing the 3-D numerical models with observed root systems, appeared satisfactory.  相似文献   

5.
A dynamic 3D model of root system development was adapted to young sessile oak seedlings, in order to evaluate the effects of grass competition on seedling root system development. The model is based on a root typology and the implementation of a series of developmental processes (axial and radial growth, branching, reiteration, decay and abscission). Parameters describing the different processes are estimated for each root type. Young oak seedlings were grown for 4 years in bare soil or with grass competition and were periodically excavated for root system observation and measurements (topology of the root system, length and diameter of all roots with a diameter greater than 0.3 mm). In the fourth year, 40 cm×20 cm×20 cm soil monoliths were excavated for fine root measurement (root density and root length). Root spatial development was analysed on a sub-sample of roots selected on four seedlings. The model was a guideline that provided a complete and consistent set of parameters to represent root system development. It gave a comprehensive view of the root systems and made it possible to quantify the effects of competition on the different root growth processes. The same root typology was used to describe the seedlings in bare soil and in grass. Five root types were defined, from large tap roots to fine roots. Root system size was considerably reduced by grass competition. Branching density was not affected but the branch roots were always smaller for the seedlings grown in competition. Reiteration capacity was also reduced by competition. Cross sectional areas before and after branching were linearly related with a scaling coefficient close to 1, as predicted by the pipe model theory. This relationship was not affected by grass competition.  相似文献   

6.
7.
BACKGROUND AND AIMS: Plant anchorage is governed by complex, finely regulated mechanisms that occur at a morphological, architectural and anatomical level. Spanish broom (Spartium junceum) is a woody plant frequently found on slopes--a condition that affects plant anchorage. This plant grows throughout the Mediterranean area where it plays an important role in preventing landslides. Spanish broom seedlings respond promptly to slope by altering stem and root morphology. The aim of this study was to investigate the mechanisms whereby the root system of Spanish broom seedlings adapts to ensure anchorage to the ground. METHODS: Seedlings were grown in tilted and untilted pots under controlled conditions. The root apparatus was removed at different times of growth and subjected to morphological, biomechanical and molecular analyses. KEY RESULTS: In slope-grown seedlings, changes in root system morphology, pulling strength and chemical lignin content, all features related to plant anchorage in the soil, were related to seedling age. cDNA-AFLP analysis revealed changes in the expression of several genes in root systems of slope-grown plants. BLAST analysis showed that some differentially expressed genes are homologues of genes induced by environmental stresses in other plant species, and/or are involved in the production of strengthening materials. CONCLUSION: Plants use various mechanisms/strategies to respond to slope depending on their developmental stage.  相似文献   

8.
双子叶植物出土幼苗根茎转变区维管组织发育动态   总被引:2,自引:0,他引:2  
杨菁  董忠民 《西北植物学报》2003,23(7):1111-1115
关于根茎初生维管系统之间的连接以及与子叶的关系,在文献中已有广泛的论述,有过各种不同的解释。大部分早期关于根茎转变区的文献研究的是初生组织已完成发育的幼苗。这些研究者认为转变区域是根和茎这两种轴器官之间维管组织发生转变、相互连接的区域。但由于茎中的初生维管组织可以认为是叶迹及叶迹的延伸的综合,转变区域应被看作是轴维管系统与叶迹维管系统之间的连接。因此,转变区的研究必须说明根维管系统与最早的真叶叶迹之间的关系。通过对北乌头和大豆胚胎及幼苗维管组织的解剖学研究,本工作显示在出土萌发的双子叶植物中,初生维管组织在根-下胚轴-子叶中形成一连续系统,并完成根与子叶叶迹之间的维管组织过渡转变。而上胚轴中的维管组织是位于根-下胚轴-子叶上方独立形成的第二维管系统。上胚轴中维管组织的分化起始于第一真叶叶迹基部,向上分化进入叶片,向下进入胚轴并在子叶节下方与根-下胚轴-子叶维管系统相连接。真叶叶迹的木质部与下胚轴中靠近韧皮部的后生木质部或次生木质部连接。根与上胚轴之间不存在维管组织的过渡、转变,而只是在同样发育方向的组织中有一种直接的简单的连接.  相似文献   

9.
Root system development is an important agronomic trait. The right architecture in a given environment allows plants to survive periods of water of nutrient deficit, and compete effectively for resources. Root systems also provide an optimal system for studying developmental plasticity, a characteristic feature of plant growth. This review proposes a framework for describing the pathways regulating the development of complex structures such as root systems: intrinsic pathways determine the characteristic architecture of the root system in a given plant species, and define the limits for plasticity in that species. Response pathways co-ordinate environmental cues with development by modulating intrinsic pathways. The current literature describing the regulation of root system development is summarized here within this framework. Regulatory pathways are also organized based on their specific developmental effect in the root system. All the pathways affect lateral root formation, but some specifically target initiation of the lateral root, while others target the development and activation of the lateral root primordium, or the elongation of the lateral root. Finally, we discuss emerging approaches for understanding the regulation of root system architecture.  相似文献   

10.
Jourdan  Christophe  Rey  Hervé 《Plant and Soil》1997,189(1):33-48
The growth dynamics and architecture of the oil-palm root system are described. Following a transitional juvenile phase, eight different morphological types of roots have been distinguished according to their development pattern and state of differentiation: primary vertical and horizontal roots, secondary horizontal roots, upward growing secondary vertical roots and downward growing secondary vertical roots, superficial and deep tertiary roots and quaternary roots. The relative position of these types of roots determines a morphological and functional unit of the root system called 'root architectural unit' of the oil palm. This root polymorphism enabled us to define a morphogenetic gradient, which reflected the oil-palm root-system ontogenesis.  相似文献   

11.
Investigations have been made on the mode of development and various characteristics of seedling of 203 grass species representing over 76 genera and 22 tribes. The correlation between important characteristics and their main formative conditions in distribution area and habitat were discussed. According to the various developmental forms of the embryo axis and root system, the seedlings of grasses may be divided into three main types: Bambusoid, Festucoid and Panicoid. And according to characteristics of seedling leaves and adventitious roots, these types may be further divided into seven subtypes: True Bambusoid, Oryzoid, Arundinoid, Stipoid, Festucoid, Eragrostoid and True Panicoid. in this study, the different types of seedlings have been found to be associated with other characteristics of embryo and adult plant; and on these grounds, the genera of the Gramineae are grouped into seven corresponding subfamilies: Bambusoideae, Oryzoideae, Arundinoideae, Stipoideae, Festucoideae, Eragrostoideae and Panicoideae.  相似文献   

12.
Plants display considerable developmental plasticity in response to changing environmental conditions. The adaptations of the root system to variations in N supply are an excellent example of such developmental plasticity. In Arabidopsis, four morphological adaptations to the N supply have been characterized: (i) a localized stimulatory effect of external nitrate on lateral root elongation; (ii) a systemic inhibitory effect of high tissue nitrate concentrations on the activation of lateral root meristems; (iii) a suppression of lateral root initiation by high C:N ratios, and (iv) an inhibition of primary root growth and stimulation of root branching by external L-glutamate. These responses have provided valuable experimental systems for the study of N signalling in plants. This article will highlight some recent progress made in this direction from studies using the Arabidopsis root system. One recent development of note has been the emerging evidence of a regulatory role of nitrate transporters in some of the responses. It has been reported that the AtNRT1.1 (CHL1) dual-affinity nitrate transporter acts upstream of the ANR1 MADS box gene in mediating the stimulatory effect of a localized nitrate supply on lateral root proliferation. The AtNRT2.1 high-affinity nitrate transporter seems to be involved in the repression of lateral root initiation by high C:N ratios. The systemic inhibitory effect of high nitrate supply on lateral root development, which is mediated by abscisic acid (ABA), may be linked to the recently identified ABA receptor, FCA. The newly discovered root architectural response to external L-glutamate potentially offers a valuable experimental tool for studying the biological function of plant glutamate receptors and amino acid signalling.  相似文献   

13.
Plants respond to low nutrient availability by modifying root morphology and root system topology. Root responses to nitrogen (N) and phosphorus (P) limitation may affect plant capacity to withstand water stress. But studies on the effect of nutrient availability on plant ability to uptake and transport water are scarce. In this study, we assess the effect of nitrogen and phosphorus limitation on root morphology and root system topology in Pistacia lentiscus L seedlings, a common Mediterranean shrub, and relate these changes to hydraulic conductivity of the whole root system. Nitrogen and phosphorus deprivation had no effect on root biomass, but root systems were more branched in nutrient limited seedlings. Total root length was higher in seedlings subjected to phosphorus deprivation. Root hydraulic conductance decreased in nutrient-deprived seedlings, and was related to the number of root junctions but not to other architectural traits. Our study shows that changes in nutrient availability affect seedling water use by modifying root architecture. Changes in nutrient availability should be taken into account when evaluating seedling response to drought.  相似文献   

14.
Measuring the effects of mutation, natural variation or treatment on the development of plant form is often complicated by the shapes, dynamics or small size of the organismal structures under study. This limits accuracy and throughput of measurement and thereby limits progress toward understanding the underlying gene networks and signaling systems. A computer-vision platform based on electronic image capture and shape-analysis algorithms was developed as an alternative to the mostly manual methods of measuring seedling development currently in use. The spatial and temporal resolution of the method is in the range of microns and minutes, respectively. The algorithm simultaneously quantifies apical hook opening and inhibition of hypocotyl elongation during photomorphogenesis of Arabidopsis thaliana seedlings. It can determine when and where gravitropic curvature develops along the root axis in A. thaliana and Medicago truncatula seedlings. Novel features of gravitropic curvature development were discovered as a result of the high resolution. The computer-vision algorithms developed and demonstrated here could be used to study mutant phenotypes in detail, to form the basis of a high-throughput screening platform, or to quantify natural variation in a population of plants.  相似文献   

15.
Under natural conditions ontogenetic development often coincides with changes in environmental factors. When explaining variations in leaf parameters, analyses based solely on environmental factors will lead to significant errors if the plant shows substantial ontogenetic variations in leaf properties. We evaluated intraspecific variations in eight morphological leaf traits of Dipterocarpus alatus over six architectural development stages under two different light conditions. An architectural analysis was conducted to distinguish precisely and objectively developmental stages of D. alatus. Leaves were collected on the most recent complete growth unit on the trunks of trees growing under two different light conditions. Eight leaf morphological traits were measured and calculated using ImageJ on greyscale images of leaf tracings. One-way ANOVA and Tukey tests were used to determine differences in leaf traits during ontogeny. The correlation coefficients were compared to determine whether leaf traits correlated more strongly with ontogenetic stage than with light intensity. D. alatus develops through a progressive transformation of its structure and architecture that adds one new axis category stage after stage. Specific leaf area, blade shape index and leaf dissection index decreased whereas blade area, perimeter, length, width and blade dry weight increased. Leaf traits correlated more strongly with ontogenetic stage than with light intensity. Our results demonstrated that studies on the responses of leaf traits to the environment may need to be corrected for an ontogeny effect. To strengthen this conclusion, future work should evaluate leaf variations during the ontogeny of different axis orders and/or axis categories.  相似文献   

16.
Tuberization in cassava (Manihot esculenta Crantz) occurs simultaneously with plant development, suggesting competition of photoassimilate partitioning between the shoot and the root organs. In potato, which is the most widely studied tuber crop, there is ample evidence suggesting that metabolism and regulatory processes in leaf may have an impact on tuber formation. To search for leaf proteins putatively involved in regulating tuber generation and/or development in cassava, comparative proteomic approaches have been applied to monitor differentially expressed leaf proteins during root transition from fibrous to tuberous. Stringent cross comparison and statistical analysis between two groups with different plant ages using Student’s t test with 95% significance level revealed a number of protein spots whose abundance were significantly altered (P < 0.05) during week 4 to week 8 of growth. Of these, 39 spots were successfully identified by ion trap LC–MS/MS. The proteins span various functional categories from antioxidant and defense, carbohydrate metabolism, cyanogenesis, energy metabolism, miscellaneous and unknown proteins. Results suggested possible metabolic switches in the leaf that may trigger/regulate storage root initiation and growth. This study provides a basis for further functional characterization of differentially expressed leaf proteins, which can help understand how biochemical processes in cassava leaves may be involved in storage root development.  相似文献   

17.
Piotr Otr?ba  Edyta M. Gola 《Flora》2011,206(3):227-232
Rhizophores - leafless axial organs, which apices are the only sites for root formation - are unique to the Selaginella genus. Both rhizophores and roots are dichotomously branched, forming a multibranch rhizophore-root system. In the examined Selaginella kraussiana, the first dichotomous division of a rhizophore results in the initiation of the twin root meristems, giving rise to the root primordia. These primordia are temporarily arrested in growth, but at the same time they are elevated, hidden inside the rhizophore apex due to the activity of a meristematic zone at the rhizophore axis. This meristematic region, located basally to the root meristems, apart from the rhizophore tissues consists of the derivative cells of root primordia and may be considered as a specific intercalary meristem.The growth mode of the roots is similar to that of the rhizophore, including dichotomous branching of the meristem and a temporary developmental arrest of the subsequent root primordia. The reiteration of the developmental program also involves the formation of new intercalary zones, thus through divisional activity, the root with dichotomized apex grows for some time as a single axis and, then the young roots emerge. At each step of the rhizophore-root branch system formation, tissues of the parental axis contribute significantly to the growth and emergence of the next axes. Therefore, dichotomous branching in Selaginella appears to be exceptional in comparison with other known dichotomies of axial organs.  相似文献   

18.
The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to acquire this nutrient. We studied the effect of P availability on the development of the root system in Arabidopsis. We found that at P-limiting conditions (<50 microM), the Arabidopsis root system undergoes major architectural changes in terms of lateral root number, lateral root density, and primary root length. Treatment with auxins and auxin antagonists indicate that these changes are related to an increase in auxin sensitivity in the roots of P-deprived Arabidopsis seedlings. It was also found that the axr1-3, axr2-1, and axr4-1 Arabidopsis mutants have normal responses to low P availability conditions, whereas the iaa28-1 mutant shows resistance to the stimulatory effects of low P on root hair and lateral root formation. Analysis of ethylene signaling mutants and treatments with 1-aminocyclopropane-1-carboxylic acid showed that ethylene does not promote lateral root formation under P deprivation. These results suggest that in Arabidopsis, auxin sensitivity may play a fundamental role in the modifications of root architecture by P availability.  相似文献   

19.
Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mm) and low (1 microm) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG.  相似文献   

20.
Chiatante  D.  Di Iorio  A.  Maiuro  L.  Scippa  S.G. 《Plant and Soil》1999,217(1-2):159-172
We investigated the effect of water stress on the root system architecture of pine saplings and pea seedlings during the first stage of development. Attention was focused on meristematic tissue situated at the root tip because of the leading role played by the tissue in the planning of root system architecture. The data showed that both species are extremely sensitive and that plants arrest their growth immediately during water stress treatment. When stress treatment was not intense, both species recovered growth but presented modifications in the root system architecture. In pine saplings, the modification in root system architecture was the consequence of fine root meristems not recovering from water stress. The saplings survived by producing new lateral meristems from the cortical tannin zone above the fine root tip. In the case of pea seedlings, the meristematic tissues in the primary root arrested proliferation during water stress although they recovered when the event occurred during the first hours of germination. The response was different when water stress was enforced on older seedlings. In this case, root meristems never completely recovered their proliferation despite the increase in proline content observed in the cells. The modification of root system architecture in pea seedlings depended on the arrest of primary root elongation and the formation of new root laterals. As regards the primary roots, water stress treatment induced along the axis the formation of irregular ‘swellings’ in the cortical zone above the meristematic zone. Anatomical investigations suggested that such swellings may have derived from the changes in elongation direction of derivatives. The formation of new laterals was observed in hydroponic cultures when water stress treatment was enforced slowly and prolonged for a long time. The production of new lateral meristems may have been a similar response of woody and herbaceous plants to water stress conditions. It is not known whether these new meristems present characteristics of resistance to water stress. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号