首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Cultivars used for wine and table grape have self-fertile hermaphrodite flowers whereas wild European vines and American and Asian species are dioecious, having either male or female flowers. Consistent with previous studies, the flower sex trait was mapped as a single major locus on chromosome 2 based on a pure Vitis vinifera population segregating for hermaphrodite and female progeny, and a hybrid population producing all three flower sex types. The sex locus was placed between the same SSR and SNP markers on both genetic maps, although abnormal segregation hampered to fine map the genomic region. From a total of 55 possible haplotypes inferred for three SSR markers around the sex locus, in a population of 132 V. sylvestris accessions and 171 V. vinifera cultivars, one of them accounted for 66 % of the hermaphrodite individuals and may be the result of domestication. Specific size variants of the VVIB23 microsatellite sequence within the 3′-UTR of a putative YABBY1 gene were found to be statistically significantly associated with the sex alleles M, H and f; these markers can provide assistance in defining the status of wild grapevine germplasm.  相似文献   

2.
Inter-simple sequence repeat (ISSR) markers were employed to detect the genetic diversity among 70 grape accessions including 52 clones of 17 Chinese wild grape species, seven interspecific hybrids, 10 Vitis vinifera L. cultivars, and one strain of Vitis riparia L. A total of 119 polymorphic bands with an average of 11.9 per primer were observed. The unweighted pair-group method (UPGMA) analysis indicated that the 70 clones or accessions had a similarity range from 0.08 to 0.93, indicating that abundant diversities exist among these accessions. Based on cluster analysis and principal coordinate analysis, all accessions could be divided into two major groups, the Chinese wild grape group, and the American and European cultivar group. The largest distance was found among V. riparia MichX, Vitis piasezkii, V. vinifera L. interspecific hybrid (Vitis binifera × V. labrusca) and the wild grapes native to China.  相似文献   

3.
Insertional polymorphisms of two copia-like (Vine-1, Tvv1) and one gypsy-like (Gret1) retrotransposon found in the grapevine genome were studied in 29 Vitis genotypes (Vitis arizonica, Vitis cinerea, Vitis labrusca, Vitis rupestis, Vitis rotundifolia, Vitis vinifera subsp. sylvestris and 23 V. vinifera subsp. sativa) using inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP) and sequence-specific amplified polymorphism (SSAP) techniques. IRAP, REMAP and SSAP polymorphisms were compared with amplified fragment length polymorphism (AFLP), Inter-single sequence repeats (ISSR) and SSR polymorphisms by evaluating the information content, the number of loci simultaneously analysed per experiment, the effectiveness of the analyses in assessing the relationship between accessions and the number of loci needed to obtain a coefficient of variation of 10%. The UPGMA dendrograms of each molecular marker system were compared and the Mantel matrix correspondence test was applied. Furthermore, the corresponding insertion ages of the transposable elements were estimated for each retrotransposon subfamily analysed. The presence of Gret1, Tvv1 and Vine-1 retrotransposons in all analysed genotypes suggests that copia-like and gypsy-like retrotransposons are widespread in Vitis genus. The results indicate that these retrotransposons were active before Vitis speciation and contributed to Vitis genus evolution. IRAP, REMAP and SSAP markers allow the discrimination of Vitis species and V. vinifera subsp. sativa cultivars with certainty as has been shown with AFLP, ISSR and SSR analyses, but phylogenetic trees obtained by retrotransposon-based molecular markers polymorphisms show some significant differences in the allocation of the analysed accessions compare to those obtained by ISSR, AFLP and SSR molecular markers. The phylogenetic tree resulting from REMAP polymorphism appeared the most representative of the effective relationship between all analysed accessions.  相似文献   

4.
The wild grapevine, Vitis vinifera L. ssp. sylvestris (Gmelin) Hegi, considered as the ancestor of the cultivated grapevine, is native from Eurasia. In Spain, natural populations of V. vinifera ssp. sylvestris can still be found along river banks. In this work, we have performed a wide search of wild grapevine populations in Spain and characterized the amount and distribution of their genetic diversity using 25 nuclear SSR loci. We have also analysed the possible coexistence in the natural habitat of wild grapevines with naturalized grapevine cultivars and rootstocks. In this way, phenotypic and genetic analyses identified 19% of the collected samples as derived from cultivated genotypes, being either naturalized cultivars or hybrid genotypes derived from spontaneous crosses between wild and cultivated grapevines. The genetic diversity of wild grapevine populations was similar than that observed in the cultivated group. The molecular analysis showed that cultivated germplasm and wild germplasm are genetically divergent with low level of introgression. Using a model‐based approach implemented in the software structure , we identified four genetic groups, with two of them fundamentally represented among cultivated genotypes and two among wild accessions. The analyses of genetic relationships between wild and cultivated grapevines could suggest a genetic contribution of wild accessions from Spain to current Western cultivars.  相似文献   

5.

Key message

Wild and loss-of-function alleles of the 5 - O - glucosyltransferase gene responsible for synthesis of diglucoside anthocyanins in Vitis were characterized. The information aids marker development for tracking this gene in grape breeding.

Abstract

Anthocyanins in red grapes are present in two glycosylation states: monoglucoside (3-O-glucoside) and diglucoside (3, 5-di-O-glucoside). While monoglucoside anthocyanins are present in all pigmented grapes, diglucoside anthocyanins are rarely found in the cultivated grape species Vitis vinifera. Biochemically 3-O-glucoside anthocyanins can be converted into 3,5-di-O-glucoside anthocyanins by a 5-O-glucosyltransferase. In this study, we surveyed allelic variation of the 5-O-glucosyltransferase gene (5GT) in 70 V. vinifera ssp. vinifera cultivars, 52 V. vinifera ssp. sylvestris accessions, 23 Vitis hybrid grapes, and 22 accessions of seven other Vitis species. Eighteen 5GT alleles with apparent loss-of-function mutations, including seven premature stop codon mutations and six frameshift indel mutations, were discovered in V. vinifera, but not in the other Vitis species. A total of 36 5GT alleles without apparent loss-of-function mutations (W-type) were identified. These W-type alleles were predominantly present in wild Vitis species, although a few of them were also found in some V. vinifera accessions. We further evaluated some of these 5GT alleles in producing diglucoside anthocyanins by analyzing the content of diglucoside anthocyanins in a set of representative V. vinifera cultivars. Through haplotype network analysis we revealed that V. vinifera ssp. vinifera and its wild progenitor V. vinifera ssp. sylvestris shared many loss-of-function 5GT alleles and extensive divergence of the 5GT alleles was evident within V. vinifera. This work advances our understanding of the genetic diversity of 5GT and provides a molecular basis for future marker-assisted selection for improving this important wine quality trait.  相似文献   

6.
We present here characterization data for seven new microsatellite markers designed from new microsatellite loci isolated from a microsatellite‐enriched DNA library from Vitis vinifera. The observed heterozygosity varied from 0.73 up to 0.93 and the number of alleles per locus ranged from 12 to 26. This high polymorphism makes these new markers interesting for use in genotyping studies and completing the set of microsatellite markers already available for V. vinifera. Additionally these seven new markers appear to be conserved in four other Vitis species and 15 Vitis hybrids used as rootstocks for V. vinifera cultivation.  相似文献   

7.
Pierce’s disease (PD) limits the cultivation of Vitis vinifera grape cultivars in California, across the southern United States and into South America. Resistance has been well characterized in V. arizonica, and one resistance locus has been identified (PdR1). However, resistance is poorly characterized in most other grape species. We tested a wide range of Vitis species from the southwestern United States for resistance to PD and used nuclear and chloroplast markers to phenotypically and genetically select a diverse set of resistant accessions. Chloroplast SSR markers identified 11 maternal lineage lines within the set of 17 (14 new and three previously identified) PD resistant accessions. A total of 19 breeding populations (F1 and pseudo-BC1) were developed with the 14 PD resistant accessions, and a total of 705 seedlings were analyzed for PD resistance. Using a limited mapping approach, 12 SSR markers, linked to the PdR1 locus, were used to genotype the breeding populations and phenotypic data were analyzed. Nine accessions had a major resistance quantitative trait locus (QTL) within the genomic region containing PdR1. The phenotypic data for these three resistant accessions, ANU67, b41-13, and T03-16, did not associate with PdR1 linked markers, indicating that their resistance is located in other regions of the genome. These three accessions were identified as candidates for use in the development of framework maps with larger populations capable of detecting additional and unique loci for PD resistance breeding and the stacking of PD resistance genes.  相似文献   

8.
Based on 261 single nucleotide polymorphism (SNP) markers, we analyzed 57 grapevine genotypes, consisting of 29 wild grapevines (Vitis vinifera subsp. sylvestris) prospected from the northwest part of Tunisia and 28 cultivated accessions (V. vinifera subsp. vinifera) maintained in the repository of the Arid Land Institute of Medenine (Tunisia). Pair-wise multilocus comparison with the ICVV SNP database allowed the identification of 13 cultivated genotypes, including ten synonymous groups with known Mediterranean or international varieties, three cases of color sports, and two misnomers. Genotypic analysis showed a high level of genetic diversity for both wild and cultivated groups. Multivariate and structure analyses clearly differentiated wild from cultivated grapevines and showed high average posterior probabilities of assignment to their group of origin. The clustering results largely supported the perceived classification and reflect that most of the present Tunisian cultivated varieties do not derive directly from the local wild populations but could correspond to materials introduced from different locations during historical times. Parentage analysis allowed the determination of the genetic origin of four Tunisian cultivars, “Garai”, “Jerbi” (from Kerkennah), “Mahdoui”, and “Reine de Vignes faux”, and showed that “Heptakilo” and “Planta Fina”, two old and widely distributed varieties in the Mediterranean basin, had an important role in the origin of Tunisian grapevines. The present study demonstrates the efficacy of SNP makers for germplasm characterization and genetic studies in grapevine.  相似文献   

9.
10.
The first microsatellite-based linkage map for Vitis aestivalis was constructed using 183 progeny from the crosses of V. aestivalis-derived “Norton” and V. vinifera “Cabernet Sauvignon”. A total of 1157 simple sequence repeat (SSR) markers were tested, 859 were amplified via PCR and 413 were polymorphic for at least one parent. The map for Norton consisted of 376 markers and covered 1496.6 centimorgan (cM) on 19 chromosomes. The consensus map consisted of 411 markers on 19 linkage groups with a total distance of 1678.6 cM. Although isozyme and SSR marker analyses in 1993 and 2009 provided preliminary evidence that Norton and Cynthiana grapes are genetically identical, only five banding patterns and four microsatellite loci were reported. This study characterized the relationship between these two cultivars using 185 microsatellites spanning 19 linkage groups for a genome-wide analysis. Four accessions of Norton and three accessions of Cynthiana were used; capillary electrophoresis results revealed Norton and Cynthiana to be identical at all selected loci.  相似文献   

11.
Teleki rootstocks are used in grapevine-producing countries all over the world. They represent one of the largest groups of available rootstocks but their origin is still in dispute although they have been regarded as Vitis berlandieri × V. riparia hybrids. To investigate their possible origin, we amplified and sequenced three chloroplast regions, two non-coding spacers (trnL-F, trnS-G) and the trnL group I intron in a core collection of Teleki rootstocks representing widespread accessions and related wild North American grape species (V. berlandieri, V. riparia and V. rupestris). Concatenated sequence data coupled with microstructural changes discovered in the chloroplast regions provided data to trace the maternal ancestry of the Teleki lines. All chloroplast regions showed both nucleotide and length variation. Length mutations in the non-coding regions represented mostly simple sequence repeats of poly-A and -T stretches. These indel characters exhibited additional diversity comparable with the nucleotide diversity and increased resolution of the phylogenetic trees. We found that a group of Teleki accessions position together with the wild grape species V. riparia. Another group of Teleki rootstocks formed a sister group to the other North American species V. berlandieri. These clades had moderate support values, and they do not share ancestry with other accessions of Teleki rootstocks resolved with high support value in the V. riparia clade. It seems that Teleki-Kober 5BB and 125 AA accessions might have a V. berlandieri maternal background. We also found great differences within putative clones of Teleki 5C and Teleki-Kober 5BB suggesting that the selection of these accessions was performed on heterogenous or mislabeled plant material collectively maintained under these names.  相似文献   

12.
Identification and knowledge concerning genetic diversity are fundamental for efficient management and use of grapevine germplasm. Recently, new types of molecular markers have been developed, such as retrotransposon-based markers. Because of their multilocus pattern, retrotransposon-based markers might be able to differentiate grapevine accessions with just one pair of primers. In order to evaluate the efficiency of this type of marker, we compared retrotransposon marker Tvv1 with seven microsatellite markers frequently used for genotyping of the genus Vitis (VVMD7, VVMD25, VVMD5, VVMD27, VVMD31, VVS2, and VZAG62). The reference population that we used consisted of 26 accessions of Vitis, including seven European varieties of Vitis vinifera, four North American varieties and hybrids of Vitis labrusca, and 15 rootstock hybrids obtained from crosses of several Vitis species. Individually, the Tvv1 and the group of seven SSR markers were capable of distinguishing all accessions except 'White Niagara' compared to 'Red Niagara'. Using the Structure software, the retrotransposon marker Tvv1 generated two clusters: one with V. vinifera plus North American varieties and the other comprising rootstocks. The seven SSR markers generated five clusters: V. vinifera, the North American varieties, and three groups of rootstock hybrids. The percentages of variation explained by the first two components in the principal coordinate analysis were 65.21 (Tvv1) and 50.42 (SSR markers) while the Mantel correlation between the distance matrixes generated by the two types of markers was 42.5%. We conclude that the Tvv1 marker is useful for DNA fingerprinting, but it lacks efficiency for discrimination of structured groups.  相似文献   

13.

Background  

The first high quality draft of the grape genome sequence has just been published. This is a critical step in accessing all the genes of this species and increases the chances of exploiting the natural genetic diversity through association genetics. However, our basic knowledge of the extent of allelic variation within the species is still not sufficient. Towards this goal, we constructed nested genetic core collections (G-cores) to capture the simple sequence repeat (SSR) diversity of the grape cultivated compartment (Vitis vinifera L. subsp. sativa) from the world's largest germplasm collection (Domaine de Vassal, INRA Hérault, France), containing 2262 unique genotypes.  相似文献   

14.

Background

Grape phylloxera (Daktulosphaira vitifoliae Fitch) is a major insect pest that negatively impacts commercial grapevine performance worldwide. Consequently, the use of phylloxera resistant rootstocks is an essential component of vineyard management. However, the majority of commercially available rootstocks used in viticulture production provide limited levels of grape phylloxera resistance, in part due to the adaptation of phylloxera biotypes to different Vitis species. Therefore, there is pressing need to develop new rootstocks better adapted to specific grape growing regions with complete resistance to grape phylloxera biotypes.

Results

Grapevine rootstock breeding material, including an accession of Vitis cinerea and V. aestivalis, DRX55 ([M. rotundifolia x V. vinifera] x open pollinated) and MS27-31 (M. rotundifolia specific hybrid), provided complete resistance to grape phylloxera in potted plant assays. To map the genetic factor(s) of grape phylloxera resistance, a F1 V. cinerea x V. vinifera Riesling population was screened for resistance. Heritability analysis indicates that the V. cinerea accession contained a single allele referred as RESISTANCE TO DAKTULOSPHAIRA VITIFOLIAE 2 (RDV2) that confers grape phylloxera resistance. Using genetic maps constructed with pseudo-testcross markers for V. cinerea and Riesling, a single phylloxera resistance locus was identified in V. cinerea. After validating SNPs at the RDV2 locus, interval and linkage mapping showed that grape phylloxera resistance mapped to linkage group 14 at position 16.7 cM.

Conclusion

The mapping of RDV2 and the validation of markers linked to grape phylloxera resistance provides the basis to breed new rootstocks via marker-assisted selection that improve vineyard performance.
  相似文献   

15.
Retrotransposons are retrovirus-related mobile sequences that have the potential to replicate via RNA intermediates and increase the genome size by insertion into new sites. The retroelement, Gret1, has been identified as playing a key role in generating fruit color variation in cultivated grape (Vitis vinifera L.) due to its insertion into the promoter of VvMybA1. Fruit color variation is an important distinguishing feature of cultivated grapes and virtually no fruit color variation is observed in wild grape species. The presence and relative copy number of Gret1 was assessed using quantitative PCR on 22 different Vitis species, only four of which (plus interspecific hybrids) are known to contain white accessions. Gret1 copy number was observed to vary by species as well as by color within species and was significantly higher in white-fruited accessions across all taxa tested. Additionally, genomic regions surrounding Gret1 insertion were sequenced in white V. vinifera, hybrid, V. labrusca, V. aestivalis, and V. riparia accessions.  相似文献   

16.
Sequence-related amplified polymorphism (SRAP) markers were used to assess genetic relationships among 76 grape genotypes including Chinese indigenous and newly bred varieties, representatives of foreign grape varieties, and wild Vitis species. Nineteen informative primers were selected from 100 SRAP primer pairs due to their ability to produce clearly and repeatedly polymorphic and unambiguous bands among the varieties. A total of 228 bands were produced; 78.63% of them were polymorphic; the average polymorphism information content (PIC) is 0.76. Genetic relationships were obtained using Nei and Li similarity coefficients. Cluster analysis of SRAP markers through the unweighted pair-group method of arithmetic averages (UPGMA) analysis and principal coordinate analysis (PCoA) were largely consistent. The definition of clusters in the dendrogram and PCoA plot is the same and some degree of grouping by types of grape, ecogeographical origin, and taxonomic status of the varieties was revealed. Three main groups were found after cluster analysis, i.e., table grape of Vitis vinifera; table grape of Euro-America hybrid and wine grape of V. vinifera; wild Vitis species. Groupings indicated a divergence between the table and wine-type varieties of V. vinifera. The results showed that the wild Vitis species that originated from America and China could be clearly differentiated and Vitis hancockii is the most distant from the others of Asian Vitis species. The results also indicated that SRAP markers are informative and could distinguish bud sports of grape. The present analysis revealed that Chinese cultivated and wild grape germplasm are highly variable and have abundant genetic diversity.  相似文献   

17.
Vitis vinifera ssp. silvestris, the spontaneous subspecies of V. vinifera L., is believed to be the ancestor of present grapevine cultivars. In this work, polymorphism at 13 SSR loci was investigated to answer the following key question: are wild plants (i) true silvestris, (ii) hybrids between wild and cultivated plants or (iii) or ‘escapes’ from vineyards? In particular, the objective of the present study was to identify truly wild individuals and to search for possible hybridization events. The study was performed in Sardinia, the second largest island in the Mediterranean Sea, which is characterized by a large and well‐described number of both grape cultivars and wild populations. This region was ideal for the study because of its spatial isolation and, consequently, limited contamination from outside material. The results of this study show that domesticated and wild grapevine germplasms are genetically divergent and thus are real silvestris. Pure lineages (both domesticated and wild) show very high average posterior probabilities of assignment to their own clusters, with a low level of introgression.  相似文献   

18.
19.
The first genetic map of cranberry (Vaccinium macrocarpon) has been constructed, comprising 14 linkage groups totaling 879.9 cM with an estimated coverage of 82.2 %. This map, based on four mapping populations segregating for field fruit-rot resistance, contains 136 distinct loci. Mapped markers include blueberry-derived simple sequence repeat (SSR) and cranberry-derived sequence-characterized amplified region markers previously used for fingerprinting cranberry cultivars. In addition, SSR markers were developed near cranberry sequences resembling genes involved in flavonoid biosynthesis or defense against necrotrophic pathogens, or conserved orthologous set (COS) sequences. The cranberry SSRs were developed from next-generation cranberry genomic sequence assemblies; thus, the positions of these SSRs on the genomic map provide information about the genomic location of the sequence scaffold from which they were derived. The use of SSR markers near COS and other functional sequences, plus 33 SSR markers from blueberry, facilitates comparisons of this map with maps of other plant species. Regions of the cranberry map were identified that showed conservation of synteny with Vitis vinifera and Arabidopsis thaliana. Positioned on this map are quantitative trait loci (QTL) for field fruit-rot resistance (FFRR), fruit weight, titratable acidity, and sound fruit yield (SFY). The SFY QTL is adjacent to one of the fruit weight QTL and may reflect pleiotropy. Two of the FFRR QTL are in regions of conserved synteny with grape and span defense gene markers, and the third FFRR QTL spans a flavonoid biosynthetic gene.  相似文献   

20.
This study provides the first analysis of the level and patterns of nucleotide polymorphism of the NCED1 gene in grapevine (Vitis vinifera L.). A total of 123 sequences of the gene were analyzed to give a sample of 50 wild accessions and 73 cultivars. A high single nucleotide polymorphism and haplotype diversity was revealed in the cultivars studied, especially Tunisian germplasms which present an important and diverse reservoir of genetic diversity for grape breeding and conservation. The haplotype distribution highlights two origins of the cultivars studied: one may be related to primary grapevine gene pool domestication while the second seems to be more recent. Thus, besides domestication, gene introgression has also played a role in shaping the current varietal landscape of grape cultivars. Higher nucleotide and haplotype polymorphism was recorded for cultivars. This was accompanied by a higher recombination rate in cultivated grapevines for this gene, a recent selective sweep in wild samples and a balancing selection in cultivars. The conservation of genetic diversity of the endangered wild germplasm is important to ensure that the wild population can be used in future breeding programs of the domesticated cultivars. The high number of alleles discovered can be used as a valuable source for association studies between allele frequencies and phenotypic variations in this gene. In addition to natural selection, molecular evidence shows that genetic variation in this locus appears to be shaped by a combination of mutation and recombination events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号