首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is a destructive disease that can significantly reduce grain yield and quality. Deployment of quantitative trait loci (QTLs) for FHB resistance in commercial cultivars has been the most effective approach for minimizing the disease losses. 'Baishanyuehuang' is a highly FHB-resistant landrace from China. Recombinant inbred lines (RILs) developed from a cross of 'Baishanyuehuang' and 'Jagger' were evaluated for FHB resistance in three greenhouse experiments in 2010 and 2011 by single-floret inoculation. Percentage of symptomatic spikelets in an inoculated spike was recorded 18 days post-inoculation. The RIL population was screened with 251 polymorphic simple sequence repeats. Four QTLs were associated with FHB resistance and mapped on three chromosomes. Two QTLs were located on the short arm of chromosome 3B (3BS) with one in distal of 3BS and another near centromere (3BSc), designated as Qfhb.hwwg-3BSc. The QTL in the distal of 3BS is flanked by Xgwm533 and Xgwm493, thus corresponds to Fhb1. This QTL explained up to 15.7 % of phenotypic variation. Qfhb.hwwg-3BSc flanked by Xwmc307 and Xgwwm566 showed a smaller effect than Fhb1 and explained up to 8.5 % of phenotypic variation. The other two QTLs were located on 3A, designated as Qfhb.hwwg-3A, and 5A, designated as Qfhb.hwwg-5A. Qfhb.hwwg-3A was flanked by Xwmc651 and Xbarc356 and explained 4.8-7.5 % phenotypic variation, and Qfhb.hwwg-5A was flanked by markers Xgwm186 and Xbarc141, detected in only one experiment, and explained 4.5 % phenotypic variation for FHB resistance. 'Baishanyuehuang' carried all resistance alleles of the four QTL. Qfhb.hwwg-3BSc and Qfhb.hwwg-3A were new QTLs in 'Baishanyuehuang'. 'Baishanyuehuang' carries a combination of QTLs from different sources and can be a new source of parent to pyramid FHB-resistant QTLs for improving FHB resistance in wheat.  相似文献   

2.
Aluminum (Al) toxicity is a major constraint for wheat production in acid soils worldwide. Chinese landrace FSW demonstrates a high level of Al resistance. A population of recombinant inbred lines (RILs) was developed from a cross between FSW and an Al-sensitive Chinese line, ND35, using single seed descent, to map quantitative trait loci (QTLs) for Al resistance. Wheat reaction to Al stress was measured by net root growth (NRG) in a nutrient solution culture containing Al(3+) and hematoxylin staining score (HSS) of root after Al stress. After 1,437 simple sequence repeats (SSRs) were screened using bulk segregant analysis, three QTLs were identified to control Al resistance in FSW. One major QTL (Qalt.pser-4DL) was mapped on chromosome 4DL that co-segregated with Xups4, a marker for the promoter of the Al-activated malate transporter (ALMT1) gene. The other two QTLs (Qalt.pser-3BL, Qalt.pser-2A) were located on chromosomes 3BL and 2A, respectively. Together, the three QTLs accounted for up to 81.9% of the phenotypic variation for HSS and 78.3% of the variation for NRG. The physical positions of flanking markers for Qalt.pser-4DL and Qalt.pser-3BL were determined by analyzing these markers in corresponding nulli-tetrasomic, ditelosomic, and 3BL deletion lines of Chinese Spring. Qalt.pser-3BL is a novel QTL with a major effect on Al resistance discovered in this study. The two major QTLs on 4DL and 3BL demonstrated an additive effect. The SSR markers closely linked to the QTLs have potential to be used for marker-assisted selection (MAS) to improve Al resistance of wheat cultivars in breeding programs.  相似文献   

3.
Quantitative trait loci for aluminum resistance in wheat   总被引:4,自引:0,他引:4  
Quantitative trait loci (QTL) for wheat resistance to aluminum (Al) toxicity were analyzed using simple sequence repeats (SSRs) in a population of 192 F6 recombinant inbred lines (RILs) derived from a cross between an Al-resistant cultivar, Atlas 66 and an Al-sensitive cultivar, Chisholm. Wheat reaction to Al was measured by relative root growth and root response to hematoxylin stain in nutrient-solution culture. After screening 1,028 SSR markers for polymorphisms between the parents and bulks, we identified two QTLs for Al resistance in Atlas 66. One major QTL was mapped on chromosome 4D that co-segregated with the Al-activated malate transporter gene (ALMT1). Another minor QTL was located on chromosome 3BL. Together, these two QTLs accounted for about 57% of the phenotypic variation in hematoxylin staining score and 50% of the variation in net root growth (NRG). Expression of the minor QTL on 3BL was suppressed by the major QTL on 4DL. The two QTLs for Al resistance in Atlas 66 were also verified in an additional RIL population derived from Atlas 66/Century. Several SSR markers closely linked to the QTLs were identified and have potential to be used for marker-assisted selection (MAS) to improve Al-resistance of wheat cultivars in breeding programs.  相似文献   

4.
Resistance to Fusarium head blight (FHB), deoxynivalenol (DON) accumulation, and kernel discoloration (KD) in barley are difficult traits to introgress into elite varieties because current screening methods are laborious and disease levels are strongly influenced by environment. To improve breeding strategies directed toward enhancing these traits, we identified genomic regions containing quantitative trait loci (QTLs) associated with resistance to FHB, DON accumulation, and KD in a breeding population of F4:7 lines using restriction fragment length polymorphic (RFLP) markers. We evaluated 101 F4:7 lines, derived from a cross between the cultivar Chevron and an elite breeding line, M69, for each of the traits in three or four environments. We used 94 previously mapped RFLP markers to create a linkage map. Using composite interval mapping, we identified 10, 11, and 4 QTLs associated with resistance to FHB, DON accumulation, and KD, respectively. Markers flanking these QTLs should be useful for introgressing resistance to FHB, DON accumulation, and KD into elite barley cultivars. Received: 8 November 1998 / Accepted: 8 January 1999  相似文献   

5.
Haplotype diversity at fusarium head blight resistance QTLs in wheat   总被引:4,自引:0,他引:4  
Fusarium head blight (FHB) reduces grain yield and quality in common and durum wheat. Host FHB resistance is an effective control measure that is achieved by stacking multiple resistance genes into a wheat line. Therefore, breeders would benefit from knowing which resistance sources carry different resistance genes. A diverse collection of FHB-resistant and -susceptible wheat lines was characterized with microsatellite markers linked to FHB resistance quantitative trait loci (QTLs) on chromosomes 2DL, 3BS (distal to the centromere), 3BSc (proximal to the centromere), 4B, 5AS and 6BS identified in wheat lines Maringa, Sumai 3 and Wuhan 1. Putative Sumai 3 QTLs were commonly observed in advanced breeding lines, whereas putative Maringa and Wuhan 1 QTLs were relatively rare. Marker data suggested the 3BS, 3BSc and 5AS QTLs in the Brazilian cv. Maringa were derived from Asian germplasm and not from Frontana or other Brazilian lines. Haplotype diversity was reduced near the 5AS QTL, which might impact the deployment of this QTL. Finally, Brazilian germplasm was not closely related to other resistance sources and might be useful for pyramiding with Asian wheat-derived FHB resistance.Communicated by J. W. Snape  相似文献   

6.
Fusarium head blight (FHB) caused by Fusarium culmorum is an economically important disease of wheat that may cause serious yield and quality losses under favorable climate conditions. The development of disease-resistant cultivars is the most effective control strategy. Worldwide, there is heavy reliance on the resistance pool originating from Asian wheats, but excellent field resistance has also been observed among European winter wheats. The objective of this study was to map and characterize quantitative traits loci (QTL) of resistance to FHB among European winter wheats. A population of 194 recombinant inbred lines (RILs) was genotyped from a cross between two winter wheats Renan (resistant)/Récital (susceptible) with microsatellites, AFLP and RFLP markers. RILs were assessed under field conditions For 3 years in one location. Nine QTLs were detected, and together they explained 30-45% of the variance, depending on the year. Three of the QTLs were stable over the 3 years. One stable QTL, QFhs.inra.2b, was mapped to chromosome 2B and two QTLs QFhs.inra.5a2 and QFhs.inra5a3, to chromosome 5A; each of these QTLs explained 6.9-18.6% of the variance. Other QTLs were identified on chromosome 2A, 3A, 3B, 5D, and 6D, but these had a smaller effect on FHB resistance. One of the two QTLs on chromosome 5A was linked to gene B1 controlling the presence of awns. Overlapping QTLs for FHB resistance were those for plant height or/and flowering time. Our results confirm that wheat chromosomes 2A, 3A, 3B, and 5A carry FHB resistance genes, and new resistance factors were identified on chromosome arms 2BS and 5AL. Markers flanking these QTLs should be useful tools for combining the resistance to FHB of Asian and European wheats to increase the resistance level of cultivars.  相似文献   

7.
8.
Fusarium head blight (FHB) is one of the most destructive diseases in wheat. This study was to identify new quantitative trait loci (QTL) for FHB resistance and the molecular markers closely linked to the QTL in wheat cultivar Chokwang. The primers of 612 simple sequence repeats (SSRs) and 12 target-region-amplified polymorphism (TRAP) marker were analyzed between resistant (Chokwang) and susceptible (Clark) parents. One hundred and seventy-two polymorphic markers were used to screen a population of 79 recombinant inbred lines (RILs) derived from the cross of Chokwang and Clark. One major QTL, Qfhb.ksu-5DL1, was identified on chromosome 5DL. The SSR marker Xbarc 239 was mapped in the QTL region, and also physically located to the bin of 5DL1-0.60-0.74 by using Chinese Spring deletion lines. Another QTL Qfhb.ksu-4BL1was linked to SSR Xbarc 1096 and tentatively mapped on 4BL. A QTL on 3BS, Qfhb.ksu-3BS1, was also detected with marginal significance in this population. Different marker alleles for these QTL were detected between Chokwang and Sumai 3 and its derivatives. These results suggested that Chokwang contains new QTL for FHB resistance that are different from those in Sumai 3. Pyramiding resistance QTL from various sources may enhance FHB resistance in wheat cultivars.  相似文献   

9.
Molecular Breeding - Maize is a heterosis-utilizing crop species, and the application of maize hybrids has significantly improved total maize yields worldwide. Breeding pure lines is the most...  相似文献   

10.
Quantitative trait loci of stripe rust resistance in wheat   总被引:1,自引:0,他引:1  

Key message

Over 140 QTLs for resistance to stripe rust in wheat have been published and through mapping flanking markers on consensus maps, 49 chromosomal regions are identified.

Abstract

Over thirty publications during the last 10 years have identified more than 140 QTLs for stripe rust resistance in wheat. It is likely that many of these QTLs are identical genes that have been spread through plant breeding into diverse backgrounds through phenotypic selection under stripe rust epidemics. Allelism testing can be used to differentiate genes in similar locations but in different genetic backgrounds; however, this is problematic for QTL studies where multiple loci segregate from any one parent. This review utilizes consensus maps to illustrate important genomic regions that have had effects against stripe rust in wheat, and although this methodology cannot distinguish alleles from closely linked genes, it does highlight the extent of genetic diversity for this trait and identifies the most valuable loci and the parents possessing them for utilization in breeding programs. With the advent of cheaper, high throughput genotyping technologies, it is envisioned that there will be many more publications in the near future describing ever more QTLs. This review sets the scene for the coming influx of data and will quickly enable researchers to identify new loci in their given populations.  相似文献   

11.
A major quantitative trait locus (QTL) associated with resistance to Fusarium head blight (FHB) was identified on chromosome 3BS between simple sequence repeat (SSR) markers Xgwm389 and Xgwm493 in wheat 'Ning 7840', a derivative from 'Sumai 3'. However, the marker density of SSR in the QTL region was much lower than that required for marker-assisted selection (MAS) and map-based cloning. The objective of this study was to exploit new markers to increase marker density in this QTL region by using single-strand conformational polymorphism (SSCP) markers developed from wheat expressed sequence tags (ESTs) on 3BS bin 8-0.78-1.0. Sixty-nine out of 85 SSCP primer pairs amplified PCR (polymerase chain reaction) products from the genomic DNA of 'Chinese Spring'. Thirty-four primer pairs amplified PCR products that could form clear ssDNA (single strand DNA) bands through denaturation treatment. Ten SSCP markers had polymorphisms between 'Ning 7840' and 'Clark'. Five of the ten polymorphic SSCP markers were located on chromosome 3B by nulli-tetrasomic analysis. Three SSCP markers (Xsscp6, Xsscp20, and Xsscp21) were mapped into the region between Xgwm493 and Xgwm533, and possessed higher coefficient of determination (R2) than Xgwm493 and Xgwm533. The SSCP markers, Xsscp6, Xsscp20, and Xsscp21, can be used for map-based cloning of the QTL and for marker-assisted selection in FHB resistance breeding.  相似文献   

12.
A major quantitative trait locus (QTL) associated with resistance to Fusarium head blight (FHB) was identified on chromosome 3BS between simple sequence repeat (SSR) markers Xgwm389 and Xgwm493 in wheat “Ning 7840”, a derivative from “Sumai 3”. However, the marker density of SSR in the QTL region was much lower than that required for marker-assisted selection (MAS) and map-based cloning. The objective of this study was to exploit new markers to increase marker density in this QTL region by using single-strand conformational polymorphism (SSCP) markers developed from wheat-expressed sequence tags (ESTs) on 3BS bin 8-0.78-1.0. Sixty-nine out of 85 SSCP primer pairs amplified PCR (polymerase chain reaction) products from the genomic DNA of “Chinese Spring”. Thirty-four primer pairs amplified PCR products that could form clear ssDNA (single strand DNA) bands through denaturation treatment. Ten SSCP markers had polymorphisms between Ning 7840 and “Clark”. Five of the ten polymorphic SSCP markers were located on chromosome 3B by nullitetrasomic analysis. Three SSCP markers (Xsscp6, Xsscp20, and Xsscp21) were mapped into the region between Xgwm493 and Xgwm533 and possessed a higher coefficient of determination (R2) than Xgwm493 and Xgwm533. The SSCP markers, Xsscp6, Xsscp20, and Xsscp21, can be used for map-based cloning of the QTL and for marker-assisted selection in FHB resistance breeding.  相似文献   

13.
Breeding for fusarium head blight (FHB) resistance of wheat is a continuous challenge for plant breeders. Resistance to FHB is a quantitative trait, governed by several to many genes and modulated by environmental conditions. The presented study was undertaken to assess the effect on improving FHB resistance and on possible unwanted side effects (‘linkage drag’) of two resistance QTL, namely Fhb1 and Qfhs.ifa-5A, from the spring wheat line CM-82036 when transferred by marker-assisted backcrossing into several European winter wheat lines. To achieve these goals, we developed and evaluated fifteen backcross-two–derived families based on nine European winter wheat varieties as recipients and the FHB resistant variety CM-82036 as resistance donor. The QTL Qfhs.ifa-5A had a relatively small impact on increasing FHB resistance. On average lines with Fhb1 plus Qfhs.ifa-5A combined were only slightly more resistant compared to lines with Fhb1 alone. The obtained results suggest that the effect of the spring wheat–derived QTL on improving FHB resistance increases in the order Qfhs.ifa-5A < Fhb1 ≤ Qfhs.ifa-5A plus Fhb1 combined. The genetic background of the recipient line had a large impact on the resistance level of the obtained lines. No systematic negative effect of the spring wheat–derived QTL on grain yield, thousand grain weight, hectoliter weight and protein content was found. The use of spring wheat–derived FHB resistance QTL for breeding high yielding cultivars with improved FHB resistance appears therefore highly promising.  相似文献   

14.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a major fungal disease in common wheat (Triticum aestivum L.) worldwide. The Chinese winter wheat cultivar Lumai 21 has shown good and stable adult plant resistance for 19 years. The aim of this study was to map quantitative trait loci (QTLs) for resistance to powdery mildew in a population of 200 F3 lines from the cross Lumai 21/Jingshuang 16. The population was tested for powdery mildew reaction in Beijing and Anyang in the 2005–2006 and 2006–2007 cropping seasons, providing data for 4 environments. A total of 1,375 simple sequence repeat (SSR) markers were screened for associations with powdery mildew reactions, initially in bulked segregant analysis. Based on the mean disease values averaged across environments, broad-sense heritabilities of maximum disease severity and area under the disease progress curve were 0.96 and 0.77, respectively. Three QTLs for adult plant resistance were detected by inclusive composite interval mapping. These were designated QPm.caas-2BS, QPm.caas-2BL and QPm.caas-2DL, respectively, and explained from 5.4 to 20.6% of the phenotypic variance across environments. QPm.caas-2BS and QPm.caas-2DL were likely new adult plant resistance QTLs flanked by SSR markers Xbarc98Xbarc1147 and Xwmc18Xcfd233, respectively. These markers could be useful for improving wheat powdery mildew resistance in breeding programs.  相似文献   

15.
The Spanish landrace-derived inbred line SBCC97, together with other lines from the Spanish Barley Core Collection, displays high resistance to powdery mildew, caused by the fungus Blumeria graminis f. sp. hordei. The objective of this study was to map quantitative trait loci (QTLs) for resistance to powdery mildew in a recombinant inbred line population derived from a cross between SBCC97 and the susceptible cultivar ‘Plaisant’. Phenotypic analysis was performed using four B. graminis isolates, and genetic maps were constructed with mainly simple sequence repeat (SSR) markers, following a sequential genotyping strategy. Two major QTLs with large effects were identified on chromosome 7H, and they accounted for up to 45% of the total phenotypic variance. The alleles for resistance at each QTL were contributed by the Spanish parent SBCC97. One locus was mapped to the short arm of chromosome 7HS, and was flanked by the resistance gene analogue (RGA) marker S9202 and the SSR GBM1060. This corresponded to the same chromosomal region in which a major race-specific resistance gene from Hordeum vulgare ssp. spontaneum, designated as mlt, had been identified previously. The second QTL was linked tightly to marker EBmac0755, and it shared its chromosomal location with the qualitative resistance gene Mlf, which has only been described previously in the wild ancestor H. spontaneum. This is the first report of these two QTLs occurring together in cultivated barley, and it paves the way for their use in barley breeding programs that are designed to transfer resistance alleles into elite cultivars.  相似文献   

16.
Traditional quantitative trait loci (QTL) mapping approaches are typically based on early or advanced generation analysis of bi-parental populations. A limitation associated with this methodology is the fact that mapping populations rarely give rise to new cultivars. Additionally, markers linked to the QTL of interest are often not immediately available for use in breeding and they may not be useful within diverse genetic backgrounds. Use of breeding populations for simultaneous QTL mapping, marker validation, marker assisted selection (MAS), and cultivar release has recently caught the attention of plant breeders to circumvent the weaknesses of conventional QTL mapping. The first objective of this study was to test the feasibility of using family-pedigree based QTL mapping techniques generally used with humans and animals within plant breeding populations (PBPs). The second objective was to evaluate two methods (linkage and association) to detect marker-QTL associations. The techniques described in this study were applied to map the well characterized QTL, Fhb1 for Fusarium head blight resistance in wheat (Triticum aestivum L.). The experimental populations consisted of 82 families and 793 individuals. The QTL was mapped using both linkage (variance component and pedigree-wide regression) and association (using quantitative transmission disequilibrium test, QTDT) approaches developed for extended family-pedigrees. Each approach successfully identified the known QTL location with a high probability value. Markers linked to the QTL explained 40–50% of the phenotypic variation. These results show the usefulness of a human genetics approach to detect QTL in PBPs and subsequent use in MAS.  相似文献   

17.
Cephalosporium stripe, caused by Cephalosporium gramineum, can cause severe loss of wheat (Triticum aestivum L.) yield and grain quality and can be an important factor limiting adoption of conservation tillage practices. Selecting for resistance to Cephalosporium stripe is problematic; however, as optimum conditions for disease do not occur annually under natural conditions, inoculum levels can be spatially heterogeneous, and little is known about the inheritance of resistance. A population of 268 recombinant inbred lines (RILs) derived from a cross between two wheat cultivars was characterized using field screening and molecular markers to investigate the inheritance of resistance to Cephalosporium stripe. Whiteheads (sterile heads caused by pathogen infection) were measured on each RIL in three field environments under artificially inoculated conditions. A linkage map for this population was created based on 204 SSR and DArT markers. A total of 36 linkage groups were resolved, representing portions of all chromosomes except for chromosome 1D, which lacked a sufficient number of polymorphic markers. Quantitative trait locus (QTL) analysis identified seven regions associated with resistance to Cephalosporium stripe, with approximately equal additive effects. Four QTL derived from the more susceptible parent (Brundage) and three came from the more resistant parent (Coda), but the cumulative, additive effect of QTL from Coda was greater than that of Brundage. Additivity of QTL effects was confirmed through regression analysis and demonstrates the advantage of accumulating multiple QTL alleles to achieve high levels of resistance.  相似文献   

18.
Pre-harvest sprouting (PHS) of wheat is a major problem that severely limits the end-use quality of flour in many wheat-growing areas worldwide. To identify quantitative trait loci (QTLs) for PHS resistance, a population of 171 recombinant inbred lines (RILs) was developed from the cross between PHS-resistant white wheat cultivar Rio Blanco and PHS-susceptible white wheat breeding line NW97S186. The population was evaluated for PHS in three greenhouse experiments and one field experiment. After 1,430 pairs of simple sequence repeat (SSR) primers were screened between the two parents and two bulks, 112 polymorphic markers between two bulks were used to screen the RILs. One major QTL, QPhs.pseru-3AS, was identified in the distal region of chromosome 3AS and explained up to 41.0% of the total phenotypic variation in three greenhouse experiments. One minor QTL, QPhs.pseru-2B.1, was detected in the 2005 and 2006 experiments and for the means over the greenhouse experiments, and explained 5.0-6.4% of phenotypic variation. Another minor QTL, QPhs.pseru-2B.2, was detected in only one greenhouse experiment and explained 4.5% of phenotypic variation for PHS resistance. In another RIL population developed from the cross of Rio Blanco/NW97S078, QPhs.pseru-3AS was significant for all three greenhouse experiments and the means over all greenhouse experiments and explained up to 58.0% of phenotypic variation. Because Rio Blanco is a popular parent used in many hard winter wheat breeding programs, SSR markers linked to the QTLs have potential for use in high-throughput marker-assisted selection of wheat cultivars with improved PHS resistance as well as fine mapping and map-based cloning of the major QTL QPhs.pseru-3AS.  相似文献   

19.
Wheat cultivar Express has durable, high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici). To elucidate the genetic basis of the resistance, Express was crossed with 'Avocet Susceptible' (AVS). A mapping population of 146 F(5) recombinant inbred lines (RILs) was developed using single-seed descent. The RILs were evaluated at two sites near Pullman in eastern Washington and one site near Mount Vernon in western Washington in 2005, and were evaluated near Pullman in 2006 under natural stripe rust infection of predominant races virulent on seedlings of Express. Infection type (IT) and disease severity (DS) were recorded three times for each line during each growing season. The DS data were used to calculate relative area under the disease progress curve (rAUDPC) values. Both IT and rAUDPC data showed continuous distributions, indicating that the Express HTAP resistance was controlled by quantitative trait loci (QTL). Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to map the HTAP resistance QTL. Three QTL were detected with significant additive effects, explaining 49.5-69.6% of the phenotypic variation for rAUDPC. Two of the QTL explained 30.8-42.7% of the phenotypic variation for IT. The three QTL were mapped to wheat chromosomes 6AS, 3BL and 1BL, and were designated as QYrex.wgp-6AS, QYrex.wgp-3BL and QYrex.wgp-1BL, respectively. QYrex.wgp-6AS and QYrex.wgp-3BL, which had higher effects than QYrex.wgp-1BL, were different from previously reported QTL/genes for adult-plant resistance. Markers Xgwm334-Xwgp56 and Xgwm299-Xwgp66 flanking the two major QTL were highly polymorphic in various wheat genotypes, suggesting that these markers are useful in marker-assisted selection.  相似文献   

20.
Fusarium head blight (FHB) resistance in wheat is considered to be polygenic in nature. Cell wall fortification is one of the best resistance mechanisms in wheat against Fusarium graminearum which causes FHB. Metabolomics approach in our study led to the identification of a wide array of resistance‐related (RR) metabolites, among which hydroxycinnamic acid amides (HCAAs), such as coumaroylagmatine and coumaroylputrescine, were the highest fold change RR metabolites in the rachis of a resistant near‐isogenic line (NIL‐R) upon F. graminearum infection. Placement of these metabolites in the secondary metabolic pathway led to the identification of a gene encoding agmatine coumaroyl transferase, herein referred to as TaACT, as a candidate gene. Based on wheat survey sequence, TaACT was located within a FHB quantitative trait loci on chromosome 2DL (FHB QTL‐2DL) between the flanking markers WMC245 and GWM608. Phylogenetic analysis suggested that TaACT shared closest phylogenetic relationship with an ACT ortholog in barley. Sequence analysis of TaACT in resistant and susceptible NILs, with contrasting levels of resistance to FHB, led to the identification of several single nucleotide polymorphisms (SNPs) and two inversions that may be important for gene function. Further, a role for TaACT in FHB resistance was functionally validated by virus‐induced gene silencing (VIGS) in wheat NIL‐R and based on complementation studies in Arabidopsis with act mutant background. The disease severity, fungal biomass and RR metabolite analysis confirmed TaACT as an important gene in wheat FHB QTL‐2DL, conferring resistance to F. graminearum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号