首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.

Key message

A lipoxygenase-free soybean mutant line (H70) induced by gamma ray was selected and its detailed information about the lipoxygenase was analyzed by comparison of DNA sequence.

Abstract

Soybean seeds contain three lipoxygenase enzymes, which induce a beany or grassy flavor. The elimination of lipoxygenases can reduce the poor stability and off-flavors of soybean oil and protein products. In this study, we selected a soybean mutant (H70) in which the three lipoxygenases had been mutated using gamma rays. To obtain detailed information about the lipoxygenase, we investigated the sequences of the Lox1, Lox2 and Lox3 genes in H70 compared to the original cultivar, Hwanggum. Comparisons of the sequences of the Lox1 and Lox2 genes in H70 with those in a line with normal lipoxygenase (HG) showed that the mutations in these genes affected a highly conserved group of six histidine residues necessary for enzymatic activity. Lox1 in H70 contained a 74 bp deletion in exon 8, creating a stop codon that prematurely terminates translation. A single point mutation (T-A) in exon 8 of Lox2 changed histidine (H532, one of the iron-binding ligands essential for Lox2 activity) to glutamine. The mutation in the Lox3 gene in H70 was a single-point mutation in exon 6 (A-G), which changed the amino acid from histidine to arginine. This amino acid alteration in Lox3 was located in the N-terminal barrel, which might play a role in molecular recognition during catalysis and/or proteolysis. These results suggest that gene analysis based on DNA sequencing could be useful for elucidating the lipoxygenase content in soybean mutant lines. Additionally, the soybean mutant line selected in this study could be used to develop soybean cultivars with improved flavor.  相似文献   

2.
Molecular sequence variations of the lipoxygenase-2 gene in soybean   总被引:1,自引:0,他引:1  
Soybean lipoxygenase genes comprise a multi-gene family, with the seed lipoxygenase isozymes LOX1, LOX2, and LOX3 present in soybean seeds. Among these, the LOX2 isozyme is primarily responsible for the “beany” flavor of most soybean seeds. The variety, Jinpumkong 2, having null alleles (lx1, lx2, and lx3) lacks the three seed lipoxygenases; so, sequence variations between the lipoxygenase-2 genes of Pureunkong (Lx2) and Jinpumkong 2 (lx2) cultivars were examined. One indel, four single nucleotide polymorphisms (SNPs), a 175-bp fragment in the 5′-flanking sequence, and a missense mutation within the coding region were found in Jinpumkong 2. The distribution of the sequence variations was investigated among 90 recombinant inbred lines (RILs) derived from a cross of Pureunkong × Jinpumkong 2 and in 480 germplasm accessions with various origins and maturity groups. Evidence for a genetic bottleneck was observed: the 175-bp fragment was rare in Glycine max, but present in the majority of the G. soja accessions. Furthermore, the 175-bp fragment was not detected in the 5′ upstream region of the Lx2 gene on chromosome (Chr) 13 in Williams 82; instead, a similar 175-bp fragment was positioned in the homeologous region on Chr 15. The findings indicated that the novel fragment identified was originally present in the Lx2 region prior to the recent genome duplication in soybean, but became rare in the G. max gene pool. The missense mutation of the conserved histidine residue of the lx2 allele was developed into a single nucleotide-amplified polymorphism (SNAP) marker. The missense mutation showed a perfect correlation with the LOX2-lacking phenotype, so the SNAP marker is expected to facilitate breeding of soybean cultivars which lack the LOX2 isozyme.  相似文献   

3.
Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database (http://www.phytozome.net/soybean). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3′ untranslated (3′UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil concentration with no significant impact on seed protein concentration.  相似文献   

4.
Several classes of seed proteins limit the utilisation of plant proteins in human and farm animal diets, while plant foods have much to offer to the sustainable intensification of food/feed production and to human health. Reduction or removal of these proteins could greatly enhance seed protein quality and various strategies have been used to try to achieve this with limited success. We investigated whether seed protease inhibitor mutations could be exploited to enhance seed quality, availing of induced mutant and natural Pisum germplasm collections to identify mutants, whilst acquiring an understanding of the impact of mutations on activity. A mutant (TILLING) resource developed in Pisum sativum L. (pea) and a large germplasm collection representing Pisum diversity were investigated as sources of mutations that reduce or abolish the activity of the major protease inhibitor (Bowman-Birk) class of seed protein. Of three missense mutations, predicted to affect activity of the mature trypsin / chymotrypsin inhibitor TI1 protein, a C77Y substitution in the mature mutant inhibitor abolished inhibitor activity, consistent with an absolute requirement for the disulphide bond C77-C92 for function in the native inhibitor. Two further classes of mutation (S85F, E109K) resulted in less dramatic changes to isoform or overall inhibitory activity. The alternative strategy to reduce anti-nutrients, by targeted screening of Pisum germplasm, successfully identified a single accession (Pisum elatius) as a double null mutant for the two closely linked genes encoding the TI1 and TI2 seed protease inhibitors. The P. elatius mutant has extremely low seed protease inhibitory activity and introgression of the mutation into cultivated germplasm has been achieved. The study provides new insights into structure-function relationships for protease inhibitors which impact on pea seed quality. The induced and natural germplasm variants identified provide immediate potential for either halving or abolishing the corresponding inhibitory activity, along with associated molecular markers for breeding programmes. The potential for making large changes to plant protein profiles for improved and sustainable food production through diversity is illustrated. The strategy employed here to reduce anti-nutritional proteins in seeds may be extended to allergens and other seed proteins with negative nutritional effects. Additionally, the novel variants described for pea will assist future studies of the biological role and health-related properties of so-called anti-nutrients.  相似文献   

5.
Soybean leaves contain multiple lipoxygenases   总被引:2,自引:2,他引:0       下载免费PDF全文
Chromatofocusing of soybean (Glycine max L.) leaf lipoxygenases revealed three distinct peaks of activity. Based on their isoelectric points (pls), pH optima, and mutant analysis it appears that the leaf isozymes are different from those described from mature soybean seed. At least one leaf lipoxygenase appears to differ from those found in hypocotyls. The pls of the main bands of the three leaf lipoxygenase peaks are 6.67, 5.91, and 5.67. The pH optima curves of three active fractions exhibit peaks at pH 6.2, 5.5, and 8.5, respectively. One of the fractions has two polypeptides with slightly different molecular weights, both of which react to soybean seed lipoxygenase antibodies. The other two fractions contain a polypeptide of unit molecular weight reacting with the lipoxygenase antibodies.  相似文献   

6.
The fatty acid composition of vegetable oil is becoming increasingly critical for its ultimate functionality and utilization in foods and industrial products. Partial chemical hydrogenation of soybean [Glycine max (L.) Merr.] oil increases oxidative stability and shelf life but also results in the introduction of trans fats as an unavoidable byproduct. Due to mandatory labeling of consumer products containing trans fats, conventional soybean oil has lost the ability to deliver the most appropriate economical functionality and oxidative stability, particularly for baking applications. Genetic improvement of the fatty acid profile of soybean oil is one method of meeting these new requirements for oil feedstocks. In this report, we characterized three mutant genetic loci controlling the saturated fatty acid content of soybean oil: two genes additively reduce palmitic acid content (fap1 and fap3-ug), and one gene independently elevates stearic acid content (fas). We identified a new null allele of fap3-ug/GmFATB1A (derived from line ELLP2) present in line RG3. The splicing defect mutation in a beta-ketoacyl-[acyl-carrier-protein] synthase III candidate gene located in the region mapped to fap1, derived originally from ethyl methane sulphonate mutant line C1726 (Cardinal et al. in Theor Appl Genet 127:97–111, 2014), was also present in line RG3. We also utilized the elevated stearic acid line RG7, which has previously been shown to contain novel mutant fas/SACPD-C alleles encoding stearoyl-acyl carrier protein desaturase (Boersma et al. in Crop Sci 52:1736–1742, 2012). Molecular marker assays have been developed to track these causative mutations and understand their contributions to seed oil fatty acid profiles in a recombinant inbred line population segregating for fap1, fap3-ug, and fas alleles.  相似文献   

7.
Linolenic acid and seed lipoxygenases are associated with off flavours in soybean products. F5 recombinant inbred lines (RILs) from a cross between a low linolenic acid line (RG10) and a seed lipoxygenase-free line (OX948) were genotyped for simple sequence repeats (SSR), random amplified polymorphic DNA (RAPD), sequence-tagged sites (STS), and cleaved amplified polymorphic sequence (CAPS) markers and evaluated for seed and agronomic traits at 3 Ontario locations in 2 years. One hundred twenty markers covering 1247.5 cM were mapped to 18 linkage groups (LGs) in the soybean composite genetic map. Seed lipoxygenases L-1 and L-2 mapped as single major genes to the same location on LG G13-F. L-3 mapped to LG G11-E. This is the first report of a map position for L-3. A major quantitative trait locus (QTL) associated with reduced linolenic acid content was identified on LG G3-B2. QTLs for 12 additional seed and agronomic traits were detected. Linolenic acid content, linoleic acid content, yield, seed mass, protein content, and plant height QTL were present in at least 4 of 6 environments. Three to 8 QTLs per trait were detected that accounted for up to 78% of total variation. Linolenic acid and lipoxygenase loci did not overlap yield QTL, suggesting that it should be possible to develop high-yielding lines resistant to oxidative degradation by marker-assisted selection (MAS).  相似文献   

8.
Soybean seeds contain three lipoxygenase (Lox) enzymes that are controlled by separate genes, Lox1, Lox2 and Lox3. Lipoxygenases play a role in the development of unpleasant flavors in foods containing soybean by oxidation of polyunsaturated fatty acids. Null alleles for all three enzymes have been identified, lox1, lox2 and lox3, and are known to be inherited as simple recessive alleles. Previous studies determined that a missense mutation rendered Lox2 inactive; however, the genetic cause of either lox1 or lox3 mutation was not known. The objectives of this study were the molecular characterization of both lox1 and lox3 mutant alleles and the development of molecular markers to accelerate breeding for Lox-free soybean varieties. We identified two independent mutant alleles as the genetic causes of the lack of Lox1 in seeds of two lox1 mutant soybean lines. Similarly, a mutant allele that truncates Lox3 in a lox3 mutant soybean line was identified. Molecular markers were designed and confirmed to distinguish mutant, wild type, and heterozygous individuals for Lox1, Lox2 and Lox3 genes. Genotype and Lox phenotype analysis showed a perfect association between the inheritance of homozygous lox mutant alleles and the lack of Lox activity. Molecular characterization of a seed-lipoxygenase-free soybean line led to the discovery that an induced recombination event within the Lox1 gene was responsible for breaking the tight linkage in repulsion phase between mutant alleles at the Lox1 and Lox2 loci. The molecular resources developed in this work should accelerate the inclusion of the lipoxygenase-free trait in soybean varieties.  相似文献   

9.
Agrobacterium-mediated transformation frequency is very low with cells from some species such as soybeans. Studies were conducted to investigate the Agrobacterium-mediated transformation frequency in near-isogenic lipoxygenase mutant lines of soybeans, since the nigh level of lipoxygenase activity in soybean embryos might be expected to affect interactions with Agrobacterium. The mutant line lacking lipoxygenase 3 showed significantly greater frequency of Agrobacterium-induced transformation than the other soybean lines. Stages of soybean embryo development which showed maximum differences in lipoxygenase 3 activity between mutant and wild-type, also showed maximum differences in transformation frequency. The increased transformation frequency with the absence of lipoxygenase 3 was only seen when both lipoxygenase 1 and 2 were present.Abbreviations Gus -glucuronidase - LB Luria Broth - LOX lipoxygenase - MSO Murashige and Skoog (1962) culture medium with no added hormones - X-GLUC 5-bromo-4-chloro-3-indoyl glucuronide  相似文献   

10.

Background

Targeting Induced Local Lesions in Genomes (TILLING) is a powerful reverse genetics approach for functional genomics studies. We used high-throughput sequencing, combined with a two-dimensional pooling strategy, with either minimum read percentage with non-reference nucleotide or minimum variance multiplier as mutation prediction parameters, to detect genes related to abiotic and biotic stress resistances. In peanut, lipoxygenase genes were reported to be highly induced in mature seeds infected with Aspergillus spp., indicating their importance in plant-fungus interactions. Recent studies showed that phospholipase D (PLD) expression was elevated more quickly in drought sensitive lines than in drought tolerant lines of peanut. A newly discovered lipoxygenase (LOX) gene in peanut, along with two peanut PLD genes from previous publications were selected for TILLING. Additionally, two major allergen genes Ara h 1 and Ara h 2, and fatty acid desaturase AhFAD2, a gene which controls the ratio of oleic to linoleic acid in the seed, were also used in our study. The objectives of this research were to develop a suitable TILLING by sequencing method for this allotetraploid, and use this method to identify mutations induced in stress related genes.

Results

We screened a peanut root cDNA library and identified three candidate LOX genes. The gene AhLOX7 was selected for TILLING due to its high expression in seeds and roots. By screening 768 M2 lines from the TILLING population, four missense mutations were identified for AhLOX7, three missense mutations were identified for AhPLD, one missense and two silent mutations were identified for Ara h 1.01, three silent and five missense mutations were identified for Ara h 1.02, one missense mutation was identified for AhFAD2B, and one silent mutation was identified for Ara h 2.02. The overall mutation frequency was 1 SNP/1,066 kb. The SNP detection frequency for single copy genes was 1 SNP/344 kb and 1 SNP/3,028 kb for multiple copy genes.

Conclusions

Our TILLING by sequencing approach is efficient to identify mutations in single and multi-copy genes. The mutations identified in our study can be used to further study gene function and have potential usefulness in breeding programs.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1348-0) contains supplementary material, which is available to authorized users.  相似文献   

11.
The alteration of fatty acid profiles in soybean to improve soybean oil quality has been a long-time goal of soybean researchers. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of soybean oil compared to other oils. In the lipid biosynthetic pathway, the enzyme fatty acid desaturase 2 (FAD2) is responsible for the conversion of oleic acid precursors to linoleic acid precursors in developing soybean seeds. Two genes encoding FAD2-1A and FAD2-1B were identified to be expressed specifically in seeds during embryogenesis and have been considered to hold an important role in controlling the seed oleic acid content. A total of 22 soybean plant introduction (PI) lines identified to have an elevated oleic acid content were characterized for sequence mutations in the FAD 2-1A and FAD2-1B genes. PI 603452 was found to contain a deletion of a nucleotide in the second exon of FAD2-1A. These important SNPs were used in developing molecular marker genotyping assays. The assays appear to be a reliable and accurate tool to identify the FAD 2-1A and FAD2-1B genotype of wild-type and mutant plants. PI 603452 was subsequently crossed with PI 283327, a soybean line that has a mutation in FAD2-1B. Interestingly, soybean lines carrying both homozygous insertion/deletion mutation (indel) FAD2-1A alleles and mutant FAD2-1B alleles have an average of 82–86% oleic acid content, compared to 20% in conventional soybean, and low levels of linoleic and linolenic acids. The newly identified indel mutation in the FAD2-1A gene offers a simple method for the development of high oleic acid commercial soybean varieties.  相似文献   

12.
Soybean seeds accumulate large amounts of isoflavones (genistein, daidzein and glycitein), secondary metabolites known for their phytoestrogenic activities. Isoflavone composition depends on the seed part and glycitein is almost found exclusively in hypocotyls. Moreover, two major phenotypes are encountered in soybean cultivars, with either low (35 %) or high (55 %) levels of glycitein in their hypocotyls. This trait was under a quasi-mendelian heredity, implicating at most one or two genes. A CYP71D9 cDNA displaying a flavonoid 6-hydroxylase (F6H) activity had previously been isolated from elicitor-induced soybean (Glycine max L.) cells. This enzyme allows the synthesis of the glycitein flavanone intermediate (6,7,4′- trihydroxyflavanone) by catalyzing the A-ring hydroxylation of liquiritigenin. In this study, the CYP71D9 gene (F6H1) and two other candidates (F6H2 and F6H3) were studied using contrasted soybean cultivars for glycitein content (0, 35, 55 and 80 %). Their expression was observed in chitosan elicited leaves. They encode P450 proteins of 496, 469 and 481 amino acids respectively and were expressed in leaves with or without elicitation. The expression patterns of these three genes were performed in cotyledons and hypocotyls at different developmental stages. F6H1 and F6H2 were not expressed in the developing seed. F6H3 was only expressed in hypocotyls. Its expression levels did not correlate with hypocotyls glycitein content, but it was not expressed in the null mutant for glycitein. Thus, this F6H3 gene is a good potential candidate for glycitein biosynthesis in soybean seed.  相似文献   

13.
A complete understanding of the biosynthetic pathways involved in the formation of seed oils is an important step in the development of lines with useful oil profiles. Soybean oil has a number of industrial applications and is also a source of edible oils for human consumption. The elongation of palmitic acid to stearic acid by the 3-ketoacyl-ACP synthase II (KASII) enzyme represents a branch point in the pathway of oil biosynthesis in soybean. Three mutant soybean lines were identified which contained elevated levels of palmitic acid ranging from 12.9 to 15.6%. Candidate gene sequencing in these lines revealed that all three contain nucleotide changes in the coding sequence for the KASIIa gene. One mutation caused an early termination in the third exon of KASIIa, and two mutations resulted in amino acid changes in the KASIIa protein. These new mutant alleles of soybean KASIIa may be useful to fine-tune the composition of soybean seed oil using molecular breeding approaches.  相似文献   

14.
We have analyzed five Mod-1 (malic enzyme) mutants at the molecular and biochemical level. Four of these mutants, three electrophoretic variants and one null mutant, were induced by ethylnitrosourea (ENU). Another null mutant was the result of a spontaneous mutation. All of these mutations were heritable in a Mendelian fashion and viable in the homozygous condition. Restriction endonuclease and Southern blot analysis revealed that the spontaneous null mutant possessed an altered restriction fragment banding pattern. All of the ENU-induced mutants possessed normal restriction fragment banding patterns. All 5 mutants produced normal levels of Mod-1-specific mRNA. Only the spontaneous null mutant produced mRNA with altered size, which was consistent with the altered DNA-banding pattern. MOD-1 enzyme activity levels were normal in the three ENU-induced mutants with altered electrophoretic mobility. Enzyme activity was significantly lower than normal in tissues from animals homozygous for the null alleles, however, using Western blot analysis, low but significant levels of MOD-1 protein in Mod-1 null homozygotes were detected.  相似文献   

15.
Designing the fatty acid composition of Brassica napus L. seed oil for specific applications would extend the value of this crop. A mutation in Fatty Acid Desaturase 3 (FAD3), which encodes the desaturase responsible for catalyzing the formation of α-linolenic acid (ALA; 18:3 cisΔ9,12,15), in a diploid Brassica species would potentially result in useful germplasm for creating an amphidiploid displaying low ALA content in the seed oil. For this, seeds of B. oleracea (CC), one of the progenitor species of B. napus, were treated with ethyl-methane-sulfonate to induce mutations in genes encoding enzymes involved in fatty acid biosynthesis. Seeds from 1,430 M2 plants were analyzed, from which M3 seed families with 5.7–6.9 % ALA were obtained. Progeny testing and selection for low ALA content were carried out in M3–M7 generations, from which mutant lines with <2.0 % ALA were obtained. Molecular analysis revealed that the mutation was due to a single nucleotide substitution from G to A in exon 3 of FAD3, which corresponds to an amino acid residue substitution from glutamic acid to lysine. No obvious differences in the expression of the FAD3 gene were detected between wild type and mutant lines; however, evaluation of the performance of recombinant Δ-15 desaturase from mutant lines in yeast indicated reduced production of ALA. The novelty of this mutation can be inferred from the position of the point mutation in the C-genome FAD3 gene when compared to the position of mutations reported previously by other researchers. This B. oleracea mutant line has the potential to be used for the development of low-ALA B. napus and B. carinata oilseed crops.  相似文献   

16.
Soybean is one of the most important oil crops worldwide, and reducing the linolenic acid content of soybean oil will provide increased stability of the oil to consumers and limit the amount of trans fat in processed foods. The linolenic content in soybean seed is controlled by three fatty acid desaturase (FAD) three enzymes, FAD3A, B, and C. The soybean lines with 1 % linolenic acid content which are widely used in breeding for reduced linolenic acid in the USA have mutations in each of the three FAD genes derived from lines A5 (deletion of FAD3A), A26, and A23 (missense mutations in FAD3B and C, respectively). Although soybean line A5 has been released for 30 years, the extent and definition of the deletion of the FAD3A gene has not been characterized, which has prevented researchers from designing robust molecular markers for effective marker-assisted selection (MAS). Using a PCR-based genomic strategy, we have identified a 6.4-kbp deletion of the FAD3A gene in A5 and developed a TaqMan detection assay by targeting the deletion junction in A5, which could be used to distinguish the homozygotes and heterozygotes of the gene. In addition, based on mutant single nucleotide polymorphisms in FAD3B and FAD3C identified in A26 and A23, respectively, we have also developed TaqMan assays for high-throughput MAS. The TaqMan assays have proven to be a very effective platform for detecting the mutant FAD3 alleles and thus will greatly facilitate high-throughput MAS for development of soybean lines with reduced linolenic acid content.  相似文献   

17.
This study was performed to evaluate the sequential transformation for soybean genome editing using the CRISPR/Cas9 system as well as to show a strategy for examining the activity of CRISPR/Cas9 constructs, especially the designed guide RNAs (gRNAs). The gRNAs for targeted mutations of an exogenous gene and multiple endogenous genes were constructed and transferred into a stably-overexpressed-Cas9 soybean line using Agrobacterium rhizogenes-mediated hairy root induction system. The targeted mutations were identified and characterized by the poly-acrylamide gel electrophoresis (PAGE) heteroduplex method and by sequencing. Induced mutations of the exogenous gene (gus) were observed in 57% of tested transgenic hairy roots, while 100% of the transgenic root lines showed targeted mutations of the endogenous (SACPD-C) gene. Multiple gRNAs targeting two endogenous genes (SACPD-C and SMT) induced mutation rates of 75% and 67%, respectively. Various indels including small and large deletions as well as insertions were found in target sites of the tested genes. This sequential transformation method could present the targeting efficacy of different gRNAs of each tested gene. Additionally, in this study differences in gRNA ratings were found between bioinformatics predictions and actual experimental results. This is the first successful application of the sequential transformation method for genome editing in soybean using the hairy root system. This method could be potentially useful for validating CRISPR/Cas9 constructs, evaluating gRNA targeting efficiencies, and could be applied for other research directions.  相似文献   

18.
19.
The appearance and subsequent disappearance of lipoxygenase activity at pH 6.8 in germinated cotyledons of soybean (Glycine max [L.]) was shown using a variant soybean cultivar (Kanto 101) that lacks the two lipoxygenase isozymes, L-2 and L-3, that are present in dry seeds of a normal soybean cultivar (Enrei). Three new lipoxygenases, designated lipoxygenase L-4, L-5, and L-6, were purified using anionic or cationic ion exchange chromatography. The major lipoxygenase in 5-day-old cotyledons of the variant soybean was lipoxygenase L-4. Lipoxygenases L-5 and L-6 preferentially produced 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoic acid (13S-HPOD) as a reaction product of linoleic acid, whereas lipoxygenase L-4 produced both 13S-HPOD and 9(S)-hydroperoxy-10(E), 12(Z)-octadecadienoic acid. All three isozymes have pH optima of 6.5, no activity at pH 9.0, and preferred linolenic acid to linoleic acid as a substrate. Partial amino acid sequencing of lipoxygenase L-4 showed that this isozyme shares amino acid sequence homology with lipoxygenases L-1, L-2, and L-3 but is not identical to any of them. This indicates that a new lipoxygenase, L-4, is expressed in cotyledons.  相似文献   

20.
Confounding of alternate respiration by lipoxygenase activity   总被引:22,自引:17,他引:5       下载免费PDF全文
The initial burst of respiratory activity (Qo2) of imbibing soybean (Glycine max [L.] Merr. var. Wayne) seed tissue is cyanide-insensitive, and sensitive to salicylhydroxamate: presumptive evidence for the presence of alternate respiration. The initial O2 consumption is also highly sensitive to propyl gallate. Soybean lipoxygenase exhibits similar characteristics of insensitivity to cyanide and sensitivity to salicylhydroxamate and to propyl gallate. The initial burst of respiration is enhanced by the addition of linoleic acid, a lipoxygenase substrate. These results indicate that the conventional tests for alternate respiration in plant tissues can be confounded by lipoxygenase; they also suggest that propyl gallate can be used to assess the possible participation of lipoxygenase in the O2 uptake by plant tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号