首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression and function of bradykinin receptors in microglia   总被引:5,自引:0,他引:5  
Noda M  Kariura Y  Amano T  Manago Y  Nishikawa K  Aoki S  Wada K 《Life sciences》2003,72(14):1573-1581
  相似文献   

2.
Glioma cells prominently express a unique splice variant of a large conductance, calcium-activated potassium channel (BK channel). These channels transduce changes in intracellular calcium to changes of K(+) conductance in the cells and have been implicated in growth control of normal and malignant cells. The Ca(2+) increase that facilitates channel activation is thought to occur via activation of intracellular calcium release pathways or influx of calcium through Ca(2+)-permeable ion channels. We show here that BK channel activation involves the activation of inositol 1,4,5-triphosphate receptors (IP(3)R), which localize near BK channels in specialized membrane domains called lipid rafts. Disruption of lipid rafts with methyl-beta-cyclodextrin disrupts the functional association of BK channel and calcium source resulting in a >50% reduction in K(+) conductance mediated by BK channels. The reduction of BK current by lipid raft disruption was overcome by the global elevation of intracellular calcium through inclusion of 750 nm Ca(2+) in the pipette solution, indicating that neither the calcium sensitivity of the channel nor their overall number was altered. Additionally, pretreatment of glioma cells with 2-aminoethoxydiphenyl borate to inhibit IP(3)Rs negated the effect of methyl-beta-cyclodextrin, providing further support that IP(3)Rs are the calcium source for BK channels. Taken together, these data suggest a privileged association of BK channels in lipid raft domains and provide evidence for a novel coupling of these Ca(2+)-sensitive channels to their second messenger source.  相似文献   

3.
Regulation of microglial migration is not well understood. In this study, we proposed that Na+/H+ exchanger isoform 1 (NHE-1) is important in microglial migration. NHE-1 protein was co-localized with cytoskeletal protein ezrin in lamellipodia of microglia and maintained its more alkaline intracellular pH (pHi). Chemoattractant bradykinin (BK) stimulated microglial migration by increasing lamellipodial area and protrusion rate, but reducing lamellipodial persistence time. Interestingly, blocking NHE-1 activity with its potent inhibitor HOE 642 not only acidified microglia, abolished the BK-triggered dynamic changes of lamellipodia, but also reduced microglial motility and microchemotaxis in response to BK. In addition, NHE-1 activation resulted in intracellular Na+ loading as well as intracellular Ca2+ elevation mediated by stimulating reverse mode operation of Na+/Ca2+ exchange (NCXrev). Taken together, our study shows that NHE-1 protein is abundantly expressed in microglial lamellipodia and maintains alkaline pHi in response to BK stimulation. In addition, NHE-1 and NCXrev play a concerted role in BK-induced microglial migration via Na+ and Ca2+ signaling.  相似文献   

4.
Addition of fluoroaluminate to human platelet suspension stimulated thromboxane synthesis and inositol-1,4,5-triphosphate formation in a time and dose dependent manner. Neomycin inhibited markedly fluoroaluminate induced inositol-1,4,5-triphosphate formation without significantly affecting thromboxane synthesis. Preincubation of platelets with PGE1, also inhibited significantly inositol-1,4,5-triphosphate formation with modest reduction of thromboxane synthesis. On the contrary, pretreatment of platelets with pertussis toxin inhibited fluoroaluminate stimulated thromboxane synthesis without affecting inositol-1,4,5-triphosphate formation. Similarly, preincubation of platelets with phorbol ester, PMA, inhibited markedly thromboxane synthesis with modest reduction of inositol-1,4,5-triphosphate formation. These results indicate that inositol-1,4,5-triphosphate formation and arachidonate release and thromboxane synthesis are controlled separately and are mediated by different G-proteins which are coupled to phospholipase C and phospholipase A2 respectively in platelets.  相似文献   

5.
Many cellular functions are driven by changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) that are highly organized in time and space. Ca(2+) oscillations are particularly important in this respect and are based on positive and negative [Ca(2+)](i) feedback on inositol 1,4,5-trisphosphate receptors (InsP(3)Rs). Connexin hemichannels are Ca(2+)-permeable plasma membrane channels that are also controlled by [Ca(2+)](i). We aimed to investigate how hemichannels may contribute to Ca(2+) oscillations. Madin-Darby canine kidney cells expressing connexin-32 (Cx32) and Cx43 were exposed to bradykinin (BK) or ATP to induce Ca(2+) oscillations. BK-induced oscillations were rapidly (minutes) and reversibly inhibited by the connexin-mimetic peptides (32)Gap27/(43)Gap26, whereas ATP-induced oscillations were unaffected. Furthermore, these peptides inhibited the BK-triggered release of calcein, a hemichannel-permeable dye. BK-induced oscillations, but not those induced by ATP, were dependent on extracellular Ca(2+). Alleviating the negative feedback of [Ca(2+)](i) on InsP(3)Rs using cytochrome c inhibited BK- and ATP-induced oscillations. Cx32 and Cx43 hemichannels are activated by <500 nm [Ca(2+)](i) but inhibited by higher concentrations and CT9 peptide (last 9 amino acids of the Cx43 C terminus) removes this high [Ca(2+)](i) inhibition. Unlike interfering with the bell-shaped dependence of InsP(3)Rs to [Ca(2+)](i), CT9 peptide prevented BK-induced oscillations but not those triggered by ATP. Collectively, these data indicate that connexin hemichannels contribute to BK-induced oscillations by allowing Ca(2+) entry during the rising phase of the Ca(2+) spikes and by providing an OFF mechanism during the falling phase of the spikes. Hemichannels were not sufficient to ignite oscillations by themselves; however, their contribution was crucial as hemichannel inhibition stopped the oscillations.  相似文献   

6.
Bradykinin (BK) is an inflammatory mediator that can cause bronchoconstriction. In this study, we investigated the membrane currents induced by BK in cultured human airway smooth muscle (ASM) cells. Depolarization of the cells induced outward currents, which were inhibited by tetraethylammonium (TEA) in a concentration-dependent manner with an IC50 of 0.33 microM. The currents were increased by elevating intracellular free Ca2+ concentration, suggesting they are calcium-activated potassium channels [I(K(Ca))]. Preexposure to inhibitor of I(K(Ca)) of large conductance (BKCa), iberiotoxin, and small conductance (SKCa), apamin, inhibited the increase of outward current induced by BK. The relative contribution of BKCa was greatest in early passage cells. Both nickel and SKF-96365 (10 microM) inhibited the increase of the I(K(Ca)) induced by BK; however, the l-type Ca2+ channel blocker, nifedipine, had no effect. Activation of the BK-induced current was inhibited by heparin, indicating dependence on intact inositol 1,4,5-triphosphate (IP3)-sensitive intracellular Ca2+ stores. BK also increased inositol phosphate accumulation and induced a transient Ca2+-activated chloride current (CACC) and a sustained nonselective cation current (I(CAT)). In summary, BK activates BKCa, SKCa, CACC, and I(CAT) via IP3-sensitive stores in human ASM.  相似文献   

7.
Inhalation of tumour necrosis factor-alpha (TNF-alpha) induced a bronchial hyperreactivity to contractile agonists. However, the mechanisms of TNF-alpha involved in the pathogenesis of bronchial hyperreactivity were not completely understood. Therefore, we investigated the effect of TNF-alpha on bradykinin (BK)-induced inositol phosphate (IP) accumulation and Ca(2+) mobilization, and up-regulation of BK receptor density in canine cultured tracheal smooth muscle cells (TSMCs). Pretreatment of TSMCs with TNF-alpha potentiated BK-induced IP accumulation and Ca(2+) mobilization. However, there was no effect on the IP response induced by endothelin-1 (ET-1), 5-hydroxytryptamine (5-HT), and carbachol. Pretreatment with PDGF B-chain homodimer (PDGF-BB) also enhanced BK-induced IP response. These enhancements induced by TNF-alpha and PDGF-BB might be due to an increase in BK B(2) receptor density (B(max)), since [3H]BK binding to TSMCs was inhibited by the B(2) selective agonist and antagonist, BK and Hoe 140, but not by the B(1) selective reagents. The enhancing effects of TNF-alpha and PDGF-BB were attenuated by PD98059 (an inhibitor of activation of MAPK kinase, MEK) and cycloheximide (an inhibitor of protein synthesis), suggesting that TNF-alpha may share a common signalling pathway with PDGF-BB via protein(s) synthesis in TSMCs. Furthermore, overexpression of dominant negative mutants, H-Ras-15A and Raf-N4, significantly suppressed p42/p44 mitogen-activated protein kinase (MAPK) activation induced by TNF-alpha and PDGF-BB and attenuated the effect of TNF-alpha on BK-induced IP response, indicating that Ras and Raf may be required for activation of these kinases. These results suggest that the augmentation of BK-induced responses produced by TNF-alpha might be, at least in part, mediated through activation of Ras/Raf/MEK/MAPK pathway in TSMCs.  相似文献   

8.
Veresov VG  Konev SV 《Biofizika》2005,50(3):480-487
The dynamics of the inositol-1,4,5-triphosphate-sensitive calcium channel after binding of inositol-1,4,5-triphosphate and Ca2+ was analyzed by the Monte Carlo minimization technique. It was shown that the binding of Ca2+ with the unliganded receptor (channel) leads to a turning of the beta-sheet domain relative to the alpha-helical domain with the formation of the receptor conformation that is open for the entry of ions into the cytoplasmic channel vestibule, sterically closed for their passage through the vestibule in the part adjacent to the alpha-helical domains, and unfavourable for subsequent binding of inositol-1,4,5-triphosphate with the receptor. When both co-agonists bind to the receptor, the structure rearrangements induced eliminate both these steric obstacles for the passage of ions through the IP3-binding domain: one at the entrance of the channel cytoplasmic vestibule and the other that is placed deeper in the vestibule near the alpha-domains. The role of the dynamics of the receptor binding core in the IP3-sensitive channel gating is discussed.  相似文献   

9.
This study was made to explain the mechanisms for the effects of exposure to a time varying 1.51 T magnetic field on the intracellular Ca(2+) signaling pathway. The exposure inhibited an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in bovine chromaffin cells induced by addition of bradykinin (BK) to a Ca(2+) free medium. The exposure did not change BK induced production of inositol 1,4,5-trisphosphate (IP(3)). [Ca(2+)](i) was markedly increased in IP(3) loaded cells, and this increase was inhibited by the magnetic field exposure. A similar increase in [Ca(2+)](i) by other drugs, which stimulated Ca(2+) release from intracellular Ca(2+) stores, was again inhibited by the same exposure. However, transmembrane Ca(2+) fluxes caused in the presence of thapsigargin were not inhibited by the magnetic field exposure in a Ca(2+) containing medium. Inhibition of the BK induced increase in [Ca(2+)](i) by the exposure for 30 min was mostly recovered 1 h after exposure ended. Our results reveal that the magnetic field exposure inhibits Ca(2+) release from intracellular Ca(2+) stores, but that BK bindings to BK receptors of the cell membrane and intracellular inositol IP(3) production are not influenced.  相似文献   

10.
Using the whole-cell patch clamp technique, single channels operated by intracellular Ca(2+)-store depletion were first revealed in human myeloid leukaemia cells K562. A single store-operated channel could be detected in divalent-free extracellular solutions with Na+ as a permeant ion, and intracellular solutions with strong Ca(2+)-helating agent with some delay after whole-cell formation. Addition of inositol-1,4,5-triphosphate to the pipette solution resulted in a significant decrease of this latency. These channels had a conductance of 29 pS, and were inhibited by low concentration of external Ca2+. Our results enable us to assume that the revealed channels are calcium release-activated calcium channels, operated by Ca2+ depletion of endoplasmic reticulum.  相似文献   

11.
Accumulation of inositol phosphates (Ins-Ps, revealed by high performance liquid chromatography), changes of the cytosolic free Ca2+ [( Ca2+]i, revealed by fura-2), membrane potential and ionic currents (revealed by bis-oxonol and patch clamping) were investigated in PC12 cells treated with bradykinin (BK). The phenomena observed were (a) due to the activation of a B2 receptor (inhibitor studies) and (b) unaffected by pertussis toxin, cAMP analogs, and inhibitors of either cyclooxygenase or voltage-gated Ca2+ channels. During the initial tens of s, three interconnected events predominated: accumulation of Ins-1,4,5-P3, Ca2+ release from intracellular stores and hyperpolarization due to the opening of Ca2+-activated K+ channels. Phorbol myristate acetate partially inhibited Ins-1,4,5-P3 accumulation at all [BK] investigated, and the [Ca2+]i increase at [BK] less than 50 nM. In PC12 cells treated with maximal [BK] in the Ca2+-containing incubation medium, Ins-1,4,5-P3 peaked at 10 s, dropped to 20% of the peak at 30 s, and returned to basal within 5 min; the peak increase of Ins-1,3,4-P3 was slower and was variable from experiment to experiment, while Ins-P4 rose for 2 min, and remained elevated for many min thereafter. Meanwhile, influx of Ca2+ from the extracellular medium, plasma membrane depolarization (visible without delay when hyperpolarization was blocked), and increased plasma membrane conductance were noticed. Evidence is presented that these last three events (which were partially inhibited by phorbol myristate acetate at all [BK]) were due to the activation of a cation influx, which was much more persistent than the elevation of the two Ins-P3 isomers. Our results appear inconsistent with the possibility that in intact PC12 cells the BK-induced activation of cation influx is accounted for entirely by the increases of either Ins-1,3,4-P3 or Ins-1,4,5-P3 (alone or in combination with Ins-1,3,4,5-P4), as previously suggested by microinjection studies in different cell types.  相似文献   

12.
Qiu J  Wang CG  Huang XY  Chen YZ 《Life sciences》2003,72(22):2533-2542
Many stimulants, including bradykinin (BK), can induce increase in [Ca(2+)](i) in PC12 cells. Bradykinin induces an increase in [Ca(2+)](i) via intracellular Ca(2+) release and extracellular Ca(2+) influx through the transduction of G protein, but not through voltage-sensitive calcium channels. In this experiment, We analyzed how corticosterone (Cort) influences BK-induced intracellular Ca(2+) release and extracellular Ca(2+) influx, and further studied the mechanism of glucocorticoid's action. To dissociate the intracellular Ca(2+) release and extracellular Ca(2+) influx induced by BK, the Ca(2+)-free/Ca(2+)- reintroduction protocol was used. The results were as follows: (1) The Ca(2+) influx induced by BK could be rapidly inhibited by Cort, but intracellular Ca(2+) release could not be affected significantly. (2) The inhibitory effect of Cort-BSA (BSA -conjugated Cort) on Ca(2+) influx induced by BK was the same as the effect of free Cort. (3) Protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate) could mimic and PKC inhibitor G?6976 could reverse the inhibitory effect of Cort. (4) There was no inhibitory effect of Cort on Ca(2+) influx induced by BK when pretreated with pertussis toxin. The results suggested, for the first time, that Cort might act via a putative membrane receptor and inhibit the Ca(2+) influx induced by BK through the pertussis toxin -sensitive G protein-PKC pathway.  相似文献   

13.
P2X7 receptor (P2X7R) activation by extracellular ATP triggers influx of Na(+) and Ca(2+), cytosolic Ca(2+) overload and consequently cytotoxicity. Whether disturbances in endoplasmic reticulum (ER) Ca(2+) homeostasis and ER stress are involved in P2X7R-mediated cell death is unknown. In this study, a P2X7R agonist (BzATP) was used to activate P2X7R in differentiated NG108-15 neuronal cells. In a concentration-dependent manner, application of BzATP (10-100 μM) immediately raised cytosolic Ca(2+) concentration ([Ca(2+)]i) and caused cell death after a 24-h incubation. P2X7R activation for 2 h did not cause cell death but resulted in a sustained reduction in ER Ca2+ pool size, as evidenced by a diminished cyclopiazonic acid-induced Ca(2+) discharge (fura 2 assay) and a lower fluorescent signal in cells loaded with Mag-fura 2 (ER-specific Ca(2+)-fluorescent dye). Furthermore, P2X7R activation (2 h) led to the appearance of markers of ER stress [phosphorylated α subunit of eukaryotic initiation factor 2 (p-eIF2α) and C/EBP homologous protein (CHOP)] and apoptosis (cleaved caspase 3). Xestospongin C (XeC), an antagonist of inositol-1,4,5-trisphosphate (IP3) receptor (IP3R), strongly inhibited BzATP-triggered [Ca(2+)]i elevation, suggesting that the latter involved Ca(2+) release via IP3R. XeC pretreatment not only attenuated the reduction in Ca(2+) pool size in BzATP-treated cells, but also rescued cell death and prevented BzATP-induced appearance of ER stress and apoptotic markers. These novel observations suggest that P2X7R activation caused not only Ca(2+) overload, but also Ca(2+) release via IP3R, sustained Ca(2+) store depletion, ER stress and eventually apoptotic cell death.  相似文献   

14.
Kinins are important biologically active peptides that are up-regulated after lesions in both the peripheral and central (CNS) nervous systems. Microglia are immune cells in the CNS and play an important role in the defense of the neuronal parenchyma. In cultured murine microglia, bradykinin (BK) induces mobilization of intracellular Ca2+, microglial migration, and increases the release of nitric oxide and prostaglandin E2. On the other hand, BK attenuates lipopolysaccharide-activated TNF-alpha and IL-1beta release. These results suggest that BK functions as a signal in brain trauma and may have an anti-inflammatory role in the CNS.  相似文献   

15.
The P2X7 receptor (P2X7R) is an ATP-gated ion channel highly expressed in microglia. P2X7R plays important roles in inflammatory responses in the brain. However, little is known about the mechanisms regulating its functions in microglia. Lysophosphatidylcholine (LPC), an inflammatory phospholipid that promotes microglial activation, may have some relevance to P2X7R signaling in terms of microglial function. In this study, we examined its effects on P2X7R signaling in a mouse microglial cell line (MG6) and primary microglia. LPC facilitated the sustained increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) through P2X7R channels activated by ATP or BzATP. The potentiated increase in [Ca(2+)](i) was actually inhibited by P2X7R antagonists, brilliant blue G and oxidized ATP. The potentiating effect of LPC was not observed with P2Y receptor systems, which are also expressed in MG6 cells. G2A, a receptor for LPC, was expressed in MG6 cells, but not involved in the facilitating effect of LPC on the P2X7R-mediated change in [Ca(2+)](i). Furthermore, LPC enhanced the P2X7R-associated formation of membrane pores and the activation of p44/42 mitogen-activated protein kinase. These results suggest that LPC may regulate microglial functions in the brain by enhancing the sensitivity of P2X7R.  相似文献   

16.
In human spermatozoa, Ca(2+) entry is stimulated by progesterone or prostaglandin E(1) (PGE(1)). The regulation of cation currents by progestins involves sigma receptors, and sigma binding sites are abundant in testis. We examined the effects of sigma ligands on human spermatozoa. Ca(2+) entry induced by progesterone or PGE(1) was not altered by the sigma ligands haloperidol and ditolylguanidine. However, the steroidal sigma ligands RU 3117 and RU 1968 had distinct effects. Stimulation by RU 3117 resulted in activation and homologous desensitization of the sperm progesterone receptor but not of the PGE(1) receptor. Because haloperidol and ditolylguanidine did not affect RU 3117 and progesterone actions in spermatozoa, we conclude that sigma receptors are not involved. However, RU 1968 potently inhibited both the progesterone- and PGE(1)-induced Ca(2+) entry and acrosome reaction. At higher concentrations, RU 1968 also inhibited hormonal Ca(2+) signaling in fibroblasts. Despite suppression of Ca(2+) mobilization, inhibition of phospholipase C by RU 1968 was not observed. Furthermore, RU 1968 did not impair the binding of inositol-1,4,5-trisphosphate to its endoplasmic reticulum receptor. Because RU 1968 preferentially inhibits signaling pathways in spermatozoa, the future development of more selective drugs structurally related to RU 1968 may be a novel approach for pharmacological contraception.  相似文献   

17.
It has been suggested that bradykinin (BK) plays an important role in regulating neointimal formation after vascular injury. However, implication of BK in the growth of rat vascular smooth muscle cells (VSMCs) is controversial. Therefore, we examined the mitogenic effect of BK on VSMCs associated with activation of mitogen-activated protein kinase (MAPK). Both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were activated by BK in time- and concentration-dependent manners. Pretreatment of these cells with neither pertussis toxin nor cholera toxin attenuated the BK-induced responses. Pretreatment of VSMCs with Hoe 140 (a selective B(2) receptor antagonist), U73122 (an inhibitor of phospholipase C), and BAPTA/AM (an intracellular Ca(2+) chelator) inhibited both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation in response to BK. BK-induced [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were inhibited by pretreatment of VSMCs with tyrosine kinase inhibitors (genistein and herbimycin A), protein kinase C (PKC) inhibitors (staurosporine, Go-6976, and Ro-318220), an MAPK kinase inhibitor (PD98059), and a p38 MAPK inhibitor (SB203580). Overexpression of the dominant negative mutants, H-Ras-15A and Raf-N4, suppressed p42/p44 MAPK activation induced by BK and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. From these results, we concluded that the mitogenic effect of BK is mediated through activation of the Ras/Raf/MEK/MAPK pathway similar to that of PDGF-BB. BK-mediated MAPK activation was modulated by Ca(2+), PKC, and tyrosine kinase all of which are associated with cell proliferation in rat cultured VSMCs.  相似文献   

18.
In adherent SH-SY5Y human neuroblastoma cells, activation of G-protein-coupled muscarinic M3 receptors evoked a biphasic elevation of both intracellular [Ca(2+)] ([Ca(2+)]i) and inositol-1,4,5-trisphosphate (D-Ins(1,4,5)P3) mass. In both cases, temporal profiles consisted of rapid transient elevations followed by a decline to a lower, yet sustained level. In contrast, platelet-derived growth factor (PDGF), a receptor tyrosine kinase agonist acting via PDGF receptor b chains in these cells, elicited a slow and transient elevation of [Ca(2+)]i that returned to basal levels within 5 to 10 min with no evidence of inositol phosphate generation. Full responses for either receptor type required intracellular and extracellular Ca(2+) and mobilization of a shared thapsigargin-sensitive intracellular Ca(2+) store. Strategies that affected the ability of D-Ins(1,4,5)P3 to interact with the Ins(1,4,5)P3-receptor demonstrated an Ins(1,4,5)P3-dependency of the muscarinic receptor-mediated elevation of [Ca(2+)]i but showed that PDGF-mediated elevations of [Ca(2+)]i are Ins(1,4,5)P3-independent in these cells.  相似文献   

19.
Cardiac fibroblasts are the most abundant cell type in the heart, and play a key role in the maintenance and repair of the myocardium following damage such as myocardial infarction by transforming into a cardiac myofibroblast (CMF) phenotype. Repair occurs through controlled proliferation and migration, which are Ca(2+) dependent processes, and often requires the cells to operate within a hypoxic environment. Angiotensin converting enzyme (ACE) inhibitors reduce infarct size through the promotion of bradykinin (BK) stability. Although CMF express BK receptors, their activity under the reduced O(2) conditions that occur following infarct are entirely unexplored. Using Fura-2 microfluorimetry on primary human CMF, we found that hypoxia significantly increased the mobilisation of Ca(2+) from intracellular stores in response to BK whilst capacitative Ca(2+) entry (CCE) remained unchanged. The enhanced store mobilisation was due to a striking increase in CMF intracellular Ca(2+)-store content under hypoxic conditions. However, BK-induced CMF migration or proliferation was not affected following hypoxic exposure, suggesting that Ca(2+) influx rather than mobilisation is of primary importance in CMF migration and proliferation.  相似文献   

20.
A possible role for signalling through phospholipase C in histamine-induced catecholamine secretion from bovine adrenal chromaffin cells has been investigated. Secretion evoked by histamine over 10 min was not prevented by inhibiting inositol-1,4,5-trisphosphate receptors with 2-APB, by blocking ryanodine receptors with a combination of ryanodine and caffeine, or by depleting intracellular Ca(2+) stores by pretreatment with thapsigargin. Inhibition of protein kinase C with Ro31-8220 also failed to reduce secretion. Inhibition of phospholipase C with ET-18-OCH(3) reduced both histamine- and K(+) -induced inositol phosphate responses by 70-80% without reducing their secretory responses. Stimulating phospholipase C with Pasteurella multocida toxin did not evoke secretion or enhance the secretory response to histamine. The secretory response to histamine was little affected by tetrodotoxin or by substituting extracellular Na(+) with N -methyl-d-glucamine(+) or choline(+), or by substituting external Cl(-) with nitrate(-). Blocking various K(+) channels with apamin, charybdotoxin, Ba(2+), tetraethylammonium, 4-aminopyridine, tertiapin or glibenclamide failed to reduce the ability of histamine to evoke secretion. These results indicate that histamine evokes secretion by a mechanism that does not require inositol-1,4,5-trisphosphate-mediated mobilization of stored Ca(2+), diacylglycerol-mediated activation of protein kinase C, or activation of phospholipase C. The results are consistent with histamine acting by depolarizing chromaffin cells through a phospholipase C-independent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号