共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Localization of carboxyl proteinase (cathepsin D) and cysteine proteinases (cathepsins B, H, and L) in Golgi region was studied using an immunoenzyme technique. Rat livers and kidneys were used. The results obtained from the livers were similar to those from the kidneys. All cathepsins were detected in lysosomal compartments such as secondary lysosomes, multivesicular bodies (endosomes), and autophagosomes. Rough endoplasmic reticulum (rER), including nuclear envelope was focally stained. Most of Golgi cisternae were negative, but sometimes only one cisterna or the terminal portion of the cisterna were stained focally. Rarely, the trans Golgi network (TGN) was positive for the proteinases. Among numerous Golgi vesicles, only a few of them were stained. The positive vesicles were divided into two groups, one had a bristle coat and heavily stained, and other were smaller than 40 nm in diameter and weakly stained. The small vesicles seemed to bud from the ER and to fuse with the Golgi cisternae, while the large clathrin-coated vesicles seem to bud from the TGN. The results suggests that cathepsins are transported by vesicular system from the rER to lysosomes via Golgi apparatus. In addition, it is suggested that the small vesicles transport the proteinases from the ER to the Golgi cisternae and the large clathrin-coated vesicles from the Golgi cisternae to the lysosomes. 相似文献
2.
3.
Quantitation and immunohistochemical localization of cathepsins E and D in rat tissues and blood cells 总被引:2,自引:0,他引:2
The distribution of cathepsins E and D in various rat tissues and blood cells was determined by immunoprecipitation and by immunohistochemistry with discriminative antibodies specific for each enzyme. While cathepsin D was detected in all of the tissues and blood cells tested (except for erythrocytes), cathepsin E had a relatively limited distribution. The cathepsin E content was highest in the stomach and was succeeded in the following order by the urinary bladder, thymus, spleen, cervical lymph node and bone marrow. Significant amounts of cathepsin E were also found in the colon, rectum, jejunum, skin, lung, kidney and submandibular gland. The other tissues tested had little or no detectable cathepsin E content. Of the blood cells tested, lymphocytes and peritoneal neutrophils contained high levels of cathepsin E. Erythrocytes had cathepsin E only as aspartic proteinases. When the subcellular localization of cathepsin E in the neutrophils was investigated by fractionation of the postnuclear supernatants, the enzyme behaved as a soluble cytosolic enzyme. In contrast, cathepsin D was mainly associated with the granular fraction. The immunohistochemical localization of cathepsins E and D was clearly different in the stomach, large intestines, kidney and urinary bladder, but was similar in the lymph node and spleen. The tissue-fixed macrophages, which were notable in the skeletal and cardiac muscle tissues, submucosal layers of the gastrointestinal tracts, salivary gland, lung and trachea, also exhibited similar intense immunoreactivities demonstrative of both cathepsins E and D. 相似文献
4.
Y Nishimura J Amano H Sato H Tsuji K Kato 《Archives of biochemistry and biophysics》1988,262(1):159-170
The biosynthesis of lysosomal cysteine proteases, cathepsins B and H, was investigated by using pulse-chase experiments in vivo in primary cultures of rat hepatocytes. Cathepsins B and H were isolated from either total cell extracts or culture medium labeled with [35S]methionine by immunoprecipitation and analyzed for their molecular forms. Within 60 min of chase, cellular proforms of cathepsins B of 39 kDa and H of 41 kDa were converted to single-chain form cathepsins B of 29 kDa and H of 28 kDa, respectively, and persisted as these forms even after 12-h chase periods. The proforms of cathepsins B and H derived from pulse-labeling experiments showed complete susceptibility to endoglycosidase H treatment, indicating that these proenzymes bear high-mannose-type oligosaccharides at the stage of initial events of biosynthesis. In the presence of tunicamycin, unglycosylated proenzymes of cathepsins B of 35 kDa and H of 34 kDa were found to be secreted into the extracellular medium without undergoing proteolytic processing. Furthermore, in the presence of swainsonine, a potent inhibitor of Golgi mannosidase II, considerable amounts of the proenzymes were secreted and accumulated in the medium during chasing periods. These results suggest that the oligosaccharide moiety of these enzymes would be necessary for the intracellular sorting mechanism. In monensin-treated cells, the conversion of intracellular proenzymes to mature enzymes was significantly inhibited and the proenzymes were secreted into the medium. In the presence of chloroquine or ammonium chloride, proteolytic processing of the proenzymes was completely prevented and the enhanced secretion of proenzymes was observed. These results suggest that in the presence of lysosomotropic amines the intracellular sorting of proenzymes might not occur properly during biosynthesis. 相似文献
5.
Summary Light and electron microscopic localization of cathepsins B and H in rat liver was investigated by immunoenzyme and protein A-gold techniques. For light microscopy (LM), semi-thin sections of the Epon-embedded material were stained by the immunoenzyme technique after removal of epoxy resin. For electron microscopy (EM), ultrathin sections of the Lowicryl K4M-embedded material were stained by the protein A-gold technique. By LM, reaction deposits for cathepsins B and H were present in the cytoplasmic granules of parenchymal cells and endothelial cells, and Kupffer cells. The sinus-lining cells and the parenchymal cells showed the similar staining intensity. By EM, gold particles were present exclusively in lysosomes of all the cell types cited above. The same results were obtained from quantitative analysis. In addition, Golgi complexes themselves were mostly negative but some small vesicles on the trans side of them were labeled for these proteinases. The results indicate that cathepsins B and H are present in the lysosomes of rat liver and that these enzymes seem to be transported by small vesicles from endoplasmic reticulum to lysosomes via tubuloreticular network of the trans Golgi region. 相似文献
6.
Light and electron microscopic localization of cathepsins B and H in rat liver was investigated by immunoenzyme and protein A-gold techniques. For light microscopy (LM), semi-thin sections of the Epon-embedded material were stained by the immunoenzyme technique after removal of epoxy resin. For electron microscopy (EM), ultra-thin sections of the Lowicryl K4M-embedded material were stained by the protein A-gold technique. By LM, reaction deposits for cathepsins B and H were present in the cytoplasmic granules of parenchymal cells and endothelial cells, and Kupffer cells. The sinus-lining cells and the parenchymal cells showed the similar staining intensity. By EM, gold particles were present exclusively in lysosomes of all the cell types cited above. The same results were obtained from quantitative analysis. In addition, Golgi complexes themselves were mostly negative but some small vesicles on the trans side of them were labeled for these proteinases. The results indicate that cathepsins B and H are present in the lysosomes of rat liver and that these enzymes seem to be transported by small vesicles from endoplasmic reticulum to lysosomes via tubuloreticular network of the trans Golgi region. 相似文献
7.
A new cerium-based method for cytochemical localization of thiamine pyrophosphatase in the Golgi complex of rat hepatocytes 总被引:1,自引:1,他引:0
Summary The use of cerium chloride for the localization of thiamine-pyrophosphatase (TPPase) in rat liver parenchymal cells has been investigated and the results are compared with the classical lead capture method. A medium containing 3 mM cerium chloride gave the most uniform and consistent results with a homogenous electron dense reaction product in the first trans lamella of the Golgi complex and a weak staining of endoplasmic reticulum. The fine deposits of cerium phosphate filled completely the first trans Golgi cisterna. In contrast the reaction product of the lead-based method appeared clumpy and aggregated with an irregular distribution over both Golgi complex and endoplasmic reticulum. Higher and lower concentrations of cerium chloride than 3 mM gave inconsistent results. The present study demonstrates that the cerium-based method is superior to the classical lead-technique for the localization of TPPase. 相似文献
8.
T. Goto T. Tsukuba T. Kiyoshima Y. Nishimura K. Kato K. Yamamoto T. Tanaka 《Histochemistry and cell biology》1993,99(5):411-414
Immunohistochemical localization of cathepsins B, D and L in the osteoclasts of rat alveolar and femoral bones was investigated by using the avidin-biotin-peroxidase complex method for semithin, 1-m-thick cryosections. Extracellular immunoreactivity for cathepsins B and L was clearly demonstrated along the bone resorption lacunae; the intensity of the extracellular immunoreactivity of cathepsin L was stronger than that of cathepsin B. However, the intracellular immunoreactivity of both cathepsins was weak compared with that of cathepsin D. The intracellular immunoreactivity of cathespin D in the osteoclasts was clearly observed in the granules and/or vacuoles, but extracellular cathepsin D immunoreactivity was either negligible or not detected along the resorption lacunae. In the adjacent sections stained with anti-cathepsin L or D, extensive extracellular deposition of cathepsin L was found along the bone resorption lacunae, with or without osteoclasts, although the intracellular reactivity of cathepsin L was weak. This is the first morphological study in which cathepsins B and L have been demonstrated to be produced in the osteoclasts and extensively secreted into resorption lacunae, and in which cathepsin D was found to be present in the cells but scantily secreted into the lacunae. These findings suggest that cathepsins B and L directly and effectively participate in the degradation of the bone matrix. 相似文献
9.
Immunocytochemical localization of cathepsin D in lysosomes of cortical collecting tubule cells of the rat kidney 总被引:2,自引:0,他引:2
Immunocytochemical localization of cathepsin D in rat renal tubules was investigated by means of indirect immunoenzyme and protein A--gold techniques. By light microscopy, fine granular staining was seen in the mesangial cells of glomeruli. Heavy reaction deposits were present in the cortical tubular segments and some of the medullary collecting tubules. The proximal tubules contained a few positive granules. Other segments were negative for cathepsin D. By electron microscopy, gold particles representing the antigenic sites for cathepsin D were present in cytoplasmic granules and multivesicular bodies of the segment of the cortical collecting tubule. These cytoplasmic granules were presumed to be digestive vacuoles (secondary lysosomes) from their morphological profile. The proximal tubule cells contained the very weakly labeled secondary lysosomes. No specific labeling was noted in other segments of the nephron. Control experiments confirmed the specificity of the immunostaining. Quantitative analysis of the labeling density in each subcellular compartment also confirmed that the main subcellular sites for cathepsin D are the secondary lysosomes and multivesicular bodies. The labeling density in these granules of the lysosomal system varied widely with the individual granules, suggesting that there is a considerable heterogeneity of enzyme content among the granules of the lysosomal system. The prominent presence of cathepsin D in the cortical collecting tubule suggests a certain segment-specific function of this proteinase. 相似文献
10.
11.
Koji Yamamoto 《Cell and tissue research》1995,279(3):459-463
Lipid metabolism takes place in the Golgi apparatus, but at a higher rate in female than in male rats. I therefore examined the Golgi apparatus by morphometric means for differences between the sexes at the light-and electron-microscopic level. The Golgi apparatus was stained in situ by a zinc-iodide-osmium method. The counts of the Golgi apparatus in cross-sections in female hepatocytes by light microscopy were approximately twice that in male hepatocytes. Upon ovariectomy, these counts were greatly reduced but were reestablished after estrogen supplement. To clarify this phenomenon, three-dimensional reconstructions of the Golgi apparatus were produced from electron-microscopic images of serially cut 160-nm sections. The Golgi apparatus of both male and ovariectomized females had the shape of a small ring, whereas it took the form of a large elongated cylinder in normal females and in castrated males after treatment with estrogen. The numerical difference in Golgi apparatus counts by light microscopy of in males and females is, therefore, apparently attributable to the size and shape of the Golgi apparatus, and is controlled by the estrogen level. 相似文献
12.
A renal brush border fraction was isolated from newborn Sprague-Dawley rats, and its morphological and enzymatic characteristics were studied in comparison to that from the adult. Definite microvillar structures are seen by electron microscopy, and brush border preparations from the newborn are enriched in known marker enzymes. Though morphological development is more advanced and enzyme specific activities are greater in the adult, polyacrylamide gel electrophoresis of membrane proteins reveal no significant change in pattern with increasing age. These studies suggest that the brush border of the proximal tubule cell is present at birth as a significantly developed structure. 相似文献
13.
John W. Foreman Pamela D. McNamara Margaret Ann Bowring Judithann Lee Claire Rea Stanton Segal 《Bioscience reports》1986,6(1):113-119
Glutamate had no significant effect on the uptake of 0.025 mM cystine by isolated rat renal cortical tubules and brushborder membrane vesicles in contrast to lysine which significantly inhibits cystine transport. Glutamate, however, markedly inhibited cystine uptake by rat renal tubule cells grown in a serum-free, hormonally defined media for 5 days. Lysine also inhibited cystine transport in these cultured renal tubule cells. 相似文献
14.
Ultrastructural localization of glucose-6-phosphatase activity in proximal convoluted tubule cells of rat kidney 总被引:1,自引:0,他引:1
Shinsuke Kanamura 《Histochemistry and cell biology》1971,28(4):288-295
Summary The ultrastructural localization of glucose 6-phosphatase activity was investigated in the proximal convoluted tubule cells of the rat kidney. The reaction product for the enzyme activity was present in the endoplasmic reticulum and nuclear envelope, as reported for the hepatic enzyme and others, but was absent from the brush border, plasma membrane and other organelles. The metabolic significance of the association of this enzyme with the endoplasmic reticulum and the role of the enzyme in the active reabsorption and transport of glucose in the renal tubules are discussed. 相似文献
15.
Summary Cathepsins B and H are representative cysteine proteinases localized to lysosomes of a variety of mammalian cells. Previous studies indicated the presence of these enzymes also in secretory granules of endocrine cells. Therefore, the human endocrine pancreas and human insulinomas were investigated by light microscopical immunohistochemistry on serial semithin plastic sections immunostained sequentially for cathepsins B or H and pancreatic hormones. Out of the four established endocrine cell types, insulin (B-) and glucagon (A-) cells showed immunoreactivities for these cathepsins. Cathepsin B immunoreactivities showed a dot-like appearance in A- and B-cells and in insulinoma cells. Immunoreactivities for cathepsin H additionally were found in cell parts containing secretory granules of B-cells and insulinoma cells. By single and double immunoelectron microscopy the dot-like immunoreactivities for cathepsin B were identified as immunoreactive lysosomes of A- and B-cells and insulinoma cells. In addition, some of the secretory granules of A- and B-cells showed cathepsin B immunoreactivities. Cathepsin H immunoreactivities showed an other pattern: they were found regularly in the secretory granules of A- and B-cells and insulinoma cells, and in lysosomes of A-cells. These findings suggest that cathepsins B and H in lysosomes of A- and/or B-cells are involved in the degradation of lysosomal constituents. In secretory granules of these cells, these cystine proteinases may participate in the processing of the corresponding hormones from their precursor proteins. 相似文献
16.
Immunocytochemical localization of cathepsins B and H in human pancreatic endocrine cells and insulinoma cells 总被引:2,自引:0,他引:2
Cathepsins B and H are representative cysteine proteinases localized to lysosomes of a variety of mammalian cells. Previous studies indicated the presence of these enzymes also in secretory granules of endocrine cells. Therefore, the human endocrine pancreas and human insulinomas were investigated by light microscopical immunohistochemistry on serial semithin plastic sections immunostained sequentially for cathepsins B or H and pancreatic hormones. Out of the four established endocrine cell types, insulin (B-) and glucagon (A-) cells showed immunoreactivities for these cathepsins. Cathepsin B immunoreactivities showed a dot-like appearance in A- and B-cells and in insulinoma cells. Immunoreactivities for cathepsin H additionally were found in cell parts containing secretory granules of B-cells and insulinoma cells. By single and double immunoelectron microscopy the dot-like immunoreactivities for cathepsin B were identified as immunoreactive lysosomes of A- and B-cells and insulinoma cells. In addition, some of the secretory granules of A- and B-cells showed cathepsin B immunoreactivities. Cathepsin H immunoreactivities showed an other pattern: they were found regularly in the secretory granules of A- and B-cells and insulinoma cells, and in lysosomes of A-cells. These findings suggest that cathepsins B and H in lysosomes of A- and/or B-cells are involved in the degradation of lysosomal constituents. In secretory granules of these cells, these cysteine proteinases may participate in the processing of the corresponding hormones from their precursor proteins. 相似文献
17.
M. Furuhashi A. Nakahara H. Fukutomi E. Kominami D. Grube Y. Uchiyama 《Histochemistry and cell biology》1991,95(3):231-239
Summary Cathepsins B, H, and L are representative cysteine proteinases in lysosomes of a large variety of cells. Previous immunochemical studies indicated the presence of these enzymes also in the gastrointestinal wall. Using specific antisera, the cellular and subcellular distribution of cathepsins B, H, and L in rat gastric (oxyntic and pyloric part) and duodenal mucosa was investigated by light and electron microscopical immunocytochemistry. The subtypes of cathepsins were distributed differently in the cellular constituents of the epithelia: Cathepsin B was localized to lysosomes of all cells except goblet cells. Cathepsin H was found predominantly in gastric parietal cells (lysosomes) and in secretion granules of pyloric gastrin and duodenal cholecystokinin cells. Cathepsin L immunoreactivities were weak and restricted to a minority of cells (gastric mucous cells, enterocytes). Interstitial cells of the lamina propria immunoreactive for cathepsins H and L were identified as macrophages. The present findings suggest a dual function of cathepsins in the gastro-duodenal mucosa. They (1) cleave enzymatically proteins and peptides ingested in lysosomes, and (2) they may be involved in the processing of biologically active peptides (enteric hormones) from their precursor proteins. 相似文献
18.
Glucocorticoid-regulated localization of cell surface glycoproteins in rat hepatoma cells is mediated within the Golgi complex 总被引:3,自引:0,他引:3 下载免费PDF全文
O K Haffar G W Aponte D A Bravo N J John R T Hess G L Firestone 《The Journal of cell biology》1988,106(5):1463-1474
Glucocorticoid hormones regulate the post-translational maturation and sorting of cell surface and extracellular mouse mammary tumor virus (MMTV) glycoproteins in M1.54 cells, a stably infected rat hepatoma cell line. Exposure to monensin significantly reduced the proteolytic maturation and externalization of viral glycoproteins resulting in a stable cellular accumulation of a single 70,000-Mr glycosylated polyprotein (designated gp70). Cell surface- and intracellular-specific immunoprecipitations of monensin-treated cells revealed that gp70 can be localized to the cell surface only in the presence of 1 microM dexamethasone, while in uninduced cells gp70 is irreversibly sequestered in an intracellular compartment. Analysis of oligosaccharide processing kinetics demonstrated that gp70 acquired resistance to endoglycosidase H with a half-time of 65 min in the presence or absence of hormone. In contrast, gp70 was inefficiently galactosylated after a 60-min lag in uninduced cells while rapidly acquiring this carbohydrate modification in the presence of dexamethasone. Furthermore, in the absence or presence of monensin, MMTV glycoproteins failed to be galactosylated in hormone-induced CR4 cells, a complement-selected sorting variant defective in the glucocorticoid-regulated compartmentalization of viral glycoproteins to the cell surface. Since dexamethasone had no apparent global effects on organelle morphology or production of total cell surface-galactosylated species, we conclude that glucocorticoids induce the localization of cell surface MMTV glycoproteins by regulating a highly selective step within the Golgi apparatus after the acquisition of endoglycosidase H-resistant oligosaccharide side chains but before or at the site of galactose attachment. 相似文献
19.
Cathepsins B, H, and L are representative cysteine proteinases in lysosomes of a large variety of cells. Previous immunochemical studies indicated the presence of these enzymes also in the gastrointestinal wall. Using specific antisera, the cellular and subcellular distribution of cathepsins B, H, and L in rat gastric (oxyntic and pyloric part) and duodenal mucosa was investigated by light and electron microscopical immunocytochemistry. The subtypes of cathepsins were distributed differently in the cellular constituents of the epithelia: Cathepsin B was localized to lysosomes of all cells except goblet cells. Cathepsin H was found predominantly in gastric parietal cells (lysosomes) and in secretion granules of pyloric gastrin and duodenal cholecystokinin cells. Cathepsin L immunoreactivities were weak and restricted to a minority of cells (gastric mucous cells, enterocytes). Interstitial cells of the lamina propria immunoreactive for cathepsins H and L were identified as macrophages. The present findings suggest a dual function of cathepsins in the gastro-duodenal mucosa. They (1) cleave enzymatically proteins and peptides ingested in lysosomes, and (2) they may be involved in the processing of biologically active peptides (enteric hormones) from their precursor proteins. 相似文献
20.
Rodrigo Gatica Romina Bertinat Pamela Silva Daniel Carpio María José Ramírez Juan Carlos Slebe Rody San Martín Francisco Nualart Jose María Campistol Carme Caelles Alejandro J. Yáñez 《Journal of cellular biochemistry》2013,114(3):639-649
Diabetes is the major cause of end stage renal disease, and tubular alterations are now considered to participate in the development and progression of diabetic nephropathy (DN). Here, we report for the first time that expression of the insulin receptor (IR) in human kidney is altered during diabetes. We detected a strong expression in proximal and distal tubules from human renal cortex, and a significant reduction in type 2 diabetic patients. Moreover, isolated proximal tubules from type 1 diabetic rat kidney showed a similar response, supporting its use as an excellent model for in vitro study of human DN. IR protein down‐regulation was paralleled in proximal and distal tubules from diabetic rats, but prominent in proximal tubules from diabetic patients. A target of renal insulin signaling, the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK), showed increased expression and activity, and localization in compartments near the apical membrane of proximal tubules, which was correlated with activation of the GSK3β kinase in this specific renal structure in the diabetic condition. Thus, expression of IR protein in proximal tubules from type 1 and type 2 diabetic kidney indicates that this is a common regulatory mechanism which is altered in DN, triggering enhanced gluconeogenesis regardless the etiology of the disease. J. Cell. Biochem. 114: 639–649, 2013. © 2012 Wiley Periodicals, Inc. 相似文献