首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increased demand for sterile products has created the need for rapid technologies capable of validating the hygiene of industrial production processes. Bacillus endospores are in standard use as biological indicators for evaluating the effectiveness of sterilization processes. Currently, culture-based methods, requiring more than 2 days before results become available, are employed to verify endospore inactivation. We describe a rapid, microscopy-based endospore viability assay (microEVA) capable of enumerating germinable endospores in less than 15 min. MicroEVA employs time-gated luminescence microscopy to enumerate single germinable endospores via terbium-dipicolinate (Tb-DPA) luminescence, which is triggered under UV excitation as 10(8) DPA molecules are released during germination on agarose containing Tb(3+) and a germinant (e.g., L-alanine). Inactivation of endospore populations to sterility was monitored with microEVA as a function of thermal and UV dosage. A comparison of culturing results yielded nearly identical decimal reduction values, thus validating microEVA as a rapid biodosimetry method for monitoring sterilization processes. The simple Tb-DPA chemical test for germinability is envisioned to enable fully automated instrumentation for in-line monitoring of hygiene in industrial production processes.  相似文献   

2.
Radiation and ethylene oxide terminal sterilization are the two most frequently used processes in the medical device industry to render product within the final sterile barrier package free from viable microorganisms. They are efficacious, safe, and efficient approaches to the manufacture of sterile product. Terminal sterilization is routinely applied to a wide variety of commodity healthcare products (drapes, gowns, etc.) and implantable medical devices (bare metal stents, heart valves, vessel closure devices, etc.) along with products used during implantation procedures (catheters, guidewires, etc.). Terminal sterilization is also routinely used for processing combination products where devices, drugs, and/or biologics are combined on a single product. High patient safety, robust standards, routine process controls, and low-cost manufacturing are appealing aspects of terminal sterilization. As the field of combination products continues to expand and evolve, opportunity exists to expand the application of terminal sterilization to new combination products. Material compatibility challenges must be overcome to realize these opportunities. This article introduces the reader to terminal sterilization concepts, technologies, and the related standards that span different industries (pharmaceutical, medical device, biopharmaceuticals, etc.) and provides guidance on the application of these technologies. Guidance and examples of the application of terminal sterilization are discussed using experiences with drug eluting stents and bioresorbable vascular restoration devices. The examples provide insight into selecting the sterilization method, developing the process around it, and finally qualifying/validating the product in preparation for regulatory approval and commercialization. Future activities, including new sterilization technologies, are briefly discussed.  相似文献   

3.
The development of bio-resorbable implant materials is rapidly going on. Sterilization of those materials is inevitable to assure the hygienic requirements for critical medical devices according to the medical device directive (MDD, 93/42/EG). Biopolymer-containing biomaterials are often highly sensitive towards classical sterilization procedures like steam, ethylene oxide treatment or gamma irradiation. Supercritical CO2 (scCO2) treatment is a promising strategy for the terminal sterilization of sensitive biomaterials at low temperature. In combination with low amounts of additives scCO2 treatment effectively inactivates microorganisms including bacterial spores. We established a scCO2 sterilization procedure under addition of 0.25% water, 0.15% hydrogen peroxide and 0.5% acetic anhydride. The procedure was successfully tested for the inactivation of a wide panel of microorganisms including endospores of different bacterial species, vegetative cells of gram positive and negative bacteria including mycobacteria, fungi including yeast, and bacteriophages. For robust testing of the sterilization effect with regard to later application of implant materials sterilization all microorganisms were embedded in alginate/agarose cylinders that were used as Process Challenge Devices (PCD). These PCD served as surrogate models for bioresorbable 3D scaffolds. Furthermore, the impact of scCO2 sterilization on mechanical properties of polysaccharide-based hydrogels and collagen-based scaffolds was analyzed. The procedure was shown to be less compromising on mechanical and rheological properties compared to established low-temperature sterilization methods like gamma irradiation and ethylene oxide exposure as well as conventional steam sterilization. Cytocompatibility of alginate gels and scaffolds from mineralized collagen was compared after sterilization with ethylene oxide, gamma irradiation, steam sterilization and scCO2 treatment. Human mesenchymal stem cell viability and proliferation were not compromised by scCO2 treatment of these materials and scaffolds. We conclude that scCO2 sterilization under addition of water, hydrogen peroxide and acetic anhydride is a very effective, gentle, non-cytotoxic and thus a promising alternative sterilization method especially for biomaterials.  相似文献   

4.
Medical devices are an important and growing aspect of healthcare provision and are increasing in complexity to meet established and emerging patient needs. Terminal sterilization plays a vital role in the provision of safe medical devices. While terminal sterilization technologies for medical devices include multiple radiation options, ethylene oxide remains the predominant nonthermal gaseous option, sterilizing c. 50% of all manufactured devices. Vaporized hydrogen peroxide (abbreviated VH2O2 by the International Organization for Standardization) is currently deployed for clinical sterilization applications, where its performance characteristics appear aligned to requirements, constituting a viable alternative low-temperature process for terminal processing of medical devices. However, VH2O2 has operational limitations that create technical challenges for industrial-scale adoption. This timely review provides a succinct overview of VH2O2 in gaseous sterilization and addresses its applicability for terminal sterilization of medical devices. It also describes underappreciated factors such as the occurrence of nonlinear microbial inactivation kinetic plots that may dictate a need to develop a new standard approach to validate VH2O2 for terminal sterilization of medical devices.  相似文献   

5.
Users of in-dwelling medical devices, prostheses and surgical dressings rely implicitly on their sterility. Rarely do consumers give any thought to what sterility really means. The general assumption is that manufacturers have adopted the most efficient and cost-effective methods of achieving sterility. Currently, terminal sterilization processes appropriate for the manufacture of medical devices are those that are deemed to give less than one chance in a million of a single, finished product item containing a viable organism. Such a definition of sterility is embodied in the European standard EN556 as a Sterility Assurance Level of 10(-6), based on the properties of heat-resistant endospores. However, is this level of sterility assurance appropriate for all categories of medical device? Moreover, do all medical devices which are labelled as sterile require the same level of treatment? This paper will demonstrate that in some instances, the high standards set for sterilization processing are unreasonable, not cost-effective and exclude new sterilization technologies from being accepted by the regulatory authorities.  相似文献   

6.
C V Hanson 《Blood cells》1992,18(1):7-25
In the presence of longwave ultraviolet light, psoralen derivatives photoreact with the nucleic acids within intact viruses and cells. This photoreaction can leave protein antigens and other surface components relatively unmodified, while eliminating the infectivity of a wide range of infectious agents. The kinetics of inactivation differ among RNA and DNA viruses photoreacted with different derivatives of psoralen. The inactivation kinetics are nonlinear as a result of photodegradation of psoralens and the unexplained biphasic inactivation of some viruses. In spite of these complexities, the photoreaction is capable of generating broad safety margins in the disinfection of microbial products under gentle, physiologic conditions. The psoralen photoreaction provides a potential method for inactivating both known and unknown viruses in active blood products. Psoralen-inactivated viruses have already proven useful as noninfectious antigens for use in immunoassays and as successful experimental vaccines.  相似文献   

7.
The development of biomaterials endowed with bioactive features relies on a simultaneous insight into a proper terminal sterilization process. FDA recommendations on sterility of biomaterials are very strict: a sterility assurance level (SAL) of 10(-6) must be guaranteed for biomaterials to be used in human implants. In the present work, we have explored the potential of supercritical CO(2) (scCO(2)) in the presence of H(2)O(2) as a low-temperature sterilization process for thermoset materials and their bioactive surfaces. Different conditions allowing for terminal sterilization have been screened and a treatment time-amount of H(2)O(2) relationship proposed. The selected terminal sterilization conditions did not notably modify the mechanical properties of the thermoset nor of their fiber-reinforced composites. This was confirmed by μCT analyses performed prior to and after the treatment. On the contrary, terminal sterilization in the presence of H(2)O(2) induced a slight decrease in the surface hardness. The treatment of the thermoset material with scCO(2) led to a reduction in the residual unreacted monomers content, as determined by means of high performance liquid chromatography (HPLC) analyses. Finally, it was found that a thermoset coated with a polysaccharide layer containing silver nanoparticles maintained a very high antimicrobial efficacy even after the scCO(2)-based terminal sterilization.  相似文献   

8.
Implantable polymers, as used for biomedical applications, inherently have to be sterile. Nonetheless, most implants, particularly those comprised of biomaterials developed in recent years for tissue engineering, are heat sensitive. Therefore, use of hazardous (radio)chemicals—due to lack of alternative methods—is still state of the art for sterilization processes. The drawbacks of these techniques, both drastic and well known, lead to the demand for an alternative sterilization method, which is equally obvious and urgent. High-pressure fluid treatment is a low-temperature technique that is already in use for pasteurization of liquid food products. This paper explores inactivation of vegetative microorganisms, spores, and endotoxins adherent to solid surfaces using compressed CO2. Pressures ranging from 50 to 100 bar and temperatures from 25 °C to 50 °C were explored to investigate liquid, gaseous or supercritical state. Analysis of variance (ANOVA) and statistical modeling were used to identify the optimum parameter settings for inactivation of pathogenic bacteria and fungi (Candida albicans, Staphylococcus aureus). The addition of small amounts of ozone ensures inactivation of persistent spores (Bacillus stearothermophilus, B. subtilis) up to 106 cfu/ml, while endotoxins remain in practically unchanged concentration on the polymer surface. We then discuss environmental issues of the process and inactivation mechanisms. The replacement of conventional chemicals with nonpersistent ones resolves organizational and safety-related issues and protects natural resources as well as handling staff. The pressurized-fluid-based method exhibits mild treatment parameters, thus protecting sensitive textures. Finally, an outlook on possible applications of this innovative technique is presented.  相似文献   

9.
In this study, various molecular dynamics simulations were conducted to investigate the effect of supercritical carbon dioxide on the structural integrity of hen egg white lysozyme. The analyses of backbone root-mean-square deviation, radius of gyration, and secondary structure stability all show that supercritical CO(2) exhibits the ability to increase the stability of this protein, probably as a result of the solvent with less polarity, where hydrophobic interactions stabilizing the native structure are weakened and simultaneously the local hydrogen bonds are strengthened, resulting in stabilization of the secondary structures. The hydrophobic cores in the alpha- and beta-domains also play an important role in preventing this protein from thermal unfolding. As supercritical CO(2) has been attractive for biomedical applications because of the advantages of mild critical condition, nonflammability, nontoxity, and the purity of the resulting products, the structural stabilizing effect found in this study strongly suggests that it is possible to increase the thermostability of hen egg white lysozyme by pretreatment with supercritical CO(2), leading to better industrial applications of this protein.  相似文献   

10.
Sterilization of ginseng using a high pressure CO2 at moderate temperatures   总被引:1,自引:0,他引:1  
The aim of this study was to determine the feasibility of using high pressure CO2 for sterilization of Ginseng powder, as an alternative method to conventional techniques such as gamma-irradiation and ethylene oxide. The Ginseng sample used in this study was originally contaminated with fungi and 5 x 10(7) bacteria/g that was not suitable for oral use. This is the first time that high pressure CO2 has been used for the sterilization of herbal medicine to decrease the total aerobic microbial count (TAMC) and fungi. The effect of the process duration, operating pressure, temperature, and amount of additives on the sterilization efficiency of high pressure CO2 were investigated. The process duration was varied over 15 h; the pressure between 100 and 200 bar and the temperature between 25 and 75 degrees C. A 2.67-log reduction of bacteria in the Ginseng sample was achieved after long treatment time of 15 h at 60 degrees C and 100 bar, when using neat carbon dioxide. However, the addition of a small quantity of water/ethanol/H2O2 mixture, as low as 0.02 mL of each additive/g Ginseng powder, was sufficient for complete inactivation of fungi within 6 h at 60 degrees C and 100 bar. At these conditions the bacterial count was decreased from 5 x 10(7) to 2.0 x 10(3) TAMC/g complying with the TGA standard for orally ingested products. A 4.3 log reduction in bacteria was achieved at 150 bar and 30 degrees C, decreasing the TAMC in Ginseng sample to 2,000, below the allowable limit. However, fungi still remained in the sample. The complete inactivation of both bacteria and fungi was achieved within 2 h at 30 degrees C and 170 bar using 0.1 mL of each additive/g Ginseng. Microbial inactivation at this low temperature opens an avenue for the sterilization of many thermally labile pharmaceutical and food products that may involve sensitive compounds to gamma-radiation and chemically reactive antiseptic agents.  相似文献   

11.
Novel noninvasive techniques for the removal of biological contaminants to generate clean or sterile materials are in demand by the medical, pharmaceutical and food industries. The sterilization method described here uses supercritical fluid carbon dioxide (SF-CO2) containing 3.3% water and 0.1% hydrogen peroxide (v/v/v) to achieve from four to eight log viability reduction of all tested microbial species, including vegetative cells, spores and biofilms. The sterilization method employs moderate pressure and temperature (80 atm, 50 °C) and a short (30-minute) treatment time. The procedure kills various opportunistic pathogens that often persist in biofilm structures, fungal spores commonly associated with nosocomial infections, and Bacillus pumilus SAFR-032 endospores that are notoriously hard to eradicate by conventional sterilization techniques.  相似文献   

12.
Non-thermal bacterial inactivation with dense CO(2)   总被引:1,自引:0,他引:1  
  相似文献   

13.
Medical devices provide critical care and diagnostic applications through patient contact. Sterility assurance level (SAL) may be defined as the probability of a single viable micro-organism occurring on an item after a sterilization process. Sterilization microbiology often relies upon using an overkill validation method where a 12-log reduction in recalcitrant bacterial endospore population occurs during the process that exploits conventional laboratory-based culture media for enumeration. This timely review explores key assumptions underpinning use of conventional culture-based methods in sterilization microbiology. Consideration is given to how such methods may limit the ability to fully appreciate the inactivation kinetics of a sterilization process such as vaporized hydrogen peroxide (VH2O2) sterilization, and consequently design efficient sterilization processes. Specific use of the real-time flow cytometry (FCM) is described by way of elucidating the practical relevance of these limitation factors with implications and opportunities for the sterilization industry discussed. Application of FCM to address these culture-based limitation factors will inform real-time kinetic inactivation modelling and unlock potential to embrace emerging opportunities for pharma, medical device and sterilization industries including potentially disruptive applications that may involve reduced usage of sterilant.  相似文献   

14.
For several decades, a dose of 25 kGy of gamma irradiation has been recommended for terminal sterilization of medical products, including bone allografts. Practically, the application of a given gamma dose varies from tissue bank to tissue bank. While many banks use 25 kGy, some have adopted a higher dose, while some choose lower doses, and others do not use irradiation for terminal sterilization. A revolution in quality control in the tissue banking industry has occurred in line with development of quality assurance standards. These have resulted in significant reductions in the risk of contamination by microorganisms of final graft products. In light of these developments, there is sufficient rationale to re-establish a new standard dose, sufficient enough to sterilize allograft bone, while minimizing the adverse effects of gamma radiation on tissue properties. Using valid modifications, several authors have applied ISO standards to establish a radiation dose for bone allografts that is specific to systems employed in bone banking. These standards, and their verification, suggest that the actual dose could be significantly reduced from 25 kGy, while maintaining a valid sterility assurance level (SAL) of 10−6. The current paper reviews the methods that have been used to develop radiation doses for terminal sterilization of medical products, and the current trend for selection of a specific dose for tissue banks.  相似文献   

15.
The effects of pressurized CO2 on the survival of Escherichia coli and the mechanism of cell inactivation were studied. Bacterial cultures were inoculated in nutrient broth and incubated at 30 degrees C for 18 h. Exposure of the cells to CO2 under pressures ranging from 2.5 to 25 MPa and at temperatures between 8 and 40 degrees C was performed in a double-walled reactor with a 1 L capacity. The effect of the treatment on the cells was evaluated by plating and by transmission and scanning electron microscopy observation. Vapour CO2 generated a bacteriostatic effect. In liquid or supercritical state, CO2 provided a bactericidal effect. The bactericidal effect increased with pressure and temperature. The mechanism of cell inactivation by liquid CO2 involved two stages. First, cell stress caused by the CO2 penetration provoked cell wall collapse and cellular content precipitation. Second, the cell death caused by supercritical extraction of intracellular substances and cell envelope perforation resulted in leaking of intracellular constituents. In supercritical conditions, the cell inactivation process had one single phase: cellular death.  相似文献   

16.
The common methods for inactivation of bacteria involve heating or exposure to toxic chemicals. These methods are not suitable for heat-sensitive materials, food, and pharmaceutical products. Recently, a complete inactivation of many microorganisms was achieved with high-pressure carbon dioxide at ambient temperature and in the absence of organic solvent and irradiation. The inactivation of spores with CO(2) required long residence time and high temperatures, such as 60 degrees C. In this study the synergistic effect of pulsed electric field (PEF) in combination with high-pressure CO(2) for inactivation was investigated. The bacteria Escherichia coli, Staphylococcus aureus, and Bacillus cereus were suspended in glycerol solution and treated in the first step with PEF (up to 25 KV/cm) and then with high-pressure CO(2) not higher than 40 degrees C and 200 bar. The inactivation efficiency was determined by counting the colony formation units of control and sample. Samples of the cells subjected to PEF treatment alone and in combination with CO(2) treatment were examined by scanning electron microscopy to determine the effect of the processes on the cell wall. Experimental results indicate that the viability decreased with increasing electrical field strength and number of pulses. A further batch treatment with supercritical CO(2) lead to complete inactivation of bacterial species and decreased the count of the spores by at least three orders of magnitude, the inactivation being enhanced by an increase of contact time between CO(2) and the sample. A synergistic effect between the pulsed electric field and the high-pressure CO(2) was evident in all the species treated. The new low temperature process is an alternative for pasteurization of thermally labile compounds such as protein and plasma and minimizes denaturation of important nutrient compounds in the liquid media.  相似文献   

17.
We have developed an effective post-PCR sterilization process and have applied the procedure to a diagnostic assay for HIV-1. The method, which is based on isopsoralen photochemistry, satisfies both the inactivation and hybridization requirements of a practical sterilization process. The key feature of the technique is the use of isopsoralen compounds which form covalent photochemical adducts with DNA. These covalent adducts prevent subsequent extension of previously amplified sequences (amplicons) by Taq polymerase. Isopsoralens have minimal inhibitory effect on the PCR, are activated by long wavelength ultraviolet light, provide sufficient numbers of covalent adducts to impart effective sterilization, modify the amplified sequence such that it remains single-stranded, and have little effect on subsequent hybridization. The sterilization procedure can be applied to a closed system and is suitable for use with commonly used detection formats. The photochemical sterilization protocol we have devised is an effective and pragmatic method for eliminating the amplicon carryover problem associated with the PCR. While the work described here is limited to HIV-1, proper use of the technique will relieve the concern associated with carryover for a wide variety of amplicons, especially in the clinical setting.  相似文献   

18.
Formation of bacterial biofilms at solid–liquid interfaces creates numerous problems in biomedical sciences. Conventional sterilization and decontamination methods are not suitable for new and more sophisticated biomaterials. In this paper, the efficiency and effectiveness of gas discharges in the inactivation and removal of biofilms on biomaterials were studied. It was found that although discharge oxygen, nitrogen and argon all demonstrated excellent antibacterial and antibiofilm activity, gases with distinct chemical/physical properties underwent different mechanisms of action. Discharge oxygen- and nitrogen-mediated decontamination was associated with strong etching effects, which can cause live bacteria to relocate thus spreading contamination. On the contrary, although discharge argon at low powers maintained excellent antibacterial ability, it had negligible etching effects. Based on these results, an effective decontamination approach using discharge argon was established in which bacteria and biofilms were killed in situ and then removed from the contaminated biomaterials. This novel procedure is applicable for a wide range of biomaterials and biomedical devices in an in vivo and clinical setting.  相似文献   

19.
聚合物微流控芯片成本低、易加工,目前在医药、生物检测和化学合成等领域得到了普遍应用。以热塑性聚合物聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA)和热固型聚合物聚二甲基硅氧烷(polydimethy lsiloxane,PDMS)为基材的高分子聚合物材料因具有较好的生物相容性和光学透明性,已逐渐成为聚合物微流控芯片加工的主导材料,被广泛应用于生物医药类微流控芯片的制备。鉴于该类芯片应用场景的特殊性,需在使用前进行消毒灭菌处理以避免微生物干扰。目前,针对PMMA和PDMS的消毒灭菌方法包括高压蒸汽灭菌、紫外线灭菌、电子束、60Co γ射线辐射灭菌、超临界二氧化碳灭菌、乙醇消毒、环氧乙烷灭菌、过氧化氢低温等离子体灭菌、绿原酸消毒、清洗剂消毒。本文从基本原理、消毒灭菌方法、应用场景等方面,回顾和总结了相关技术在PMMA和PDMS基体微流控芯片中的实现方法,并在芯片材质、适用范围等方面分析了所适用的消毒灭菌方法,为以聚合物为基材的生物医药类微流控芯片的消毒灭菌提供有益参考。  相似文献   

20.
The aims of this work were to (a) evaluate the susceptibility of endospores of Bacillus cereus, B. licheniformis, B. sphaericus and B. subtilis to photodynamic inactivation using a tricationic porphyrin as photosensitizer, (b) assess the efficiency of adsorption of the photosensitizer in endospore material as a determinant of the susceptibility of endospores of different Bacillus species to photo‐inactivation, (c) determine the value of B. cereus as a model organism for studies of antimicrobial photodynamic inactivation of bacterial endospores. The results of irradiation experiments with endospores of four species of Bacillus showed that B. cereus was the only species for which efficient endospore photo‐inactivation (> 3 log reduction) could be achieved. Endospores of B. licheniformis, B. sphaericus and B. subtilis were virtually resistant to photo‐inactivation with tricationic porphyrin. The amount of porphyrin bound to endospore material was not significantly different between species, regardless of the presence of an exosporium or exosporium‐like outer layer. The sensitivity of endospores to photodynamic inactivation with a tricationic porphyrin is highly variable among different species of the genus Bacillus. The presence of an exosporium in endospores of B. cereus and B. sphaericus, or an exosporium‐like glycoprotein layer in endospores of B. subtilis, did not affect the amount of bound photosensitizer and did not explain the inter‐species variability in susceptibility to photodynamic inactivation. The results imply that the use of B. cereus as a more amenable surrogate of the exosporium‐producing B. anthracis must be carefully considered when testing new photosensitizers for their antimicrobial photo‐inactivation properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号