首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manyin vitromodels of embryonic material used for the cultivation of chondrocytes yield mixed cultures consisting of chondrocytes and fibroblast-like cells. For the optimization of cartilage cell cultures, alginate, a semisolid medium, was employed to obtain pure chondrocyte cultures. Isolated mesenchymal cells from 12-day-old mouse limb buds were grown in alginate for up to 4 weeks. A sub-population of the cells differentiated to chondrocytes and exhibited a stable phenotype until the end of the culture period. After 3 to 4 days a cartilage-specific matrix started to develop. Fibroblast-like cells from this mixed culture did not survive; they became necrotic. When alginate was later on dissolved by chelating agents, only chondrocytes were isolated. During dissolution of alginate and centrifugation, chondrocytes did not lose their contact with their new matrix present on their surfaces. Cultivation of these chondrocytes or chondrones in mass culture yields a pure chondrocyte population. Immunoelectron microscopic investigations revealed collagen type II, fibronectin, decorin and chondroitin sulfate-proteoglycans in the chondrocyte capsules and in mass culture.  相似文献   

2.
3.
Auricular cartilage is an attractive potential source of cells for many tissue engineering applications. However, there are several requirements that have to be fulfilled in order to develop a suitable tissue engineered implant. Animal experiments serve as important tools for validating novel concepts of cartilage regeneration; therefore rabbit auricular chondrocytes were studied. Various parameters including isolation procedures, passage number, rate of proliferation and gene expression profile for major extracellular matrix components were evaluated in order to assess the potential use of elastic chondrocytes for tissue engineering. Chondrocytes were isolated from rabbit ear cartilage and grown in monolayer cultures over four passages. Yields of harvested cells and proliferation were analysed from the digestion step to the fourth passage, and changes in phenotype were monitored. The proliferation capacity of cell cultures decreased during cultivation and was accompanied by enlargement of cells, this phenomenon being especially evident in the third and fourth passages. The expression of cartilage specific genes for collagen type II, aggrecan and cartilage non-specific collagen type I was determined. The mRNA levels for all three genes were obviously lower in the primo culture than immediately after isolation. During subsequent cultivation the expression of collagen type II decreased further, while there were only slight changes in expression of aggrecan and collagen type I. This study provides a valuable basis for testing of different tissue engineering applications in rabbit model, where auricular chondrocytes are considered as cell source.  相似文献   

4.
5.
Repair of damaged cartilage usually requires replacement tissue or substitute material. Tissue engineering is a promising means to produce replacement cartilage from autologous or allogeneic cell sources. Scaffolds provide a three-dimensional (3D) structure that is essential for chondrocyte function and synthesis of cartilage-specific matrix proteins (collagen type II, aggrecan) and sulfated proteoglycans. In this study, we assessed porous, 3D collagen sponges for in vitro engineering of cartilage in both standard and serum-free culture conditions. Bovine articular chondrocytes (bACs) cultured in 3D sponges accumulated and maintained cartilage matrix over 4 weeks, as assessed by quantitative measures of matrix content, synthesis, and gene expression. Chondrogenesis by bACs cultured with Nutridoma as a serum replacement was equivalent or better than control cultures in serum. In contrast, chondrogenesis in insulin-transferrin-selenium (ITS+3) serum replacement cultures was poor, apparently due to decreased cell survival. These data indicate that porous 3D collagen sponges maintain chondrocyte viability, shape, and synthetic activity by providing an environment favorable for high-density chondrogenesis. With quantitative assays for cartilage-specific gene expression and biochemical measures of chondrogenesis in these studies, we conclude that the collagen sponges have potential as a scaffold for cartilage tissue engineering.  相似文献   

6.
Chondrocytes grown in monolayer culture at low density, with serum added, either dedifferentiate after several days whereby their cell shape changes or they are overgrown by fibroblast-like cells. The aim of this study was to optimize the cultivation of chondrocytes in monolayer culture and to slow down their transformation or their overgrowth by fibroblast-like cells. For this purpose freshly isolated chondrocytes of cartilage anlagen from 17-day-old mouse embryos were grown on plastic or collagen type II-coated substrates. With this model: (a) chondrocytes grown on plastic substrates had almost completely changed to fibroblast-like cells after 5 days in culture. (b) When grown on collagen type II, the chondrocytes maintained their round phenotype for more than 2 weeks in culture. (c) Immunomorphological investigations showed that chondrocytes produce collagen type II and fibronectin and express specific surface receptors (integrins of the β1-group) on the membrane from day 1 until the end of the culture period when grown on collagen type II. (d) Treatment with β1-integrin antibodies clearly reduces chondrocyte adhesion on collagen type II by about 70%. Hence, these data indicate that the most probable influence of collagen type II on cellular behaviour depends on the integrins participating in a chondrocyte—collagen type II interaction, and this model represents a pure chondrocyte culture which allows cell growth for an extended period.  相似文献   

7.
Expression of the human chondrocyte phenotype in vitro   总被引:9,自引:0,他引:9  
Summary We report a culture scheme in which human epiphyseal chondrocytes lose their differentiated phenotype in monolayer and subsequently reexpress the phenotype in an agarose gel. The scheme is based on a method using rabbit chondrocytes. Culture in monolayer allowed small quantities of cells to be amplified and provided a starting point to study expression of the differentiated human chondrocyte phenotype. The cells cultured in monolayer produced type I procollagen, fibronectin, and small noncartilaginous proteoglycans. Subsequent culture in agarose was associated with the acquisition of typical chondrocyte ultrastructural features and the synthesis of type II collagen and cartilage-specific proteoglycans. The switch from the nonchondrocyte to the differented chondrocyte phenotype occurred under these conditions between 1 and 2 wk of agarose culture and was not necessarily homogeneous throughout a culture. This culture technique will facilitate direct investigation of human disorders of cartilage that have been addressed in the past by alternative approaches. This research is supported in part by research grants from the National Institutes of Health, (HD 20691) Bethesda, MD, and Shriners of North America (15953).  相似文献   

8.
Implantation of chondrocytes isolated from patients and expanded in number in vitro is being used to treat patients with cartilage injuries. However, chondrocytes de-differentiate during culture with several passages, and cartilage regenerated by implantation of de-differentiated chondrocytes may be suboptimal. Here, we show that a spinner-flask culture system induces formation of chondrocyte aggregates and redifferentiate de-differentiated chondrocytes. Spinner-flask cultures induced the aggregate formation of chondrocytes with passage 1 or 4. Importantly, spinner-flask cultures induced redifferentiation of the de-differentiated chondrocytes, as type I collagen expression was significantly lower and type II collagen expression was significantly higher in spinner flask-cultured chondrocytes than in monolayer-cultured chondrocytes. This system is easily scalable and could be feasible for clinical setting.  相似文献   

9.
For lack of sufficient human cartilage donors, chondrocytes isolated from various animal species are used for cartilage tissue engineering. The present study was undertaken to compare key features of cultured large animal and human articular chondrocytes of the knee joint. Primary chondrocytes were isolated from human, porcine, ovine and equine full thickness knee joint cartilage and investigated flow cytometrically for their proliferation rate. Synthesis of extracellular matrix proteins collagen type II, cartilage proteoglycans, collagen type I, fibronectin and cytoskeletal organization were studied in freshly isolated or passaged chondrocytes using immunohistochemistry and western blotting. Chondrocytes morphology, proliferation, extracellular matrix synthesis and cytoskeleton assembly differed substantially between these species. Proliferation was higher in animal derived compared with human chondrocytes. All chondrocytes expressed a cartilage-specific extracellular matrix. However, after monolayer expansion, cartilage proteoglycan expression was barely detectable in equine chondrocytes whereby fibronectin and collagen type I deposition increased compared with porcine and human chondrocytes. Animal-derived chondrocytes developed more F-actin fibers during culturing than human chondrocytes. With respect to proliferation and extracellular matrix synthesis, human chondrocytes shared more similarity with porcine than with ovine or equine chondrocytes. These interspecies differences in chondrocytes in vitro biology should be considered when using animal models.  相似文献   

10.
Cartilage graft is considered to be useful in repairing chondral or osteochondral defects. One method of the cartilage graft is achieved by autologous chondrocyte transplantation following cell culture. However, chondrocytes change their phenotype during culture. We used costal chondrocytes cultured over agarose (suspension culture) as a source of graft materials. The suspension-cultured chondrocytes formed aggregate in culture. We first examined the expressions of cartilage-specific matrices of cultured chondrocytes after two weeks in culture. The chondrocytes cultured over agarose expressed more type II collagen mRNA than those cultured on plastic dishes did after two weeks in culture. Safranin O staining showed the presence of glycosaminoglycans in the chondrocyte culture over agarose, while glycosaminoglycans were not observed in the culture on plastic dishes. We then examined the changes of rat articular osteochondral defects after transplantation of suspension-cultured chondrocytes. The aggregate of suspension-cultured chondrocytes was easily picked up with forceps and transplanted in the osteochondral defects. The defects were filled with safranin O-stained hyaline cartilage tissue two weeks after chondrocyte transplantation. On the contrary, the fibrous materials, which were not stained with safranin O, were observed in the control defects. These results suggest that the suspension-cultured chondrocytes are useful for autologous cartilage grafts by preserving chondrocyte phenotype.  相似文献   

11.
Extracellular matrix formation by chondrocytes in monolayer culture   总被引:10,自引:6,他引:4       下载免费PDF全文
In previous studies were have reported on the secretion and extracellular deposition of type II collagen and fibronectin (Dessau et al., 1978, J. Cell Biol., 79:342-355) and chondroitin sulfate proteoglycan (CSPG) (Vertel and Dorfman, 1979, Proc. Natl. Acad. Sci. U. S. A. 76:1261-1264) in chondrocyte cultures. This study describes a combined effort to compare sequence and pattern of secretion and deposition of all three macromolecules in the same chondrocyte culture experiment. By immunofluorescence labeling experiments, we demonstrate that type II collagen, fibronectin, and CSPG reappear on the cell surface after enzymatic release of chondrocytes from embryonic chick cartilage but develop different patterns in the pericellular matrix. When chondrocytes spread on the culture dish, CSPG is deposited in the extracellular space as an amorphous mass and fibronectin forms fine, intercellular strands, whereas type II collagen disappears from the chondrocyte surface and remains absent from the extracellular space in early cultures. Only after cells in the center of chondrocyte colonies shape reassume spherical shape does the immunofluorescence reveal type II collagen in the refractile matrix characteristic of differentiated cartilage. By immunofluorescence double staining of the newly formed cartilage matrix, we demonstrate that CSPG spreads farther out into the extracellular space that type II collagen. Fibronectin finally disappears from the cartilage matrix.  相似文献   

12.
Chondrocytes cultivated in monolayer rapidly divide and lose their morphological and biochemical characteristics, whereas they maintain their phenotype for long periods of time when they are cultivated in alginate beads. Because cartilage has a low cellularity and is difficult to obtain in large quantities, the number of available cells often becomes a limiting factor in studies of chondrocyte biology. Therefore, we explored the possibility of restoring the differentiated properties of chondrocytes by cultivating them in alginate beads after two multiplication passages in monolayer. This resulted in the reexpression of the two main markers of differentiated chondrocytes: Aggrecan and type II collagen gene expression was strongly reinduced from day 4 after alginate inclusion and paralleled protein expression. However, 2 weeks were necessary for total suppression of type I and III collagen synthesis, indicators of a modulated phenotype. Interleukin-1β, a cytokine that is present in the synovial fluid of rheumatoid arthritis patients, induces many metabolic changes on the chondrocyte biology. Compared with cells in primary culture, the production of nitric oxide and 92-kDa gelatinase in response to interleukin-1β was impaired in cells at passage 2 in monolayer but was fully recovered after their culture in alginate beads for 2 weeks. This suggests that the effects of interleukin-1β on cartilage depend on the differentiation state of chondrocytes. This makes the culture in alginate beads a relevant model for the study of chondrocyte biology in the presence of interleukin-1β and other mediators of cartilage destruction in rheumatoid arthritis and osteoarthrosis. J. Cell. Physiol. 176:303–313, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
14.
Both chondrocytes and mensenchymal stem cells (MSCs) are the most used cell sources for cartilage tissue engineering. However, monolayer expansion to obtain sufficient cells leads to a rapid chondrocyte dedifferentiation and a subsequent ancillary reduced ability of MSCs to differentiate into chondrocytes, thus limiting their application in cartilage repair. The aim of this study was to investigate the influence of the monolayer expansion on the immunophenotype and the gene expression profile of both cell types, and to find the appropriate compromise between monolayer expansion and the remaining chondrogenic characteristics. To this end, human chondrocytes, isolated enzymatically from femoral head slice, and human MSCs, derived from bone marrow, were maintained in monolayer culture up to passage 5. The respective expressions of cell surface markers (CD34, CD45, CD73, CD90, CD105, CD166) and several chondrogenic-related genes for each passage (P0-P5) of those cells were then analyzed using flow cytometry and quantitative real-time PCR, respectively. Flow cytometry analyses showed that, during the monolayer expansion, some qualitative and quantitative regulations occur for the expression of cell surface markers. A rapid increase in mRNA expression of type 1 collagen occurs whereas a significant decrease of type 2 collagen and Sox 9 was observed in chondrocytes through the successive passages. On the other hand, the expansion did not induced obvious change in MSCs gene expression. In conclusion, our results suggest that passage 1 might be the up-limit for chondrocytes in order to achieve their subsequent redifferentiation in 3D scaffold. Nevertheless, MSCs could be expanded in monolayer until passage 5 without loosing their undifferentiated phenotypes.  相似文献   

15.
Osteoarthritis is the most prevalent form of arthritis in the world. Certain signaling pathways, such as the wnt pathway, are involved in cartilage pathology. Osteoarthritic chondrocytes undergo morphological and biochemical changes that lead to chondrocyte de-differentiation. We investigated whether the Wnt pathway is involved in de-differentiation of human articular chondrocytes in vitro. Human articular chondrocytes were cultured for four passages in the presence or absence of IL-1 in monolayer or micromass culture. Changes in cell morphology were monitored by light microscopy. Protein and gene expression of chondrocyte markers and Wnt pathway components were determined by Western blotting and qPCR after culture. After culturing for four passages, chondrocytes exhibited a fibroblast-like morphology. Collagen type II and aggrecan protein and gene expression decreased, while collagen type I, matrix metalloproteinase 13, and nitric oxide synthase expressions increased. Wnt molecule expression profiles changed; Wnt5a protein expression, the Wnt target gene, c-jun, and in Wnt pathway regulator, sFRP4 increased. Treatment with IL-1 caused chondrocyte morphology to become more filament-like. This change in morphology was accompanied by extinction of col II expression and increased col I, MMP13 and eNOS expression. Changes in expression of the Wnt pathway components also were observed. Wnt7a decreased significantly, while Wnt5a, LRP5, β-catenin and c-jun expressions increased. Culture of human articular chondrocytes with or without IL-1 not only induced chondrocyte de-differentiation, but also changed the expression profiles of Wnt components, which suggests that the Wnt pathway is involved in chondrocyte de-differentiation in vitro.  相似文献   

16.
17.
Regulated differentiation of chondrocytes is essential for both normal skeletal development and maintenance of articular cartilage. The intracellular pathways that control these events are incompletely understood, and our ability to modulate the chondrocyte phenotype in vivo or in vitro is therefore limited. Here we examine the role played by one prominent group of intracellular signalling proteins, the Src family kinases, in regulating the chondrocyte phenotype. We show that the Src family kinase Lyn exhibits a dynamic expression pattern in the chondrogenic cell line ATDC5 and in a mixed population of embryonic mouse chondrocytes in high-density monolayer culture. Inhibition of Src kinase activity using the pharmacological compound PP2 (4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine) strongly reduced the number of primary mouse chondrocytes. In parallel, PP2 treatment increased the expression of both early markers (such as Sox9, collagen type II, aggrecan and xylosyltransferases) and late markers (collagen type X, Indian hedgehog and p57) markers of chondrocyte differentiation. Interestingly, PP2 repressed the expression of the Src family members Lyn, Frk and Hck. It also reversed morphological de-differentiation of chondrocytes in monolayer culture and induced rounding of chondrocytes, and reduced stress fibre formation and focal adhesion kinase phosphorylation. We conclude that the Src kinase inhibitor PP2 promotes chondrogenic gene expression and morphology in monolayer culture. Strategies to block Src activity might therefore be useful both in tissue engineering of cartilage and in the maintenance of the chondrocyte phenotype in diseases such as osteoarthritis.  相似文献   

18.
The aim of this study was to determine the feasibility of discriminating between differentiated and dedifferentiated chondrocytes by using the Mab 11-fibrau. Mab 11-fibrau did not bind to differentiated chondrocytes in cartilage of human knee joint, auricle, or nasal septum. During monolayer culture, when cells dedifferentiate, the number of 11-fibrau positive cells gradually increased and reached up to 100% after 4 passages. When differentiated chondrocytes were cultured in alginate, most (90--95%) of the cells remained 11-fibrau negative, in accordance with previous studies demonstrating that differentiated chondrocytes cultured in alginate keep their phenotype. Dedifferentiated (11-fibrau positive) cells were subjected to different redifferentiation regimes. As a well-known fact, cultures in alginate in medium where FCS was replaced by IGF1 and TGF beta 2 results in increased collagen type II formation, indicative for redifferentiation. However, the cells remained 11-fibrau positive, suggesting they are not (yet) fully redifferentiated. On the other hand, when dedifferentiated cells (after 4 passages in monolayer culture) were seeded in a biomaterial and implanted subcutaneously in a nude mouse, the newly formed cartilage matrix contained collagen type II and the 11-fibrau staining on the cells had disappeared. Our results indicate that 11-fibrau may be a reliable and sensitive marker of chondrocyte phenotype.  相似文献   

19.
Although extensive evidence support the key role of adipokines in cartilage homeostasis, contradictory data have been found for their expression and their effects in chondrocytes. This study was then undertaken to determine whether a phenotypic modulation may affect the expression of adipokines and their receptors in human chondrocytes. The expression of leptin, adiponectin and their receptors, as well as cartilage-specific genes was examined in chondrocytes obtained from patients with osteoarthritis either directly after cells harvest or after culture in monolayer or in alginate beads. The results showed major changes in the gene expression pattern after culture in monolayer with a shift from the adipokines to their receptors. Interestingly, this downregulation of adipokines was associated with a loss of chondrocyte phenotype, and chondrocytes recovered a cartilage-like expression profile of leptin and adiponectin when cultured in a tridimensional chondrocyte phenotype-inducing system, but ceased expressing their receptors. Further experiments clearly showed that leptin but not adiponectin promoted the expression of cartilage-specific markers through mitogen-activated protein kinase, Janus kinase and phosphatidylinositol-3 kinase signaling pathways. In conclusion, our data indicate that any phenotypic modulation could affect chondrocyte responsiveness to leptin or adiponectin, and provide evidence for an important role for leptin in regulating the expression of cartilage-specific markers.  相似文献   

20.
Gene expression by human articular chondrocytes cultured in alginate beads.   总被引:3,自引:0,他引:3  
Culture of articular chondrocytes in alginate beads offers several advantages over culture in monolayer; cells retain their phenotype for 8 months or longer. Earlier studies of chondrocytes cultured in alginate concentrated on collagen and proteoglycan synthesis. However, gene expression by in situ hybridization (ISH) has not been investigated. The purposes of the present study on human chondrocytes were (a) to modify the ISH procedure for the alginate beads to examine the mRNA expression of alpha1 (II) procollagen, aggrecan, and two matrix metalloproteinases (MMP-3 and MMP-8) thought to be involved in cartilage matrix degradation, and (b) to compare expression in cultured chondrocytes with that in chondrocytes of intact human cartilage. The modifications made for ISH include the presence of CaCl2 and BaCl2 in the fixation and washing steps and exclusion of cetyl pyridinium chloride. By ISH we show that aggrecan, MMP-3, and MMP-8 are continuously expressed during 8 months of culture. The alpha1 (II) procollagen gene is expressed only during the first 2 months of culture and after 3 months its expression is undetectable, which is consistent with its absence in adult articular cartilage. By Western blotting, Type II collagen protein had been synthesized and deposited in both the cell-associated and further-removed matrix compartments at 7 and 14 days of culture. These data indicate that chondrocytes cultured in alginate beads could be preserved for immunohistochemistry and ISH and that culture of human chondrocytes in alginate beads may serve as a good model for studying cartilage-specific phenotype as well as factors that influence cartilage matrix turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号