共查询到20条相似文献,搜索用时 78 毫秒
1.
N-terminal Edman sequencing of the genome-linked viral protein (VPg) of Plautia stali intestine virus (PSIV, Dicistroviridae) detected heterologus residues. The VPg sequence determined was found to be triplicated in the nonstructural protein precursor. Multiple VPg-like sequences were also found in 10 of the 12 dicistroviruses with a maximum of six copies in Solenopsis invicta virus-1. We postulate that redundant VPg coding sequences facilitate multiplication of dicistroviruses, because fewer cycle of translation of the nonstructural protein precursor produces larger amounts of VPg proteins in parallel with the increased production of capsid proteins by the intergenic internal ribosome entry site mediated translation. 相似文献
2.
Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase
The active RNA-dependent RNA polymerase of poliovirus, 3Dpol, is generated by cleavage of the 3CDpro precursor protein, a protease that has no polymerase activity despite containing the entire polymerase domain. By intentionally disrupting a known and persistent crystal packing interaction, we have crystallized the poliovirus polymerase in a new space group and solved the complete structure of the protein at 2.0 A resolution. It shows that the N-terminus of fully processed 3Dpol is buried in a surface pocket where it makes hydrogen bonds that act to position Asp238 in the active site. Asp238 is an essential residue that selects for the 2' OH group of substrate rNTPs, as shown by a 2.35 A structure of a 3Dpol-GTP complex. Mutational, biochemical, and structural data further demonstrate that 3Dpol activity is exquisitely sensitive to mutations at the N-terminus. This sensitivity is the result of allosteric effects where the structure around the buried N-terminus directly affects the positioning of Asp238 in the active site. 相似文献
3.
4.
Mcm10 is required for the initiation of eukaryotic DNA replication and contributes in some unknown way to the activation of the Cdc45-MCM-GINS (CMG) helicase. How Mcm10 is localized to sites of replication initiation is unclear, as current models indicate that direct binding to minichromosome maintenance (MCM) plays a role, but the details and functional importance of this interaction have not been determined. Here, we show that purified Mcm10 can bind both DNA-bound double hexamers and soluble single hexamers of MCM. The binding of Mcm10 to MCM requires the Mcm10 C terminus. Moreover, the binding site for Mcm10 on MCM includes the Mcm2 and Mcm6 subunits and overlaps that for the loading factor Cdt1. Whether Mcm10 recruitment to replication origins depends on CMG helicase assembly has been unclear. We show that Mcm10 recruitment occurs via two modes: low affinity recruitment in the absence of CMG assembly (“G1-like”) and high affinity recruitment when CMG assembly takes place (“S-phase-like”). Mcm10 that cannot bind directly to MCM is defective in both modes of recruitment and is unable to support DNA replication. These findings indicate that Mcm10 is localized to replication initiation sites by directly binding MCM through the Mcm10 C terminus. 相似文献
5.
Svitkin YV Costa-Mattioli M Herdy B Perreault S Sonenberg N 《RNA (New York, N.Y.)》2007,13(12):2330-2340
Picornavirus infectivity is dependent on the RNA poly(A) tail, which binds the poly(A) binding protein (PABP). PABP was reported to stimulate viral translation and RNA synthesis. Here, we studied encephalomyocarditis virus (EMCV) and poliovirus (PV) genome expression in Krebs-2 and HeLa cell-free extracts that were drastically depleted of PABP (96%-99%). Although PABP depletion markedly diminished EMCV and PV internal ribosome entry site (IRES)-mediated translation of a polyadenylated luciferase mRNA, it displayed either no (EMCV) or slight (PV) deleterious effect on the translation of the full-length viral RNAs. Moreover, PABP-depleted extracts were fully competent in supporting EMCV and PV RNA replication and virus assembly. In contrast, removing the poly(A) tail from EMCV RNA dramatically reduced RNA synthesis and virus yields in cell-free reactions. The advantage conferred by the poly(A) tail to EMCV synthesis was more pronounced in untreated than in nuclease-treated extract, indicating that endogenous cellular mRNAs compete with the viral RNA for a component(s) of the RNA replication machinery. These results suggest that the poly(A) tail functions in picornavirus replication largely independent of PABP. 相似文献
6.
Catherine R.C. Unabia 《Invertebrate Biology》2011,130(2):100-114
Abstract. The endemic Hawaiian gastropod Smaragdia bryanae is a specialized marine herbivore that uses the endemic seagrass Halophila hawaiiana as both food and habitat. These small neritids, their grazing scars, and their egg capsules are found year‐round on seagrass leaves, where they feed on protoplast contents released as the sharp outer‐lateral teeth of the snail's radula puncture leaf epidermal cells; the contents of these cells are likely swept into the mouth by the long, wispy cusps of the marginal teeth. Structural differences from the typical neritid radula include elongated outer‐lateral teeth with two sharply pointed cusps, delicate marginal teeth reduced in both size and number, and a compressed central section. Snails grazed on leaves of H. hawaiiana steadily in laboratory culture, and grew and reproduced on this diet. In laboratory choice experiments, snails did not graze the thalli of any of six macroalgal species growing near seagrass where snails were collected, and strongly preferred occupying seagrass. Seagrass samples from five field sites on Oahu and one on Maui showed from 30% to 94% of leaves damaged, with 11% of the total leaf standing area grazed. Snails are smaller (mean length 2.74±0.32 mm, mean width 2.15±0.17 mm, n=217) than the width of the leaves of H. hawaiiana (mean 3.24±1.26 mm, n=790). The snails associate constantly with their host, despite the scattered distribution, small patch size, and variability of the seagrass resource, demonstrated by a sevenfold range in the leaf area index (mean 1.11±0.61 cm2 blade surface cm?2, n=31) among samples. Damage on grazed leaves (mean 8.21±7.05 mm2 per leaf, or 16.5% of leaf surface, n=511) is concentrated in the apical and central epithelia between the midrib and the marginal veins, where snails may access cells with thinner walls and few fibers. Details of the grazing interaction between these extant species in Hawai'i shed light on the ecological specialization of members of the genus Smaragdia to seagrasses over geological time. 相似文献
7.
O6-methylguanine (O6-MeG) is a miscoding DNA lesion arising from the alkylation of guanine. This report uses the bacteriophage T4 DNA polymerase as a model to probe the roles of hydrogen-bonding interactions, shape/size, and nucleobase desolvation during the replication of this miscoding lesion. This was accomplished by using transient kinetic techniques to monitor the kinetic parameters for incorporating and extending natural and nonnatural nucleotides. In general, the efficiency of nucleotide incorporation does not depend on the hydrogen-bonding potential of the incoming nucleotide. Instead, nucleobase hydrophobicity and shape complementarity appear to be the preeminent factors controlling nucleotide incorporation. In addition, shape complementarity plays a large role in controlling the extension of various mispairs containing O6-MeG. This is evident as the rate constants for extension correlate with proper interglycosyl distances and symmetry between the base angles of the formed mispair. Base pairs not conforming to an acceptable geometry within the polymerase's active site are refractory to elongation and are processed via exonuclease proofreading. The collective data set encompassing nucleotide incorporation, extension, and excision is used to generate a model accounting for the mutagenic potential of O6-MeG observed in vivo. In addition, kinetic studies monitoring the incorporation and extension of nonnatural nucleotides identified an analog that displays high selectivity for incorporation opposite O6-MeG compared to unmodified purines. The unusual selectivity of this analog for replicating damaged DNA provides a novel biochemical tool to study translesion DNA synthesis. 相似文献
8.
Bacteriophage phi29 encodes a DNA-dependent DNA polymerase belonging to the eukaryotic-type (family B) subgroup of DNA polymerases that use a protein as primer for initiation of DNA replication. By multiple sequence alignments of DNA polymerases from such a family, we have been able to identify two amino acid residues specifically conserved in the protein-priming subgroup of DNA polymerases, a phenylalanine contained in the (S/T)Lx(2)h motif, and a glutamate belonging to the Exo III motif. Here, we have studied the functional role of these residues in reactions that are specific for DNA polymerases that use a protein-primed DNA replication mechanism, by site-directed mutagenesis in the corresponding amino acid residues, Phe128 and Glu161 of phi29 DNA polymerase. Mutations introduced at residue Phe128 severely impaired the protein-primed replication capacity of the polymerase, being the interaction with the terminal protein (TP) moderately (mutant F128A) or severely (mutant F128Y) diminished. As a consequence, very few initiation products were obtained, and essentially no transition products were detected. Interestingly, phi29 DNA polymerase mutant F128Y showed a decreased binding affinity for short template DNA molecules. These results, together with the high degree of conservation of Phe128 residue among protein-primed DNA polymerases, suggest a functional role for this amino acid residue in making contacts with the TP during the first steps of genome replication and with DNA in the further replication steps. 相似文献
9.
Spectroscopic investigation into the interaction of a diazacyclam‐based macrocyclic copper(ii) complex with bovine serum albumin 下载免费PDF全文
Nahid Shahabadi Mohammad Hakimi Teimoor Morovati Saba Hadidi Keyvan Moeini 《Luminescence》2017,32(1):43-50
Cyclam‐based ligands and their complexes are known to show antitumor activity. This study was undertaken to examine the interaction of a diazacyclam‐based macrocyclic copper(II) complex with bovine serum albumin (BSA) under physiological conditions. The interactions of different metal‐based drugs with blood proteins, especially those with serum albumin, may affect the concentration and deactivation of metal drugs, and thereby influence their availability and toxicity during chemotherapy. In this vein, several spectral methods including UV–vis absorption, fluorescence and circular dichroism (CD) spectroscopy techniques were used. Spectroscopic analysis of the fluorescence quenching confirmed that the Cu(II) complex quenched BSA fluorescence intensity by a dynamic mechanism. In order to further determine the quenching mechanism, an analysis of Stern–Volmer plots at various concentrations of BSA was carried out. It was found that the KSV value increased with the BSA concentration. It was suggested that the fluorescence quenching process was a dynamic quenching rather than a static quenching mechanism. Based on Förster's theory, the average binding distance between the Cu(II) complex and BSA (r) was found to be 4.98 nm; as the binding distance was less than 8 nm, energy transfer from BSA to the Cu(II) complex had a high possibility of occurrence. Thermodynamic parameters (positive ΔH and ΔS values) and measurement of competitive fluorescence with 1‐anilinonaphthalene‐8‐sulphonic acid (1,8‐ANS) indicated that hydrophobic interaction plays a major role in the Cu(II) complex interaction with BSA. A Job's plot of the results confirmed that there was one binding site in BSA for the Cu(II) complex (1:1 stoichiometry). The site marker competitive experiment confirmed that the Cu(II) complex was located in site I (subdomain IIA) of BSA. Finally, CD data indicated that interaction of the Cu(II) complex with BSA caused a small increase in the α‐helical content. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
10.
Human rhinovirus type 14 gain-of-function mutants for oriI utilization define residues of 3C(D) and 3Dpol that contribute to assembly and stability of the picornavirus VPg uridylylation complex 总被引:3,自引:2,他引:1 下载免费PDF全文
Shen M Wang Q Yang Y Pathak HB Arnold JJ Castro C Lemon SM Cameron CE 《Journal of virology》2007,81(22):12485-12495
VPg linkage to the 5' ends of picornavirus RNAs requires production of VPg-pUpU. VPg-pUpU is templated by an RNA stem-loop (the cre or oriI) found at different locations in picornavirus genomes. At least one adaptive mutation is required for human rhinovirus type 14 (HRV-14) to use poliovirus type 3 (PV-3) or PV-1 oriI efficiently. One mutation changes Leu-94 of 3C to Pro; the other changes Asp-406 of 3Dpol to Asn. By using an in vitro VPg uridylylation system for HRV-14 that recapitulates biological phenotypes, we show that the 3C adaptive mutation functions at the level of 3C(D) and the 3D adaptive mutation functions at the level of 3Dpol. Pro-94 3C(D) has an expanded specificity and enhanced stability relative to wild-type 3C(D) that leads to production of more processive uridylylation complexes. PV-1/HRV-14 oriI chimeras reveal sequence specificity in 3C(D) recognition of oriI that resides in the upper stem. Asn-406 3Dpol is as active as wild-type 3Dpol in RNA-primed reactions but exhibits greater VPg uridylylation activity due to more efficient recruitment to and retention in the VPg uridylylation complex. Asn-406 3Dpol from PV-1 exhibits identical behavior. These studies suggest a two-step binding mechanism in the assembly of the 3C(D)-oriI complex that leads to unwinding of at least the upper stem of oriI and provide additional support for a direct interaction between the back of the thumb of 3Dpol and 3C that is required for 3Dpol recruitment to and retention in the uridylylation complex. 相似文献
11.
Loscha K Oakley AJ Bancia B Schaeffer PM Prosselkov P Otting G Wilce MC Dixon NE 《Protein expression and purification》2004,33(2):304-310
In Escherichia coli, the DnaG primase is the RNA polymerase that synthesizes RNA primers at replication forks. It is composed of three domains, a small N-terminal zinc-binding domain, a larger central domain responsible for RNA synthesis, and a C-terminal domain comprising residues 434-581 [DnaG(434-581)] that interact with the hexameric DnaB helicase. Presumably because of this interaction, it had not been possible previously to express the C-terminal domain in a stably transformed E. coli strain. This problem was overcome by expression of DnaG(434-581) under control of tandem bacteriophage lambda-promoters, and the protein was purified in yields of 4-6 mg/L of culture and studied by NMR. A TOCSY spectrum of a 2mM solution of the protein at pH 7.0, indicated that its structured core comprises residues 444-579. This was consistent with sequence conservation among most-closely related primases. Linewidths in a NOESY spectrum of a 0.5mM sample in 10mM phosphate, pH 6.05, 0.1M NaCl, recorded at 36 degrees C, indicated the protein to be monomeric. Crystals of selenomethionine-substituted DnaG(434-581) obtained by the hanging-drop vapor-diffusion method were body-centered tetragonal, space group I4(1)22, with unit cell parameters a=b=142.2A, c=192.1A, and diffracted beyond 2.7A resolution with synchrotron radiation. 相似文献
12.
Iván Del Olmo Leticia López‐González Maria M. Martín‐Trillo José M. Martínez‐Zapater Manuel Piñeiro Jose A. Jarillo 《The Plant journal : for cell and molecular biology》2010,61(4):623-636
We have characterized a mutation affecting the Arabidopsis EARLY IN SHORT DAYS 7 (ESD7) gene encoding the catalytic subunit of DNA polymerase epsilon (ε), AtPOL2a. The esd7‐1 mutation causes early flowering independently of photoperiod, shortened inflorescence internodes and altered leaf and root development. esd7‐1 is a hypomorphic allele whereas knockout alleles displayed an embryo‐lethal phenotype. The esd7 early flowering phenotype requires functional FT and SOC1 proteins and might also be related to the misregulation of AG and AG‐like gene expression found in esd7. Genes involved in the modulation of chromatin structural dynamics, such as LHP1/TFL2 and EBS, which negatively regulate FT expression, were found to interact genetically with ESD7. In fact a molecular interaction between the carboxy terminus of ESD7 and TFL2 was demonstrated in vitro. Besides, fas2 mutations suppressed the esd7 early flowering phenotype and ICU2 was found to interact with ESD7. Discrete regions of the chromatin of FT and AG loci were enriched in activating epigenetic marks in the esd7‐1 mutant. We concluded that ESD7 might be participating in processes involved in chromatin‐mediated cellular memory. 相似文献
13.
We compared the effects of a sesquiterpene (ST, cacalol) and a pyrrolizidine alkaloid (PA, seneciphylline), both occurring in Adenostyles alliariae, on food choice and performance of specialist and generalist insect herbivores which are all known to feed or live on A. alliariae. In choice experiments we investigated whether the compounds were preferred, deterrent or had no effect. All specialist species Aglaostigma discolor (Hymenoptera, Tenthredinidae), Oreina cacaliae (Coleoptera, Chrysomelidae) and O. speciosissima avoided feeding when confronted with the combination of compounds. Only larvae of A. discolor avoided the single ST treatment as well. Larvae of the generalist species Callimorpha dominula (Lepidoptera, Arctiidae), Cylindrotoma distinctissima (Diptera, Tipulidae) and Miramella alpina (Caelifera, Acrididae) generally avoided feeding from PA, ST and PAST treatments. The only exception were caterpillars of C. dominula which were indiscriminate towards PA when naive, and preferred to feed on the PA treatment when they had experienced the compound before. Performance, measured as the growth of larvae on the different treatments in a no choice situation over a period of 10–17 days, was not different between treatments in the specialist leaf beetles O. cacaliae and O. speciosissima. Their avoidance of the combination treatment in the choice experiments had no obvious effect on growth when forced to feed from the treatment. In the generalist C. dominula only the high concentration combination treatment (PAST) reduced growth of the larvae due to decreased consumption. In C. distinctissima we found reduced growth in all treatments except one (PA3%). Poor growth performance in C. distinctissima was due to postingestive physiological effects of all treatments and additionally to consumption reduction in high‐dose ST treatments. Genetic variability (broad sense heritability) of growth performance metabolism varied in accordance with the specialization degree of the species. O. cacaliae, the most specialized species, had no significant heritability; O. speciosissima, the less specialized specialist, had a heritability of 0.46; C. dominula, the PA adapted generalist species, had a heritability of 0.64; C. distinctissima, the generalist with no apparent adaptations, had a heritability of 0.84. 相似文献
14.
E. Peggion S. Mammi E. Schievano R. P. Revoltella C. Galoppini P. Rovero 《Biopolymers》1999,50(5):545-554
An analogue of the human granulocyte–macrophage colony‐stimulating factor (hGM‐CSF), hGM‐CSF(13–27)–Gly–(75–87) was synthesized by solid phase methodology. This analogue was designed to comprise helices A and C of the native growth factor, linked by a glycine bridge. Helices A and C form half of a four‐helix bundle motif in the crystal structure of the native factor and are involved in the interaction with α‐ and β‐chains of the heterodimeric receptor. A conformational analysis of the synthetic analogue by CD, two‐dimensional nmr spectroscopy, and molecular dynamics calculations is reported. The analogue is in a random structure in water and assumes a partially α‐helical conformation in a 1 : 1 trifluoroethanol/water mixture. The helix content in this medium is ∼ 70%. By 2D‐nmr spectroscopy, two helical segments were identified in the sequences corresponding to helices A and C. In addition to medium‐ and short‐range NOESY connectivities, a long‐range cross peak was found between the Cβ proton of Val16 and NH proton of His87 (using the numbering of the native protein). Experimentally derived interproton distances were used as restraints in molecular dynamics calculations, utilizing the x‐ray coordinates as the initial structure. The final structure is characterized by two helical segments in close spatial proximity, connected by a loop region. This structure is similar to that of the corresponding domain in the x‐ray structure of the native growth factor in which helices A and C are oriented in an antiparallel fashion. The N‐terminal residues Gly–Pro of helix C are involved in an irregular turn connecting the two helical segments. As a consequence, helix C is appreciably shifted and slightly rotated with respect to helix A compared to the x‐ray structure of the native growth factor. These small differences in the topology of the two helices could explain the lower biological activity of this analogue with respect to that of the native growth factor. © 1999 John Wiley & Sons, Inc. Biopoly 50: 545–554, 1999 相似文献
15.
The original vectors of the bacterial two-hybrid technique developed by Karimova et al. in 1998 did not enable detection of the recombinant proteins. Here, we propose two methods resolving this problem, either using new plasmids containing the Flag epitope, or using a trick to detect the T18 domain of adenylate cyclase. Furthermore, we describe a set of vectors for TAP, CBP or 6-histidine tagging that possess the same cloning site as our two-hybrid vectors. 相似文献
16.
We have studied the role of poly(ADP-ribose) polymerase in the repair of DNA damage induced by x-ray and N-methyl N-nitro-N-nitrosoguanidine (MNNG) by using V79 chinese hamster cells, and two derivative mutant cell lines, ADPRT54 and ADPRT351, that are deficient in poly(ADP-ribose) polymerase activity. Under exponentially growing conditions these mutant cell lines are hypersensitive to x-irradiation and MNNG compared to their parental V79 cells which could be interpreted to suggest that poly(ADP-ribose) polymerase is involved in the repair of DNA damage. However, the level of DNA strand breaks induced by x-irradiation and MNNG and their rates of repair are similar in all the cell lines, thus suggesting that it may not be the difference in strand break formation or in its rate of repair that is contributing to the enhanced cell killing in exponentially growing poly(ADP-ribose) polymerase deficient cell lines. In contrast, under growth-arrested conditions, all three cell lines become similarly sensitive to both x-irradiation and MNNG, thus suggesting that poly(ADP-ribose) polymerase may not be involved in the repair of DNA damage in growth-arrested cells. These paradoxical results could be interpreted to suggest that poly(ADP-ribose) polymerase is involved in DNA repair in a cell-cycle-dependent fashion, however, it is functionally active throughout the cell cycle. To resolve this dilemma and explain these results and those obtained by many others, we propose that the normal function of poly(ADP-ribose) polymerase is to prevent DNA recombination processes and facilitate DNA ligation. 相似文献
17.
The complexes Cu(OBt)2 and Cu(OAt)2, which are derived from copper(II) and HOBt and HOAt, respectively, are shown to be more effective in suppressing racemization during solid-phase peptide synthesis (SPPS) than are those compounds currently being used for this purpose. These compounds can readily be used in conjunction with the commonly applied coupling reagents in fully automated systems for solid-phase peptide chemistry. 相似文献
18.
EAK(16) (AEAEAKAKAEAKAEAK) belongs to a novel class of self-assembling peptides, which is being investigated in research and industry. SUMO belongs to the ubiquitin class of proteins and is a promising fusion partner currently in use. In this study, EAK(16) peptide fusions with hexa-histidine tagged SUMO have been constructed using Escherichia coli based pET expression vector. Intracellular expression of the SUMO-EAK(16) fusion using LB media has been optimized. Low-cost complex media (fungal autolysates, wheat and gluten hydrolysates) produced via a novel wheat-based biorefinery have been used as alternative fermentation media to LB. Shake flask cultures using either enriched LB or complex wheat-derived media containing 2 g/L of glucose resulted in intracellular SUMO-EAK(16) fusion protein production of approximately 250 mg/L fermentation volume which corresponded to 30-35% of the total bacterial protein expressed being the fusion protein. Fusion protein productivities up to five times higher were achieved when using a bioreactor. 相似文献
19.
Tyrosine 3 of poliovirus terminal peptide VPg(3B) has an essential function in RNA replication in the context of its precursor protein, 3AB 下载免费PDF全文
Poliovirus (PV) VPg is a genome-linked protein that is essential for the initiation of viral RNA replication. It has been well established that RNA replication is initiated when a molecule of UMP is covalently linked to the hydroxyl group of a tyrosine (Y3) in VPg by the viral RNA polymerase 3D(pol), but it is not yet known whether the substrate for uridylylation in vivo is the free peptide itself or one of its precursors. The aim of this study was to use complementation analyses to obtain information about the true in vivo substrate for uridylylation by 3D(pol). Previously, it was shown that a VPg mutant, in which tyrosine 3 and threonine 4 were replaced by phenylalanine and alanine (3F4A), respectively, was nonviable. We have now tested whether wild-type forms of proteins 3B, 3BC, 3BCD, 3AB, 3ABC, and P3 provided either in trans or in cis could rescue the replication defect of the VPg(3F4A) mutations in the PV polyprotein. Our results showed that proteins 3B, 3BC, 3BCD, and P3 were unable to complement the RNA replication defect in dicistronic PV or dicistronic luciferase replicons in vivo. However, cotranslation of the P3 precursor protein allowed rescue of RNA replication of the VPg(3F4A) mutant in an in vitro cell-free translation-RNA replication system, but only poor complementation was observed when 3BC, 3AB, 3BCD, or 3ABC proteins were cotranslated in the same assay. Interestingly, only protein 3AB but not 3B and 3BC, when provided in cis by insertion of a wild-type 3AB coding sequence between the P2 and P3 domains of the polyprotein, supported the replication of the mutated genome in vivo. Elimination of cleavage between 3A and 3B in the complementing 3AB protein, however, led to a complete lack of RNA replication. Our results suggest that (i) VPg has to be delivered to the replication complex in the form of a large protein precursor (P3) to be fully functional in replication; (ii) the replication complex formed during PV replication in vivo is essentially inaccessible to proteins provided in trans, even if the complementing protein is translated from a different cistron of the same RNA genome; (iii) 3AB is the most likely precursor of VPg; and (iv) Y3 of VPg has an essential function in RNA replication in the context of both VPg and 3AB. 相似文献
20.
Shen M Reitman ZJ Zhao Y Moustafa I Wang Q Arnold JJ Pathak HB Cameron CE 《The Journal of biological chemistry》2008,283(2):875-888
Picornaviruses have a peptide termed VPg covalently linked to the 5'-end of the genome. Attachment of VPg to the genome occurs in at least two steps. First, Tyr-3 of VPg, or some precursor thereof, is used as a primer by the viral RNA-dependent RNA polymerase, 3Dpol, to produce VPg-pUpU. Second, VPg-pUpU is used as a primer to produce full-length genomic RNA. Production of VPg-pUpU is templated by a single adenylate residue located in the loop of an RNA stem-loop structure termed oriI by using a slide-back mechanism. Recruitment of 3Dpol to and its stability on oriI have been suggested to require an interaction between the back of the thumb subdomain of 3Dpol and an undefined region of the 3C domain of viral protein 3CD. We have performed surface acidic-to-alanine-scanning mutagenesis of 3C to identify the surface of 3C with which 3Dpol interacts. This analysis identified numerous viable poliovirus mutants with reduced growth kinetics that correlated to reduced kinetics of RNA synthesis that was attributable to a change in VPg-pUpU production. Importantly, these 3C derivatives were all capable of binding to oriI as well as wild-type 3C. Synthetic lethality was observed for these mutants when placed in the context of a poliovirus mutant containing 3Dpol-R455A, a residue on the back of the thumb required for VPg uridylylation. These data were used to guide molecular docking of the structures for a poliovirus 3C dimer and 3Dpol, leading to a structural model for the 3C(2)-3Dpol complex that extrapolates well to all picornaviruses. 相似文献