首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When dTMP in concentrations > 100 μM is offered to growing cells of thymidylate low-requiring yeast strains it is both mutagenic and toxic. At exposure concentrations > 1 mM dTMP interferes significantly with the low-affinity phosphate permease even in the presence of exogenous phosphate concentrations of 6 mM. Chemical analysis and 31P NMR spectroscopy reveal that excess dTMP distrubs metabolism in thymidylate low-requiring strains but not in the wild type. The most prominent changes in phosphorus-containing molecules are found in polyphosphates of which up to 20% are broken down within a 20-min time span with a concomitant increase in orthophosphate pools.  相似文献   

2.
Genetic and biochemical consequences of thymidylate stress   总被引:8,自引:0,他引:8  
We have examined the genetic and biochemical consequences of thymidylate stress in haploid and diploid strains of the simple eukaryote Saccharomyces cerevisiae (Bakers' yeast). Previously we reported that inhibition of dTMP biosynthesis causes "thymineless death" and is highly recombinagenic, but apparently not mutagenic, at the nuclear level; however, it is mutagenic for mitochondria. Concurrent provision of dTMP abolishes these effects. Conversely, excess dTMP is highly mutagenic for nuclear genes. It is likely that DNA strand breaks are responsible for the recombinagenic effects of thymidylate deprivation; such breaks could be produced by reiterative uracil incorporation and excision in DNA repair patches. In our experiments, thymidylate stress was produced both by starving dTMP auxotrophs for the required nucleotide and also by blocking de novo synthesis of thymidylate by various antimetabolites. We found that the antifolate methotrexate is a potent inducer of mitotic recombination (both gene conversion and mitotic crossing-over). This suggests that the gene amplification associated with methotrexate resistance in mammalian cells could arise, in part, by unequal sister-chromatid exchange induced by thymidylate stress. In addition, several sulfa drugs, which impede de novo folate biosynthesis, also have considerable recombinagenic activity.  相似文献   

3.
Summary A discrete class of strains of Saccharomyces cerevisiae, able to utilize, highly efficiently, exogenous deoxythymidine-5-monophosphate (dTMP), was found to be sensitive to concentrations >10 M dTMP in an otherwise complete growth medium. Excess dTMP is cytostatic and cytotoxic: 90% of exponentially growing cells lose colony forming ability within 1 h of exposure to excess dTMP in a growth medium. Uptake of dTMP, adenine, histidine, and leucine does occur during this thymidylate excess death (TED). dTMP is anabolized to higher phosphorylated nucleotides and catabolized to thymidine intracellularly. DNA synthesis is blocked under TED-conditions but not RNA and protein biosynthesis.Abbreviations dTMP deoxythymidine-5-monophosphate - dTDP deoxythymidine-5-diphosphate - dTTP deoxythymidine-5-triphosphate - dThd deoxythymidine - tmp genetic symbol for dTMP-auxotrophy - TMP genetic symbol for dTMP-prototrophy - (tlr) symbol for the phenotype of a yeast strain to efficiently utilize exogenous dTMP  相似文献   

4.
High speed centrifugal supernatant fractions of homogenates of a number of trypanosomatids were assayed for thymidylate synthase (5,10-methylene-tetrahydrofolate: dUMP C-methyltransferase, EC 2.1.1.45) activity using the method of Lomax and Greenberg (1967) J. Biol. Chem. 242, 109-113). Similar activities were detected in Crithidia fasciculata, Crithidia oncopelti, the blood forms of Trypanosoma brucei, Trypansoma congolense and Trypanosoma lewisi and the blood, intracellular and culture forms of Trypanosoma cruzi, suggesting that all species synthesize at least some thymidylate de novo. The properties of the activities in C. fasciculata and the three forms of T. cruzi were compared with those of the isofunctional bacterial and mammalian enzymes. The trypanosotamid enzyme was inhibited by Mg2+, was much more sensitive to mercaptoethanol, had higher apparent Km values for substrate (dUMP) and cofactor (tetrahydrofolate), had a higher apparent molecular weight and was markedly more sensitive to inhibition by suramin. It is, therefore a possible target for chemotherapeutic attack, either on its own or in combination with a dihydrofolate reductase inhibitor. No evidence was obtained for the regulation of the trypanosomatid enzyme, either by its product, dTMP, or by dTDP or dTTp. This result agrees with previous studies which suggested that in trypanosomatids, the level of dTMP was regulated, at least in part, by a catabolic pathway consisting of a thymidylate phosphatase and a thymidine phosphorylase which degraded the excess of dTMP to thymine.  相似文献   

5.
It is shown that highly efficient utilisers of exogenous dTMP of the yeast Saccharomyces cerevisiae are able to excrete the nucleotide with similar efficiency. Strains Pi-repressible in acid phosphatase/nucleotidase excrete dTMP at extracellular high Pi; strains constitutive for this enzymic activity excrete dThd. Excretion of thymidylate and dThd, unlike uptake of exogenous dTMP, seems to be unaffected by the extracellular pH, by the extracellular presence of dTMP, and to be rather independent of the extracellular presence of a metabolisable carbohydrate such as D(+)-glucose. A model of the yeast dTMP-incorporation principle (TIP) is presented suggesting that it is also responsible for export of endogenous thymidylate.  相似文献   

6.
Thymidylate synthase from methotrexate-resistant Lactobacillus casei rapidly lost about 90% of its catalytic activity when incubated with an equimolar concentration of IO4- at 0 degree C. Nearly complete inhibition resulted when the IO4- concentration was twice the enzyme concentration or higher. The inhibition reaction appeared to be pseudo-first-order with respect to enzyme when IO4- was in excess. The substrate dUMP, the product dTMP, and inorganic phosphate all protected the enzyme from inactivation by IO4-, with the order of effectiveness: dUMP greater than dTMP greater than phosphate. Deoxyuridine, which is not a substrate, did not protect the enzyme. Titrations with dithiobis(2-nitrobenzoate) (DTNB) showed that approximately 1.5 titratable SH groups were lost when thymidylate synthase was completely inhibited by IO4-. Essentially no reactivation occurred when periodate-inhibited enzyme was dialyzed against buffered 2-mercaptoethanol (ME) or dithiothreitol (DTT). Enzyme that had been treated with p-hydroxymercuribenzoate, DTNB, or methylmethanethiosulfonate prior to treatment with periodate could be completely reactivated with ME or DTT.  相似文献   

7.
Summary Thymidylate starvation in a yeast mutant auxotrophic for dTMP caused cell death and the induction of mutations in the mitochondrial genome. After 24 h of starvation almost all surviving cells were respiratory deficient petites. In addition, shorter episodes of dTMP starvation induced chloramphenicol and erythromycin resistant mutants, indicating the occurrence of mitochondrial point mutations. Suboptimal concentrations of exogenous thymidylate were also found to induce petites and a decline in cell viability and the magnitude of these effects was acutely dependent upon the dTMP concentration. Cesium chloride gradient analysis of DNA from cells undergoing thymineless incubation revealed a progressive loss of mitochondrial DNA, and a decrease in the molecular weight of nuclear DNA.  相似文献   

8.
Here we report on a Chlamydia trachomatis gene that complements the growth defect of a thymidylate synthase-deficient strain of Escherichia coli. The complementing gene encodes a 60.9-kDa protein that shows low level primary sequence homology to a new class of thymidylate-synthesizing enzymes, termed flavin-dependent thymidylate synthases (FDTS). Purified recombinant chlamydial FDTS (CTThyX) contains bound flavin. Results with site-directed mutants indicate that highly conserved arginine residues are required for flavin binding. Kinetic characterization indicates that CTThyX is active as a tetramer with NADPH, methylenetetrahydrofolate, and dUMP required as substrates, serving as source of reducing equivalents, methyl donor, and methyl acceptor, respectively. dTMP and H(4)folate are products of the reaction. Production of H(4)folate rather than H(2)folate, as in the classical thymidylate synthase reaction, eliminates the need for dihydrofolate reductase, explaining the trimethoprim-resistant phenotype displayed by thyA(-) E. coli-expressing CTThyX. In contrast to the extensively characterized thyA-encoded thymidylate synthases, which form a ternary complex with substrates dUMP and CH(2)H(4)folate and follow an ordered sequential mechanism, CTThyX follows a ping-pong kinetic mechanism involving a methyl enzyme intermediate. Mass spectrometry was used to localize the methyl group to a highly conserved arginine, and site-directed mutagenesis showed this arginine to be critical for thymidylate synthesizing activity. These differentiating characteristics clearly distinguish FDTS from ThyA, making this class of enzymes attractive targets for rational drug design.  相似文献   

9.
The structural gene (TMP1) for yeast thymidylate synthetase (thymidylate synthase; EC 2.1.1.45) was isolated from a chimeric plasmid bank by genetic complementation in Saccharomyces cerevisiae. Retransformation of the dTMP auxotroph GY712 and a temperature-sensitive mutant (cdc21) with purified plasmid (pTL1) yielded Tmp+ transformants at high frequency. In addition, the plasmid was tested for the ability to complement a bacterial thyA mutant that lacks functional thymidylate synthetase. Although it was not possible to select Thy+ transformants directly, it was found that all pTL1 transformants were phenotypically Thy+ after several generations of growth in nonselective conditions. Thus, yeast thymidylate synthetase is biologically active in Escherichia coli. Thymidylate synthetase was assayed in yeast cell lysates by high-pressure liquid chromatography to monitor the conversion of [6-3H]dUMP to [6-3H]dTMP. In protein extracts from the thymidylate auxotroph (tmp1-6) enzymatic conversion of dUMP to dTMP was barely detectable. Lysates of pTL1 transformants of this strain, however, had thymidylate synthetase activity that was comparable to that of the wild-type strain.  相似文献   

10.
(Deoxy)thymidylate (dTMP) kinase is an enzyme which phosphorylates dTMP to dTDP in the presence of ATP and magnesium. This enzyme is important in cellular DNA synthesis because the synthesis of dTTP, either via the de novo pathway or through the exogenous supply of thymidine, requires the activity of this enzyme. It has been suggested that the activities of the enzymes involved in DNA precursor biosynthesis, such as thymidine kinase, thymidylate synthase, thymidylate kinase, and dihydrofolate reductase, are subjected to cell cycle regulation. Here we describe the cloning of a human dTMP kinase cDNA by functional complementation of a yeast dTMP kinase temperature-sensitive mutant at the non-permissive temperature. The nucleotide sequence of the cloned human cDNA is predicted to encode a 24 KD protein that shows considerable homology with the yeast and vaccinia virus dTMP kinase enzymes. The human enzyme activity has been investigated by expressing it in yeast. In this work, we demonstrate that the cloned human cDNA, when expressed in yeast, produces dTMP kinase activity.  相似文献   

11.
12.
Anti-poxvirus therapies are currently limited to cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine], but drug-resistant strains have already been characterized. In the aim of finding a new target, the thymidylate (TMP) kinase from vaccinia virus, the prototype of Orthopoxvirus, has been overexpressed in Escherichia coli after cloning the gene (A48R). Specific inhibitors and alternative substrates of pox TMP kinase should contribute to virus replication inhibition. Biochemical characterization of the enzyme revealed distinct catalytic features when compared to its human counterpart. Sharing 42% identity with human TMP kinase, the vaccinia virus enzyme was assumed to adopt the common fold of nucleoside monophosphate kinases. The enzyme was purified to homogeneity and behaves as a homodimer, like all known TMP kinases. Initial velocity studies showed that the Km for ATP-Mg2+ and dTMP were 0.15 mm and 20 microM, respectively. Vaccinia virus TMP kinase was found to phosphorylate dTMP, dUMP and also dGMP from any purine and pyrimidine nucleoside triphosphate. 5-Halogenated dUMP such as 5-iodo-2'-deoxyuridine 5'-monophosphate (5I-dUMP) and 5-bromo-2'-deoxyuridine 5'-monophosphate (5Br-dUMP) were also efficient alternative substrates. Using thymidine-5'-(4-N'-methylanthraniloyl-aminobutyl)phosphoramidate as a fluorescent probe of the dTMP binding site, we detected an ADP-induced conformational change enhancing the binding affinity of dTMP and analogues. Several thymidine and dTMP derivatives were found to bind the enzyme with micromolar affinities. The present study provides the basis for the design of specific inhibitors or substrates for poxvirus TMP kinase.  相似文献   

13.
During early meiotic development the yeast Saccharomyces cerevisiae has a characteristic nuclear dense body (NDB). It is shown that the NDB can also be induced in vegetatively growing cells through the inhibition of thymidylate synthetase which causes depletion of the dTMP pool and arrests DNA synthesis. The observations on NDBs and recombination levels suggest that thymidylate-stressed cells may activate parts of the meiotic pathway and, conversely, cells on sporulation medium may sense, among other things, reduced thymidylate levels and respond to the several stimuli by entering the meiotic pathway.  相似文献   

14.
During the course of our research into new anti-malaria drugs, Plasmodium falciparum thymidylate kinase (PfTMK) has emerged as an important drug target because of its unique substrate specificity. Compared with human thymidylate kinase (HsTMK), PfTMK shows broader substrate specificity, which includes both purine and pyrimidine nucleotides. PfTMK accepts both 2'-deoxyguanosine monophosphate (dGMP) and thymidine monosphosphate (TMP) as substrates. We have evaluated the inhibitory activity of seven carbocyclic thymidine analogs and report the first structure-activity relationship for these inhibitors against PfTMK. The 2',3' dideoxycarbocyclic derivative of thymidine showed the most potent inhibition of the enzyme. The K(i)(dTMP) and K(i)(dGMP) values were 20 and 7 μM respectively. Thus, further modifications of carbocyclic thymidine analogs represent a good strategy for developing more powerful thymidylate kinase inhibitors.  相似文献   

15.
A method for the determination of relative values (%) of two pathways of thymidine-5'-phosphate (dTMP) formation, e.g. via de novo biosynthesis and through thymidine reutilization (salvage pathway), is proposed. It is shown that the relative values of dTMP formation through the salvage pathway in the mesometrial part of developing decidua in pregnant rats (9-11th day of ppregnancy) are 1.5-3.4 times higher as compared to those in the antimesometrial part. When dTMP biosynthesis is suppressed by aminopterine, up to 80% of total DNA thymind is synthesized at the expense of thymidine reutilization. The incorporation of 3H-thymidine into DNA was thereby increased approximately 8-fold irrespective of the decrease in the DNA synthesis rate (approximately 2.4 times). The dependence of the relative values of the thymidine reutilization pathway on the correlation of the thymidylate synthetase and thymidine kinase activities in the tissue is discussed. The ability of the cells to reutilize thymidine is interpreted in terms of their relative resistance to the effect of folic acid antagonists.  相似文献   

16.
A radiochemical assay for thymidylate synthase (EC 2.1.1.45, dTMP synthase), which permits the accurate determination of total, free, and 5-fluoro-2′-deoxyuridylate (FdUMP)-bound enzyme in cells exposed to the 5-fluoropyrimidine anticancer agents, is described. The total intracellular concentrations of dTMP synthase (free plus FdUMP-bound enzyme) in extracts from CCRF-CEM leukemic cells incubated with 5-fluoro-2′-deoxyuridine were determined following dissociation of the covalent dTMP synthase-5,10-methylenetetrahydrofolate-FdUMP ternary complex in the presence of the substrate, 2′-deoxyuridine-5′-monophosphate. The addition of substrate prevented reformation of the ternary complex during the dissociation procedure, and allowed complete recovery of FdUMP binding sites in cells exposed to a high concentration of 5-fluoro-2′-deoxyuridine. After removal of the substrate by charcoal adsorption, the concentration of total FdUMP binding sites was determined by titration of the enzyme with a saturating concentration of [6-3H]FdUMP and 5,10-methylenetetrahydrofolate. The concentration of FdUMP-bound dTMP synthase was then calculated as the difference between the total and free (without prior ternary complex disruption) enzyme values. The high sensitivity of this assay coupled with its ability to accurately quantitate both free and FdUMP-bound dTMP synthase in cells exposed to a wide range of fluoropyrimidine concentrations should make it useful for a variety of experimental and clinical studies.  相似文献   

17.
Mouse thymus thymidylate synthase has been purified to apparent electrophoretic homogeneity and compared with the enzyme from mouse tumour L1210 and Ehrlich ascites carcinoma cells. The enzyme is a dimer composed of 35,000 mol. wt monomers. Mouse thymus and tumour enzymes exhibit allosteric properties reflected by cooperative binding of both dUMP and 5-fluoro-dUMP. Activation energy for the reaction, catalyzed by thymidylate synthase from mouse tumour but not from mouse thymus, lowers at temperatures above 34 degrees C, reflecting a change of rate-limiting step in dTMP formation. MgATP at millimolar concentrations inhibits mouse thymus enzyme.  相似文献   

18.
Summary We have demonstrated the effect of different media on meiotic recombination in Drosophila melanogaster. Recombination is more frequent when the medium is deprived of bases, nucleosides and nucleotides. We have shown that two inhibitors of thymidylate (dTMP) synthesis —aminopterin inhibiting dihydrofolate reductase (DHFR) and fluorodeoxyuridine (FUdR) inhibiting thymidylate synthetase-result in a significant increase in meiotic recombination in the yellow/white region on the X chromosome of Drosophila melanogaster. Moreover the addition of thymidine to the richest medium significantly lowers normal recombination. Such studies represent a powerful tool for future studies on the mechanism of meiotic recombination.  相似文献   

19.
Two strategies have been pursued to monitor the inhibition of thymidylate (dTMP) synthase (5,10-methylenetetrahydrofolate:dUMP C-methyltransferase, EC 2.1.1.45) by thymidine (dThd) analogs in intact murine leukemia L1210 cells. The first method was based on the determination of tritium release from 2'-deoxy[5-3H]uridine [( 5-3H]dUrd) or 2'-deoxy[5-3H]cytidine [( 5-3H]dCyd); the second method was based on an estimation of the amount of dCyd incorporated into DNA as dTMP. The validity of these procedures was assessed by evaluating the inhibition of thymidylate synthase in murine leukemia L1210 cells by a series of 18 dThd analogs. There was a strong correlation between the inhibitory effects of the dThd analogs on the proliferation of L1210 cells on the one hand, and (i) their inhibitory effects on tritium release from [5-3H]dCyd (r = 0.926) and (ii) their inhibitory effects on the incorporation of dCyd into DNA dTMP (r = 0.921), on the other hand. Evaluation of tritium release from [5-3H]dCyd proved to be the most convenient method that has been described so far to measure thymidylate synthase activity and to follow the inhibitory effects of thymidylate synthase inhibitors in intact L1210 cells, since this method is rapid and very sensitive, and since it proved superior to the evaluation of tritium release from [5-3H]dUrd because it circumvents possible interactions of the inhibitors with thymidine kinase activity.  相似文献   

20.
Nature has established two mechanistically and structurally unrelated families of thymidylate synthases that produce de novo thymidylate or dTMP, an essential DNA precursor. Representatives of the alternative flavin-dependent thymidylate synthase family, ThyX, are found in a large number of microbial genomes, but are absent in humans. We have exploited the nucleotide binding pocket of ThyX proteins to identify non-substrate-based tight-binding ThyX inhibitors that inhibited growth of genetically modified Escherichia coli cells dependent on thyX in a manner mimicking a genetic knockout of thymidylate synthase. We also solved the crystal structure of a viral ThyX bound to 2-hydroxy-3-(4-methoxybenzyl)-1,4-naphthoquinone at a resolution of 2.6 Å. This inhibitor was found to bind within the conserved active site of the tetrameric ThyX enzyme, at the interface of two monomers, partially overlapping with the dUMP binding pocket. Our studies provide new chemical tools for investigating the ThyX reaction mechanism and establish a novel mechanistic and structural basis for inhibition of thymidylate synthesis. As essential ThyX proteins are found e.g. in Mycobacterium tuberculosis and Helicobacter pylori, our studies have also potential to pave the way towards the development of new anti-microbial compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号