首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of a partially purified preparation of cell walls of Escherichia coli with Triton X-100 at 23 C resulted in a solubilization of 15 to 25% of the protein. Examination of the Triton-insoluble material by electron microscopy indicated that the characteristic morphology of the cell wall was not affected by the Triton extraction. Contaminating fragments of the cytoplasmic membrane were removed by Triton X-100, including the fragments of the cytoplasmic membrane which were normally observed attached to the cell wall. Treatment of a partially purified cytoplasmic membrane fraction with Triton X-100 resulted in the solubilization of 60 to 80% of the protein of this fraction. Comparison of the Triton-soluble and Triton-insoluble proteins from the cell wall and cytoplasmic membrane fractions by polyacrylamide gel electrophoresis after removal of the Triton by gel filtration in acidified dimethyl formamide indicated that the detergent specifically solubilized proteins of the cytoplasmic membrane. The proteins solubilized from the cell wall fraction were qualitatively identical to those solubilized from the cytoplasmic membrane fraction, but were present in different proportions, suggesting that the fragments of cytoplasmic membrane which are attached to the cell wall are different in composition from the remainder of the cytoplasmic membrane of the cell. Treatment of unfractionated envelope preparations with Triton X-100 resulted in the solubilization of 40% of the protein, and only proteins of the cytoplasmic membrane were solubilized. Extraction with Triton thus provides a rapid and specific means of separating the proteins of the cell wall and cytoplasmic membrane of E. coli.  相似文献   

2.
Protein Kinase and Phosphoproteins of Vesicular Stomatitis Virus   总被引:28,自引:25,他引:3       下载免费PDF全文
Protein kinases of similar but not identical activity were found associated with vesicular stomatitis (VS) virions grown in mouse L cells, primary chicken embryo (CE) cells, and BHK-21 cells, as well as being present in VS virions grown in HeLa and Aedes albopictus cells. The virion kinase preferentially phosphorylated the nucleocapsid NS protein in vitro and to a lesser extent the envelope M protein. Other virion proteins were phosphorylated in vitro only after drastic detergent treatment. Partial evidence that the virion kinase is of cellular origin was obtained by finding reduced enzyme activity in virions released from cells pretreated with actinomycin D and cycloheximide. Selective detergent and detergent-salt fractionation of VS virions revealed that the kinase activity was present in the envelope but not the spikes. The virion kinase activity in a Triton-salt-solubilized envelope fraction could be separated from M and G proteins and partially purified by phosphocellulose column chromatography. Virions released from L, CE, and BHK-21 cells infected in the presence of [(32)P]orthophosphate were labeled almost exclusively in the NS protein. Both soluble and nucleocapsid-associated NS phosphoprotein were present in cytoplasmic extracts of VS viral-infected L cells. The origin and function of the NS phosphoprotein remain to be elucidated.  相似文献   

3.
The protein composition of inclusion bodies produced in recombinant Escherichia coli overproducing Vitreoscilla hemoglobin (VHb) was analyzed by one-dimensional and two-dimensional electrophoresis techniques. Results indicate the presence of two types of cytoplasmic aggregates of differing morphology in single bacterial cells. These aggregates also differ in their relative content of VHb and pre-beta-lactamase and are separable by differential centrifugation. Results further suggest that the cytoplasmic protein elongation factor Tu is integrated into VHb inclusion bodies. The presence of the outer membrane proteins OmpA and OmpF in inclusion body preparations is attributed to cell envelope contamination rather than specific involvement in inclusion bodies. The specificity of in vivo protein aggregation is discussed.  相似文献   

4.
Inhibitory effects of six antibiotics (kasugamycin, tetracycline, chloramphenicol, sparsomycin, puromycin and rifampicin) on the biosynthesis of envelope proteins of Escherichia coli were examined and compared with those on the biosynthesis of cytoplasmic proteins. Kasugamycin, puromycin and rifampicin were much more inhibitory to the over-all biosynthesis of cytoplasmic proteins than to that of envelope proteins. On the contrary, tetracycline and sparsomycin showed much stronger inhibitory effects on the biosynthesis of envelope proteins than on that of cytoplasmic proteins. Chloramphenicol showed little difference in its inhibitory effect on the biosynthesis of envelope proteins and cytoplasmic proteins.The envelope proteins were labeled with [3H]arginine in the presence of the antibiotics and separated by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The inhibitory effects of the antibiotics on the biosynthesis of individual envelope proteins were then examined. Inhibition patterns were found to be widely different from one envelope protein to the other. For example, the biosynthesis of one major envelope protein of molecular weight 38,000 was more resistant to kasugamycin, chloramphenicol and sparsomycin than that of the other envelope proteins. On the other hand, the biosynthesis of another major envelope protein (lipoprotein) of about 7500 molecular weight was much more resistant to puromycin and rifampicin than that of the other envelope proteins. In the case of tetracycline, little differential inhibitory effect on the biosynthesis of individual envelope proteins was observed.Stability of messenger RNAs for individual envelope proteins was also determined from the inhibitory effect of rifampicin on their biosynthesis. It was found that the average of half lives of mRNAs for major envelope proteins examined (5.5 minutes) is twice as long as the average of those of mRNAs for cytoplasmic proteins (2 minutes), except for the lipoprotein of about 7500 molecular weight which has extremely stable mRNA with a half life of 11.5 minutes. From these results the envelope proteins of E. coli appear to be biosynthesized in a somewhat different manner from that of the cytoplasmic proteins. Furthermore, at least some envelope proteins may have their own specific biosynthetic systems.  相似文献   

5.
Rickettsia prowazeki were disrupted in a French pressure cell and fractionated into soluble (cytoplasm) and envelope fractions. The envelope contained 25% of the cell protein, with the cytoplasm containing 75%. Upon density gradient centrifugation, the envelope fraction separated into a heavy band (1.23 g/cm3) and a lighter band (1.19 g/cm3). The heavy band had a high content of 2-keto-3-deoxyoctulosonic acid, a marker for bacterial lipopolysaccharide, but had no succinic dehydrogenase, a marker for cytoplasmic membrane activity, and therefore represented outer membrane. The lighter band exhibited a high succinate dehydrogenase activity, and thus contained inner (cytoplasmic) membrane. Outer membrane purified by this method was less than 5% contaiminated by cytoplasmic membrane; however, inner membrane from the gradient was as much as 30% contaminated by outer membrane. The protein composition of each cellular fraction was characterized by sodium dodecyl sulfate--polyacrylamide gel electrophoresis. The outer membrane contained four major proteins, which were also major proteins of the whole cell. The cytoplasmic membrane and soluble cytoplasm exhibited a more complex pattern on gels.  相似文献   

6.
The Characterization of Tubulin in CNS Membrane Fractions   总被引:13,自引:11,他引:2  
Abstract— Rough endoplasmic reticulum (RER), smooth endoplasmic reticulum (SER), and a plasma membrane (PM) fraction enriched in synaptic membranes were isolated from rat forebrain. The proteins in these membrane fractions were analyzed by two-dimensional gel electrophoresis (2DGE) in the isoelectric range of 5.1 to 6.0 by a modification of the O'Farrell procedure. Proteins were detected by Coomassie Brilliant Blue staining of the electrophoretograms. The results of these analyses were compared with 2DGE analysis of cytosol proteins, with particular attention given to tubulin subunits and actin. The RER contained one major protein (53K 5.4) in the β-tubulin region with a molecular weight of 53,000 and an isoelectric point of 5.4. The SER contained at least two major proteins in the β-tubulin region; one with a migration identical to 53K 5.4 and other proteins with slightly higher apparent molecular weights and more acidic isoelectric points (54K, 5.4 to 5.3), identical to cytoplasmic β-tubulin. The PM fraction also contained multiple overlapping proteins (54K, 5.4 to 5.3) in the β-tubulin area and a trace amount of the 53K 5.4 protein. The proteins in the β-tubulin region were removed from the 2DGE electrophoretogram and digested by Staphylococcus aureus V8 protease, and the peptides separated on one-dimensional polyacrylamide gels. The peptide patterns of 53K 5.4 protein from RER and SER were almost identical and differed significantly from the cytoplasmic β-tubulin pattern; however, the peptide maps of the PM and SER β-tubulin region were identical to the cytoplasmic β-tubulin. The 2DGE analysis of RER did not contain proteins in the region of cytoplasmic α-tubulin. SER and PM contained proteins in the α-tubulin region with a similar, but not identical, peptide analysis to cytoplasmic α-tubulin. Significant amounts of actin were detected in 2DGE analysis of SER and PM, and the peptide analysis of the actin was identical to the cytoplasmic actin analysis. The RER fraction contained only trace amounts of actin. The cytosol and all membrane fractions contained a protein (68K 5.6) found among microtubule-associated proteins, as judged by molecular weight and isoelectric point. Several proteins present in all membrane fractions (61K 5.1 and 58K 5.1) bound to concanavalin A agarose.  相似文献   

7.
游文章  雍文岳 《动物学报》1995,41(4):354-361
为了探讨饲料可消化能值同饲料营养成分之间的关系,用Cr2O3作指示物,分别测定了鱼粉和大豆粕等饲料原料的草鱼(Ctenopharyngodon idella)团头鲂(Megalobrama amblyocephala Yih)青鱼(Myloparyngodon piceus)鱼种饲料的可消化能,用微机计算分析测试结果,发现饲料可消化能值随饲料蛋白质和/或脂肪食量增加而增加;随饲料无氮浸出物和/或纤维含量增加而降低。同时,“优选”出了有一定实用价值的估算草鱼、团头鲂和青鱼鱼种饲料可消化能值的回归方程。  相似文献   

8.
Envelope preparations obtained by passing Escherichia coli cells through a French pressure cell were separated by sucrose density gradient centrifugation into two distinct particulate fractions. The fraction with the higher density was enriched in fragments derived from the cell wall, as indicated by the high content of lipopolysaccharide, the low content of cytochromes, and the similar morphology of the fragments and intact cell walls. The less-dense fraction was enriched in vesicles derived from the cytoplasmic membrane, as indicated by the enrichment of cytochromes, the enzymes lactic and succinic dehydrogenase and nitrate reductase, and the morphological similarity of the vesicles to intact cytoplasmic membrane. Both fractions were rich in phospholipid. The protein composition was compared by mixing the cytoplasmic membrane-enriched fraction from a (3)H-labeled culture with the cell wall-enriched fraction from a (14)C-labeled culture and examining the resulting mixture by gel electrophoresis. Thirty-four bands of radioactive protein were resolved; of these, 27 were increased two- to fourfold in the cytoplasmic membrane-enriched fraction, whereas 6 were similarly increased in the cell wall-enriched fraction. One of the proteins which is clearly localized in the cell wall is the protein with a molecular weight of 44,000, which is the major component of the envelope. This protein accounted for 70% of the total protein of the cell wall, and its occurrence in the envelope from spheroplasts suggests that it is a structural protein of the outer membranous component of the cell wall.  相似文献   

9.
It was previously reported that truncation or proteolytic removal of the C-terminal 16 amino acids (the R peptide) from the cytoplasmic tail of the murine leukemia virus (MuLV) envelope protein greatly increases its fusion activity. In this study, to investigate the specificity of the effect of the R peptide on the fusion activity of viral envelope proteins, we expressed simian immunodeficiency virus (SIV)-MuLV chimeric proteins in which the entire cytoplasmic tail of the SIV envelope protein was replaced by either the full-length MuLV cytoplasmic tail or a truncated MuLV cytoplasmic tail with the R peptide deleted. Extensive fusion of CD4-positive cells with the chimeric protein containing a truncated MuLV cytoplasmic tail was observed. In contrast, no cell fusion activity was found for the chimeric protein with a full-length MuLV cytoplasmic tail. We constructed another SIV-MuLV chimeric protein in which the MuLV R peptide was added to an SIV envelope protein cytoplasmic tail 17 amino acids from its membrane-spanning domain. No fusion activity was observed within this construct, while the corresponding truncated SIV envelope protein lacking the R peptide showed extensive fusion activity. No significant difference in the transport or surface expression was observed among the various SIV-MuLV chimeric proteins and the truncated SIV envelope protein. Our results thus demonstrate that the MuLV R peptide has profound inhibitory effects on virus-induced cell fusion, not only with MuLV but also in a distantly related retroviral envelope protein which utilizes a different receptor and fuses different cell types.  相似文献   

10.
Wyma DJ  Kotov A  Aiken C 《Journal of virology》2000,74(20):9381-9387
Assembly of infectious human immunodeficiency virus type 1 (HIV-1) virions requires incorporation of the viral envelope glycoproteins gp41 and gp120. Several lines of evidence have suggested that the cytoplasmic tail of the transmembrane glycoprotein, gp41, associates with Pr55(Gag) in infected cells to facilitate the incorporation of HIV-1 envelope proteins into budding virions. However, direct evidence for an interaction between gp41 and Pr55(Gag) in HIV-1 particles has not been reported. To determine whether gp41 is associated with Pr55(Gag) in HIV-1 particles, viral cores were isolated from immature HIV-1 virions by sedimentation through detergent. The cores contained a major fraction of the gp41 that was present on untreated virions. Association of gp41 with cores required the presence of the gp41 cytoplasmic tail. In HIV-1 particles containing a functional protease, a mutation that prevents cleavage of Pr55(Gag) at the matrix-capsid junction was sufficient for the detergent-resistant association of gp41 with the isolated cores. In addition to gp41, a major fraction of virion-associated gp120 was also detected on immature HIV-1 cores. Isolation of cores under conditions known to disrupt lipid rafts resulted in the removal of a raft-associated protein incorporated into virions but not the HIV-1 envelope proteins. These results provide biochemical evidence for a stable interaction between Pr55(Gag) and the cytoplasmic tail of gp41 in immature HIV-1 particles. Moreover, findings in this study suggest that the interaction of Pr55(Gag) with gp41 may regulate the function of the envelope proteins during HIV-1 maturation.  相似文献   

11.
Four major pencillin-binding proteins (PBPs) were detected in membranes ofRhodospirillum rubrum labeled with radioiodinated penicillin X. These PBPs were localized primarily in the cytoplasmic membrane of aerobic cells, which had a higher content of PBPs relative to protein than did the outer membrane or a hybrid fraction containing both cytoplasmic and outer membranes. Nonuniform distribution of PBPs in the cytoplasmic membrane suggests that this membrane may be organized into functional domains. The cell envelope of phototrophic cells, which is composed of both cytoplasmic and outer membranes, was enriched in PBPs in comparison with the intracytoplasmic chromatophore membrane. Selective binding of some -lactams to individual PBPs was demonstrated by competition experiments. The effects of several \-lactams in vivo and the selectivity of binding were compared to evaluate the roles of individual PBPs in the cell.  相似文献   

12.
Incorporation of human foamy virus (HFV) envelope proteins into murine leukemia virus (MuLV) particles was studied in a transient transfection packaging cell system. We report here that wild-type HFV envelope protein can pseudotype MuLV particles, albeit at low efficiency. Complete or partial removal of the HFV cytoplasmic tail resulted in an abolishment or reduction of HFV-mediated infectivity, implicating a role of the HFV envelope cytoplasmic tail in the pseudotyping of MuLV particles. Mutation of the endoplasmic reticulum retention signal present in the HFV envelope cytoplasmic tail did not result in a higher relative infectivity of pseudotyped retroviral vectors. However, a chimeric envelope protein, containing an unprocessed MuLV envelope cytoplasmic domain fused to a truncated HFV envelope protein, showed an enhanced HFV specific infectivity as a result of an increased incorporation of chimeric envelope proteins into MuLV particles.  相似文献   

13.
The cytoplasmic tail of the immature Moloney murine leukemia virus (MoMuLV) envelope protein is approximately 32 amino acids long. During viral maturation, the viral protease cleaves this tail to release a 16-amino-acid R peptide, thereby rendering the envelope protein fusion competent. A series of truncations, deletions, and amino acid substitutions were constructed in this cytoplasmic tail to examine its role in fusion and viral transduction. Sequential truncation of the cytoplasmic tail revealed that removal of as few as 11 amino acids resulted in significant fusion when the envelope protein was expressed in NIH 3T3 cells, similar to that seen following expression of an R-less envelope (truncation of 16 amino acids). Further truncation of the cytoplasmic tail beyond the R-peptide cleavage site toward the membrane-spanning region had no additional effect on the level of fusion observed. In contrast, some deletions and nonconservative amino acid substitutions in the membrane-proximal region of the cytoplasmic tail (residues L602 to F605) reduced the amount of fusion observed in XC cell cocultivation assays, suggesting that this region influences the fusogenicity of full-length envelope protein. Expression of the mutant envelope proteins in a retroviral vector system revealed that decreased envelope-mediated cell-cell fusion correlated with a decrease in infectivity of the resulting virions. Additionally, some mutant envelope proteins which were capable of mediating cell-cell fusion were not efficiently incorporated into retroviral particles, resulting in defective virions. The cytoplasmic tail of MoMuLV envelope protein therefore influences both the fusogenicity of the envelope protein and its incorporation into virions.  相似文献   

14.
An envelope preparation containing the cell wall and cytoplasmic membrane of Escherichia coli was obtained by breaking the cells with a French pressure cell and sedimentating the envelope fraction by ultracentrifugation. This fraction was prepared for polyacrylamide gel electrophoresis by dissolving the protein in an acidified N,N'-dimethylformamide, removing lipids by gel filtration in the same organic solvent and removing the solvent by dialysis against aqueous urea solutions. More than 80% of the total protein of the envelope fraction was recovered in soluble form. Electrophoresis on sodium dodecyl sulfate-containing gels yielded from 20 to 30 well-resolved bands of protein. One major protein band was observed on the gels. This protein had a molecular weight of 44,000 and accounted for as much as 40% of the total protein of the envelope fraction. A double-labeling technique was used to examine the protein composition of the envelope fraction from cells grown under different sets of conditions which result in large changes in the levels of membrane-bound oxidative enzymes. These changes in growth conditions resulted in only minor alterations in the protein profiles observed on the gels, suggesting that this organism is able to adapt to changes in growth environment with only minor modifications of the major proteins of the cell envelope.  相似文献   

15.
When the envelope fraction of Escherichia coli was treated by trypsin, about 40% of total envelope proteins were removed from the fraction without changing its phospholipid content. Analysis of envelope proteins by acrylamide gel electrophoresis in 0.5% sodium dodecyl sulfate revealed that trypsin treatment was very specific; one of the major proteins (molecular weight, 38,000) and all proteins of molecular weight greater than 70,000 were completely removed by the treatment. On the other hand, three other major proteins were found to be resistant to the treatment, including protein Y, which was previously shown to be related to deoxyribonucleic acid replication. The trypsin treatment of the envelope fractions composed of a five electron-dense layered structure formed vesicles with a triple-layered membrane (two electron-dense layers). Pronase treatment of the envelope fraction removed about 60% of the envelope proteins without changing its phospholipid content. A major protein of molecular weight of 58,000 was found to be the only protein resistant to the Pronase treatment. Application of these treatments is useful for purification and structural studies of envelope proteins.  相似文献   

16.
The cytoplasmic sites of synthesis in L cells of the protein and ribonucleic acid species of vesicular stomatitis virus were studied by polyacrylamide gel electrophoresis after fractionation of membrane and other cytoplasmic components by the Caliguiri-Tamm technique. The viral spike protein (glycoprotein G) was found primarily associated with a smooth membrane fraction which is rich in plasma membrane; the G protein was also present in fractions containing rough endoplasmic reticulum. The nonglycosylated envelope protein S (also called M) was found in the smooth membrane fractions but was more abundant in endoplasmic reticulum-enriched fractions. Longer labeling resulted in detection of nucleoprotein N, as well as other minor nucleocapsid proteins L and NS1, in the cellular membrane fractions. The N protein appeared to be made in membrane-free cytoplasm along with progeny ribonucleic acid and later became associated with membrane containing G and S viral proteins.  相似文献   

17.
Outer membrane materials prepared from an Escherichia coli ompA (tolG) strain do not contain one of the major outer membrane proteins found in ompA+ strains. This protein has been purified in high yield from detergent-solubilized cell envelope material prepared from an ompA+ strain by preparative electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate. The purified protein is homogeneous in three electrophoretic systems, contains 2 mol of reducing sugar/mol of peptide and has alanine as the N-terminal amino acid. The amino acid composition is nearly identical to outer membrane protein II or B purified by others from incompletely solubilized cell envelope material. Thus, the fraction of outer membrane protein II or B that is difficult to solubilize is identical with the more readily solubilized fraction.  相似文献   

18.
To characterize envelope proteins encoded by the chloroplast genome, envelopes were isolated from Chlamydomonas reinhardtii cells labeled with [35S] sulfate while blocking synthesis by cytoplasmic ribosomes. One and two-dimensional gel electrophoresis of envelopes and fluorography revealed four highly labeled proteins. Two with masses of 29 and 30 kDa and pI 5.5 were absent from the stroma and thylakoid fractions, while the others at 54 kDa, pI 5.2 and 61 kDa, pI 5.4 were detected there in smaller amounts. The 29- and 30-kDa proteins were associated with outer envelope membranes separated from inner envelope membranes after chloroplast lysis in hypertonic solution. A 32-kDa protein not labeled by [35S]sulfate was found exclusively in the inner membrane fraction, suggesting the existence of a phosphate translocator in C. reinhardtii. To identify envelope proteins exposed on the chloroplast surface, isolated active chloroplasts were surface-labeled with 125I and lactoperoxidase. The 54-kDa, pI 5.2 protein as well as a protein corresponding to either of the 29- or 30-kDa proteins described above were among the labeled components. These results show that envelope proteins of C. reinhardtii are encoded by the chloroplast genome and two are located on the outer envelope membranes.  相似文献   

19.
Incorporation of human immunodeficiency virus type 1 (HIV-1) envelope proteins into vesicular stomatitis virus (VSV) particles was studied in a system that allows expressed envelope proteins to rescue phenotypically a temperature-sensitive mutant of VSV (tsO45). This mutant exhibits defective transport of its own envelope glycoprotein (G) and can be rescued by simultaneous expression of wild-type G protein from cDNA. We report here that a hybrid HIV-1-VSV protein containing the extracellular and transmembrane domains of the HIV-1 envelope protein fused to the cytoplasmic domain of VSV G protein was able to rescue the tsO45 mutant lacking the G protein, while the wild-type HIV-1 envelope protein was not. The VSV(HIV) pseudotypes obtained infected only CD4+ cells and were neutralized specifically by anti-HIV-1 sera. Our results indicate that the cytoplasmic tail of the VSV glycoprotein contains an independent signal capable of directing a foreign protein into VSV particles. The VSV(HIV) pseudotypes generated here were prepared in the absence of HIV-1 and should be useful for identifying molecules that block HIV-1 entry.  相似文献   

20.
E Katz  E J Wolffe    B Moss 《Journal of virology》1997,71(4):3178-3187
The outer envelope of the extracellular form of vaccinia virus (EEV) is derived from the Golgi membrane and contains at least six viral proteins. Transfection studies indicated that the EEV protein encoded by the B5R gene associates with Golgi membranes when synthesized in the absence of other viral products. A domain swapping strategy was then used to investigate the possibility that the B5R protein contains an EEV targeting signal. We constructed chimeric genes encoding the human immunodeficiency virus (HIV) type 1 glycoprotein with the cytoplasmic and transmembrane domains replaced by the corresponding 42-amino-acid C-terminal segment of the B5R protein. Recombinant vaccinia viruses that stably express a chimeric B5R-HIV protein or a control HIV envelope protein with the original cytoplasmic and transmembrane domains were isolated. Cells infected with recombinant vaccinia viruses that expressed either the unmodified or the chimeric HIV envelope protein formed syncytia with cells expressing the CD4 receptor for HIV. However, biochemical and microscopic studies demonstrated that the HIV envelope proteins with the B5R cytoplasmic and transmembrane domains were preferentially targeted to the EEV. These data are consistent with the presence of EEV localization signals in the cytoplasmic and transmembrane domains of the B5R protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号