首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Through their domestication and subsequent selection, sheep have been adapted to thrive in a diverse range of environments. To characterise the genetic consequence of both domestication and selection, we genotyped 49,034 SNP in 2,819 animals from a diverse collection of 74 sheep breeds. We find the majority of sheep populations contain high SNP diversity and have retained an effective population size much higher than most cattle or dog breeds, suggesting domestication occurred from a broad genetic base. Extensive haplotype sharing and generally low divergence time between breeds reveal frequent genetic exchange has occurred during the development of modern breeds. A scan of the genome for selection signals revealed 31 regions containing genes for coat pigmentation, skeletal morphology, body size, growth, and reproduction. We demonstrate the strongest selection signal has occurred in response to breeding for the absence of horns. The high density map of genetic variability provides an in-depth view of the genetic history for this important livestock species.  相似文献   

2.
Galápagos tortoises represent the only surviving lineage of giant tortoises that exhibit two different types of shell morphology. The taxonomy of Galápagos tortoises was initially based mainly on diagnostic morphological characters of the shell, but has been clarified by molecular studies indicating that most islands harbor monophyletic lineages, with the exception of Isabela and Santa Cruz. On Santa Cruz there is strong genetic differentiation between the two tortoise populations (Cerro Fatal and La Reserva) exhibiting domed shell morphology. Here we integrate nuclear microsatellite and mitochondrial data with statistical analyses of shell shape morphology to evaluate whether the genetic distinction and variability of the two domed tortoise populations is paralleled by differences in shell shape. Based on our results, morphometric analyses support the genetic distinction of the two populations and also reveal that the level of genetic variation is associated with morphological shell shape variation in both populations. The Cerro Fatal population possesses lower levels of morphological and genetic variation compared to the La Reserva population. Because the turtle shell is a complex heritable trait, our results suggest that, for the Cerro Fatal population, non-neutral loci have probably experienced a parallel decrease in variability as that observed for the genetic data.  相似文献   

3.
The axial skeleton is routinely examined in standard developmental toxicity bioassays and has proven to be sensitive to a wide variety of chemical agents. Dysmorphogenesis in the skull, vertebral column and ribs has been described in both human populations and in laboratory animals used to assess potential adverse developmental effects. This article emphasizes vertebrae and rib anomalies both spontaneous and agent induced. Topics discussed include the morphology of the more common effects; incidences in both human and experimental animal populations; the types of anomalies induced in the axial skeleton by methanol, boric acid, valproic acid and others; the postnatal persistence of common skeletal anomalies; and the genetic control of the development of the axial skeleton. Tables of the spontaneous incidence of axial anomalies in both humans and animals are provided.  相似文献   

4.
Most of the white-tailed eagle (Haliaeetus albicilla) populations in Europe experienced dramatic declines during the twentieth century. However, owing to intense conservation actions and the ban of DDT and other persistent pollutants, populations are currently recovering. We show that despite passing through demographic bottlenecks, white-tailed eagle populations have retained significant levels of genetic diversity. Both genetic and ringing data indicate that migration between populations has not been a major factor for the maintenance of genetic variability. We argue that the long generation time of eagles has acted as an intrinsic buffer against loss of genetic diversity, leading to a shorter effective time of the experienced bottleneck. Notably, conservation actions taken in several small sub-populations have ensured the preservation of a larger proportion of the total genetic diversity than if conservation had focused on the population stronghold in Norway. For conservation programmes targeting other endangered, long-lived species, our results highlight the possibility for local retention of high genetic diversity in isolated remnant populations.  相似文献   

5.
The terrestrial orchid speciesNeotinea ustulata has recently been split into two subspecies, differing remarkably in their flowering time, but only slightly in morphological characteristics, which makes their taxonomic status uncertain. We have analyzed morphometric and genetic differences between the early- and late-flowering populations in Central Europe. Our results on morphology are ambiguous. Indirect gradient analysis has not shown a distinct separation of early- and late-flowering individuals in the ordination space. However, according to MANOVA, populations of early- and late-flowering plants can be distinguished by plant height, leaf length, numbers of basal (rosette) and stem leaves and even better by certain ratios of these numbers. All genetic analyses, on the other hand, are definite and consistently distinguish two groups. Random amplified polymorphic DNA (RAPD) markers have shown that the early- and late-flowering populations differ significantly from one another. Principal coordinate analysis (PCoA) based on presence/absence matrix of RAPD bands separated the two groups, implying that the difference in flowering phenology could form an effective barrier to gene exchange. Partitioning of genetic diversity in analysis of molecular variance (AMOVA) has shown that the genetic divergence between the two groups, early- and late-flowering populations, is somewhat greater (33%) than the genetic variability among populations within particular group (23%). Using the Mantel test, we found that genetic differentiation coefficients between populations closely correspond to their geographic distribution. After elimination of the effect of sample origin from the model, direct gradient analysis (RDA) has shown that the early- and late-flowering groups differ significantly in their RAPD spectra. To conclude, our results indicate the presence of two genetically and phenologically distinct taxa, but the weak morphological differentiation supports the taxonomic rank of variety rather than subspecies.  相似文献   

6.
A Genetic Framework for Grain Size and Shape Variation in Wheat   总被引:1,自引:0,他引:1  
Grain morphology in wheat (Triticum aestivum) has been selected and manipulated even in very early agrarian societies and remains a major breeding target. We undertook a large-scale quantitative analysis to determine the genetic basis of the phenotypic diversity in wheat grain morphology. A high-throughput method was used to capture grain size and shape variation in multiple mapping populations, elite varieties, and a broad collection of ancestral wheat species. This analysis reveals that grain size and shape are largely independent traits in both primitive wheat and in modern varieties. This phenotypic structure was retained across the mapping populations studied, suggesting that these traits are under the control of a limited number of discrete genetic components. We identified the underlying genes as quantitative trait loci that are distinct for grain size and shape and are largely shared between the different mapping populations. Moreover, our results show a significant reduction of phenotypic variation in grain shape in the modern germplasm pool compared with the ancestral wheat species, probably as a result of a relatively recent bottleneck. Therefore, this study provides the genetic underpinnings of an emerging phenotypic model where wheat domestication has transformed a long thin primitive grain to a wider and shorter modern grain.  相似文献   

7.
Although morphological plasticity has been observed in a variety of taxa, few experimental studies have compared the relative proportion of morphological variability that is accounted for by environmentally induced plasticity, and how much is because of genetically based differences among populations. We compared the morphology of six rainbow trout (Oncorhynchus mykiss) populations from different ecotypic categories that were raised under flowing vs. standing-water conditions. Our data indicate that both environmental conditions and ecotypic differences account for a significant proportion of variation in morphology. Among ecotype effects, however, accounted for a much larger proportion of morphological variability than environmental conditions. Rainbow trout from stream populations had deeper caudal peduncles, and longer fins than lake populations, and rainbow trout from a piscivorous population had larger mouth and head lengths than all other ecotypes. Environmentally induced differences in morphology were primarily related to differences in mouth and head lengths, as well as fin length. Relative to morphometric differences from natural rainbow trout populations, most characteristics deviated in the same direction in our experimental populations. Our data indicate that morphological differences across rainbow trout populations have a genetic basis and may represent locally adaptive characteristics and highlight the role of ecology in promoting phenotypic divergence.  相似文献   

8.
How might changes in developmental regulatory pathways underlie evolutionary changes in morphology? Here we focus on a particular pathway regulated by a secreted, signaling peptide, Endothelin1 (Edn1). Developmental genetic analyses show the Edn1-pathway to be crucial for hyomandibular patterning, and we discuss our work with zebrafish suggesting how the signal may function in regulating numbers of skeletal elements, their sizes and their shapes. We then review a broader collection of comparative studies that examine morphological evolution of a subset of the same skeletal elements-the opercular-branchiostegal series of bones of the hyoid arch. We find that phenotypic changes in zebrafish mutants copy evolutionary changes that recur along many actinopterygian lineages. Hence the developmental genetic studies are informative for providing candidate pathways for macroevolution of facial morphology, as well as for our understanding of how these pathways work.  相似文献   

9.
Morphological and molecular studies on a tardigrade species have been carried out to verify the possibility of using a DNA barcoding approach for species identification in this phylum. Macrobiotus macrocalix Bertolani & Rebecchi, 1993 was chosen as the test species since it belongs to a group of species in which the taxonomy is quite problematic. Animals and eggs belonging to three Italian and one Swedish populations have been investigated. Both morphological and molecular analyses show that all the populations belong to the same species. The low genetic distances recorded among the studied populations (0.3-1.0%) and the high genetic distance (15.9-16.3%) between these populations and a closely related species confirm the possibility of identifying a specimen of this species by its cytochrome oxidase subunit I sequence. Data from other authors support our results indicating that DNA barcoding can be applied to tardigrades. With our protocols, we have obtained voucher specimens that enable us to show a correspondence between morphology and molecular data.  相似文献   

10.
Food-caching birds rely on stored food to survive the winter, and spatial memory has been shown to be critical in successful cache recovery. Both spatial memory and the hippocampus, an area of the brain involved in spatial memory, exhibit significant geographic variation linked to climate-based environmental harshness and the potential reliance on food caches for survival. Such geographic variation has been suggested to have a heritable basis associated with differential selection. Here, we ask whether population genetic differentiation and potential isolation among multiple populations of food-caching black-capped chickadees is associated with differences in memory and hippocampal morphology by exploring population genetic structure within and among groups of populations that are divergent to different degrees in hippocampal morphology. Using mitochondrial DNA and 583 AFLP loci, we found that population divergence in hippocampal morphology is not significantly associated with neutral genetic divergence or geographic distance, but instead is significantly associated with differences in winter climate. These results are consistent with variation in a history of natural selection on memory and hippocampal morphology that creates and maintains differences in these traits regardless of population genetic structure and likely associated gene flow.  相似文献   

11.
The extent to which convergent adaptation to similar ecological niches occurs by a predictable genetic basis remains a fundamental question in biology. Threespine stickleback fish have undergone an adaptive radiation in which ancestral oceanic populations repeatedly colonized and adapted to freshwater habitats. In multiple lakes in British Columbia, two different freshwater ecotypes have evolved: a deep‐bodied benthic form adapted to forage near the lake substrate, and a narrow‐bodied limnetic form adapted to forage in open water. Here, we use genome‐wide linkage mapping in marine × benthic F2 genetic crosses to test the extent of shared genomic regions underlying benthic adaptation in three benthic populations. We identify at least 100 Quantitative Trait Loci (QTL) harboring genes influencing skeletal morphology. The majority of QTL (57%) are unique to one cross. However, four genomic regions affecting eight craniofacial and armor phenotypes are found in all three benthic populations. We find that QTL are clustered in the genome and overlapping QTL regions are enriched for genomic signatures of natural selection. These findings suggest that benthic adaptation has occurred via both parallel and nonparallel genetic changes.  相似文献   

12.
Bailey NW  Gwynne DT  Ritchie MG 《Heredity》2005,95(2):166-173
Phase polyphenisms are usually thought to reflect plastic responses of species, independent of genetic differences; however, phase differences could correlate with genetic differentiation for various reasons. Mormon crickets appear to occur in two phases that differ in morphology and behaviour. Solitary individuals are cryptic and sedentary whereas gregarious individuals form bands, migrate, and are aposematically coloured. These traits have been thought to be phenotypically plastic and induced by environmental conditions. However, there has been no previous investigation of the extent of genetic differences between solitary and gregarious populations of this widespread North American species. We sequenced two mitochondrial genes, COII and COIII, in samples of Mormon crickets from gregarious populations west of the continental divide and solitary mountain populations primarily east of the divide. Sequencing revealed two genetically distinct clades that broadly correspond with the solitary eastern populations and the mainly gregarious western populations. We used coalescent modelling to test the hypothesis that the species consists of two deep genetic clades, as opposed to a series of equally distinct populations. Results allowed us to reject the null hypothesis that a radiation independent of phase produced these clades, and molecular clock estimates indicate the time of divergence to be approximately 2 million years ago. This work establishes that the solitary populations found in the mountains on the eastern slope are part of a clade that is genetically distinct from the western populations, which are primarily gregarious, and the implications of this apparent correlation between phase and genetic differentiation are discussed.  相似文献   

13.
One of the objectives of paleopathology is to clarify the role of disease in the evolution of human groups. The recovery of DNA and immunoglobulins from archeological human skeletal tissue offers a method for enhancing and expanding our knowledge about the presence and significance of disease in past human populations. DNA also might reveal the presence of genetic disease. Immunoglobulins recovered from archeological bone indicate some of the diseases to which an individual was exposed during life. This information also provides supporting evidence for anatomical observations of skeletal disease. This is illustrated by the identification of treponemal antibody in an archeological skeleton that has gross lesions suggestive of treponematosis. Similar biochemical methods could be applied to other research problems to clarify the presence of various syndromes of the inflammatory erosive arthropathies, such as rheumatoid arthritis, in New World archeological populations. Some of these syndromes are associated with DNA sequences and specific proteins that are recoverable from archeological skeletal tissue.  相似文献   

14.
Currently, there exists a limited knowledge on the extent of temporal variation in population genetic parameters of natural populations. Here, we study the extent of temporal variation in population genetics by genotyping 151 genome-wide SNP markers polymorphic in 466 individuals collected from nine populations of the annual plant Arabidopsis thaliana during 4 years. Populations are located along an altitudinal climatic gradient from Mediterranean to subalpine environments in NE Spain, which has been shown to influence key demographic attributes and life cycle adaptations. Genetically, A. thaliana populations were more variable across space than over time. Common multilocus genotypes were detected several years in the same population, whereas low-frequency multilocus genotypes appeared only 1 year. High-elevation populations were genetically poorer and more variable over time than low-elevation populations, which might be caused by a higher overall demographic instability at higher altitudes. Estimated effective population sizes were low but also showed a significant decreasing trend with increasing altitude, suggesting a deeper impact of genetic drift at high-elevation populations. In comparison with single-year samplings, repeated genotyping over time captured substantially higher amount of genetic variation contained in A. thaliana populations. Furthermore, repeated genotyping of populations provided novel information on the genetic properties of A. thaliana populations and allowed hypothesizing on their underlying mechanisms. Therefore, including temporal genotyping programmes into traditional population genetic studies can significantly increase our understanding of the dynamics of natural populations.  相似文献   

15.
Mitochondrial DNA (mtDNA) was extracted and analyzed from the skeletal remains of 44 individuals, representing four prehistoric populations, and compared to that from two other prehistoric and several contemporary Native American populations to investigate biological relationships and demographic history in northeastern North America. The mtDNA haplogroup frequencies of ancient human remains from the Morse (Red Ocher tradition, 2,700 BP) and Orendorf (Mississippian tradition, 800 BP) sites from the Central Illinois River Valley, and the Great Western Park (Western Basin tradition, 800 BP) and Glacial Kame (2,900 BP) populations from southwestern Ontario, change over time while maintaining a regional continuity between localities. Haplotype patterns suggest that some ancestors of present day Native Americans in northeastern North America have been in that region for at least 3,000 years but have experienced extensive gene flow throughout time, resulting, at least in part, from a demic expansion of ancestors of modern Algonquian-speaking people. However, genetic drift has also been a significant force, and together with a major population crash after European contact, has altered haplogroup frequencies and caused the loss of many haplotypes.  相似文献   

16.
Short stature is a common pediatric problem. It may occur rarely as a result of genetic disorders. Leri-Weill dyschondrosteosis (LWD) is one of the rare genetic disorders of skeletal system resulting with short stature. It is characterized by shortness of stature and Madelung deformity of the wrist. Here we report a case of LWD with some skeletal stigmas of Turner syndrome. She has also depressed medial tibial condyles that to our knowledge, has not previously been reported in LWD.  相似文献   

17.
Little is known about the genetic and molecular mechanisms that underlie adaptive phenotypic variation in natural populations or whether similar genetic and molecular mechanisms are utilized when similar adaptive phenotypes arise in independent populations. The threespine stickleback (Gasterosteus aculeatus) is a good model system to investigate these questions because these fish display a large amount of adaptive phenotypic variation, and similar adaptive phenotypes have arisen in multiple, independent stickleback populations. A particularly striking pattern of parallel evolution in sticklebacks is reduction of skeletal armor, which has occurred in numerous freshwater locations around the world. New genetic and genomic tools for the threespine stickleback have made it possible to identify genes that underlie loss of different elements of the skeletal armor. Previous work has shown that regulatory mutations at the Pitx1 locus are likely responsible for loss of the pelvic structures in independent stickleback populations from North America and Iceland. Here we show that the Pitx1 locus is also likely to underlie pelvic reduction in a Scottish population of threespine stickleback, which has apparently evolved pelvic reduction under a different selection regime than the North American populations.  相似文献   

18.
张雅军  张旭 《人类学学报》2021,40(6):981-992
本文通过对新疆且末县托乎拉克勒克乡加瓦艾日克村29座墓地出土的人骨标本进行了观察和分析。共鉴定出150例个体,其中男性73例、女性50例、性别不明者27例。男性、女性平均死亡年龄分别为36.3岁和35.6岁。形态学的分析指出且末人群更多地具有欧洲人种的特点,如鼻根凹陷深、鼻骨明显突起及犬齿窝深等。聚类分析结果显示且末人群与新疆古代人群焉布拉克C组、察吾呼四号组、多岗等人群较为接近。文章还根据线粒体DNA的分析结果讨论了且末古代人群的种族属性,古DNA的分析揭示出且末人群存在欧亚大陆东、西部人群的基因交流,并进一步指出其西部类型的成分来源极有可能来自西伯利亚,其东部成分可能来自西伯利亚或中国甘肃,只是东西方人群的基因融合规模小而且处于初级阶段,所以并未在颅面部形态特征上有大规模明显的改变。此外,本文从考古学文化、体质人类学研究以及古DNA等几个方面探讨了新疆地区古代人群的种族成分来源。本文还对且末人群的身高进行了推算,对一例变形颅骨以及骨骼上的创伤作了简要描述。  相似文献   

19.
It has been suggested that phenotypic plasticity can facilitate evolutionary diversification of organisms. If life-history and morphological diversification across a lineage is mirrored in diversification in the same traits due to phenotypic plasticity within a lineage it fulfils one of the expectations that are needed to support this diversification hypothesis. We carried out a laboratory study to examine development rate and morphology between and within populations of the parsley frog, Pelodytes punctatus. We found that frogs reared in the laboratory had a longer development time, relatively longer hind legs and relatively narrower heads under constant water level compared to those under decreasing water level simulating pool drying. This adaptive phenotypic plasticity response to pool drying was mirrored across populations because frogs from permanent waters had longer development times, relatively longer hind legs and relatively narrower heads compared to frogs from temporary waters. Hence the developmental and morphological plasticity observed within populations was also observed between populations as constitutive expressed traits. We suggest that the morphology pattern observed was driven by a common developmental process (time to metamorphosis), indicating that plasticity may contribute to evolutionary change, ultimately resulting in genetic accommodation of the morphological traits.  相似文献   

20.
How many genetic changes control the evolution of new traits in natural populations? Are the same genetic changes seen in cases of parallel evolution? Despite long-standing interest in these questions, they have been difficult to address, particularly in vertebrates. We have analyzed the genetic basis of natural variation in three different aspects of the skeletal armor of threespine sticklebacks (Gasterosteus aculeatus): the pattern, number, and size of the bony lateral plates. A few chromosomal regions can account for variation in all three aspects of the lateral plates, with one major locus contributing to most of the variation in lateral plate pattern and number. Genetic mapping and allelic complementation experiments show that the same major locus is responsible for the parallel evolution of armor plate reduction in two widely separated populations. These results suggest that a small number of genetic changes can produce major skeletal alterations in natural populations and that the same major locus is used repeatedly when similar traits evolve in different locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号