共查询到20条相似文献,搜索用时 15 毫秒
1.
W B Watt 《The Journal of biological chemistry》1972,247(5):1445-1451
2.
Summary As a comparison to the many studies of larger flying insects, we carried out an initial study of heat balance and thermal dependence of flight of a small butterfly (Colias) in a wind tunnel and in the wild.Unlike many larger, or facultatively endothermic insects, Colias do not regulate heat loss by altering hemolymph circulation between thorax and abdomen as a function of body temperature. During flight, thermal excess of the abdomen above ambient temperature is weakly but consistently coupled to that of the thorax. Total heat loss is best expressed as the sum of heat loss from the head and thorex combined plus heat loss from the abdomen because the whole body is not isothermal. Convective cooling is a simple linear function of the square root of air speed from 0.2 to 2.0 m/s in the wind tunnel. Solar heat flux is the main source of heat gain in flight, just as it is the exclusive source for warmup at rest. The balance of heat gain from sunlight versus heat loss from convection and radiation does not appear to change by more than a few percent between the wings-closed basking posture and the variable opening of wings in flight, although several aspects require further study. Heat generation by action of the flight muscles is small (on the order of 100 m W/g tissue) compared to values reported for other strongly flying insects.
Colias appears to have only very limited capacity to modulate flight performance. Wing beat frequency varies from 12–19 Hz depending on body mass, air speed, and thoracic temperature. At suboptimal flight temperatures, wing beat frequency increases significantly with thoracic temperature and body mass but is independent of air speed. Within the reported thermal optimum of 35–39°C, wing beat frequency is negatively dependent on air speed at values above 1.5 m/s, but independent of mass and body temperature. Flight preference of butterflies in the wind tunnel is for air speeds of 0.5–1.5 m/s, and no flight occurs at or above 2.5 m/s. Voluntary flight initiation in the wild occurs only at air speeds 1.4 m/s.In the field, Colias fly just above the vegetation at body temperatures of 1–2°C greater than when basking at the top of the vegetation. These measurements are consistent with our findings on low heat gain from muscular activity during flight. Basking temperatures of butterflies sheltered from the wind within the vegetation were 1–2°C greater than flight temperatures at vegetation height. 相似文献
3.
The evolution of butterfly wing colouration is strongly affected by its multiple functions and by the correlated evolution of wing colour elements. Both factors may prevent local adaptation to ecological conditions. We investigated one aspect of wing colouration, the degree of dorsal wing melanization, in the butterfly Colias philodice eriphyle across an elevational gradient and its correlation with another aspect of wing colouration, ventral wing melanization. Dorsal wing melanization increased with elevation and these differences persisted in a common environment. Full-sibling analysis revealed high heritability for males but only intermediate heritability for females. The correlation between ventral and dorsal melanization showed significant elevational and sex-specific differences. In males the two traits were highly correlated, whereas in females the strength of the correlation decreased with increasing elevation. We conclude that uncoupling of ventral and dorsal melanization has evolved in females but not in males and discuss possible mechanisms underlying uncoupling. 相似文献
4.
Maureen L. Stanton 《Oecologia》1979,39(1):79-91
Summary The legume foodplants of Colias butterflies possess specific chemical components which stimulate oviposition in females of the genus. Different legumes provide different degrees of stimulation, as demonstrated by close correlation between field observations and laboratory experiments with a new behavioral assay. Several generalizations emerge from this study. 1) Chemical preferences for various foodplants are under genetic control in C. meadii, and are at least partly independent of an individual's previous exposure to different legumes. 2) In some cases, chemical cues alone do not allow females to discriminate between species. Long-range search cues may be used to enhance discrimination in such instances. 3) Lupinus, a legume which is not usually utilized by Colias, stimulates oviposition in the laboratory, indicating its chemical affinity with other Leguminosae. The behavioral assay described should prove useful for the future identification of specific oviposition stimulants and deterrents. It is stressed, however, that chemotactile cues are involved only in the final step of oviposition, and that understanding foodplant choice in nature will require in-depth investigation into the mechanics of individual search processes. 相似文献
5.
Summary Egg-laying females of the legume-feeding butterfly Colias philodice eriphyle were observed within a high-altitude study site during 1977 and 1978. Average oviposition selectivity showed two patterns of seasonal variation. First, second-brood females laid eggs more frequently after alighting upon hostplants than did first-brood females in both years. Second, a consistent decline in post-alighting oviposition probability near the end of the second brood corresponded with a dramatic decrease in the water content of hostplant foliage near the end of the dry summer season. In addition to seasonal variation in oviposition behavior, individual females landed and oviposited upon widely varying sets of legume hostplant species. By sampling hostplant abundances along the flightpaths of observed females, we show that individuals varied in their tendency to land upon different hostplants. Females tended to specialize upon one or two species, at least in the short term, and the pattern of oligophagy for the population as a whole is partly generated by variation in the host-seeking behavior of individual females. 相似文献
6.
7.
Jahner JP Shapiro AM Forister ML 《Evolution; international journal of organic evolution》2012,66(3):818-830
Hybridization significantly affects the ecology and evolution of numerous plant and animal lineages. Most studies have focused on endogenous drivers of hybridization and neglected variation in exogenous factors, such as seasonal weather patterns. In this study, we take advantage of a unique dataset consisting of records of hybridization between the butterflies Colias eurytheme and C. eriphyle (Pieridae) for 66 generations (22 years) to investigate the importance of seasonal weather on the production and survival of hybrid offspring. Important seasonal weather variables for each parental species and hybrid offspring were determined using model averaging, and these weather variables, along with butterfly abundances, were analyzed using path analysis. The most important drivers of hybridization were the abundance of C. eriphyle, summer minimum temperature, and spring maximum temperature. In contrast, the abundance of C. eurytheme and weather variables prior to the current flight season were relatively unimportant for variation in hybrid abundance. Parental abundances were mostly driven by weather variables prior to the flight season possibly because these variables affect host plant quality. Our results suggest that exogenous, climatic factors can influence hybridization in natural systems, and that these factors can act both directly on hybrid abundance and indirectly through the population dynamics of parental species. 相似文献
8.
Colias eurytheme and C. philodice are sister species with broad sympatry in North America. They hybridize frequently and likely share a significant portion of their genomes through introgression. Both taxa have been ecologically well characterized and exploited to address a broad spectrum of evolutionary issues. Using AFLP markers, we constructed the first linkage map of Colias butterflies. The map is composed of 452 markers spanning 2541.7 cM distributed over 51 linkage groups (40 major groups and 11 small groups with 2-4 markers). Statistical tests indicate that these AFLP markers tend to cluster over the map, with the coefficient of variation of interval sizes being 1.236 (95% C.I. is 1.234-1.240). This nonrandom marker distribution can account for the nonequivalence between the number of linkage groups and the actual haploid chromosome number (N = 31). This study presents the initial step for further marker-assisted research on Colias butterflies, including QTL and introgression analyses. Further investigation of the genomes will help us understand better the roles of introgression and natural selection in the evolution of hybridizing species and devise more appropriate strategies to control these pests. 相似文献
9.
Functional ecological implications of intraspecific differences in wing melanization in Colias butterflies 总被引:1,自引:0,他引:1
JACINTHA ELLERS CAROL L. BOGGS 《Biological journal of the Linnean Society. Linnean Society of London》2004,82(1):79-87
Variation in the degree of insect wing melanin affects thermoregulation, and is expected to be adapted to local environmental conditions, for example over an elevational gradient. The effects of melanization on flight activity and egg maturation rate were assessed in the closely related butterflies Colias philodice eriphyle and C. eurytheme using experimental manipulation of wing darkness and transplant experiments between high and low elevation sites. Experimental manipulation of wing darkness in C. p. eriphyle demonstrated that light males had reduced flight activity at high elevations, and darkened males had reduced flight activity at low elevations. In contrast, the transplant experiments revealed asymmetrical adaptation for male C. p. eriphyle . At high elevations darker, high-elevation males had higher flight activity than lighter, low-elevation males, but there was no difference between the two groups at low elevation. For females, melanization had no effect on flight activity. However, an increase in female C. eurytheme wing darkness led to a significantly higher egg maturation rate at cold ambient temperatures, which may increase female reproductive output under natural conditions. Therefore, dispersers moving down in elevation may be more successful than those moving up. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 79–87. 相似文献
10.
Joel G. Kingsolver Lauren B. Buckley 《Proceedings. Biological sciences / The Royal Society》2015,282(1802)
How does recent climate warming and climate variability alter fitness, phenotypic selection and evolution in natural populations? We combine biophysical, demographic and evolutionary models with recent climate data to address this question for the subalpine and alpine butterfly, Colias meadii, in the southern Rocky Mountains. We focus on predicting patterns of selection and evolution for a key thermoregulatory trait, melanin (solar absorptivity) on the posterior ventral hindwings, which affects patterns of body temperature, flight activity, adult and egg survival, and reproductive success in Colias. Both mean annual summer temperatures and thermal variability within summers have increased during the past 60 years at subalpine and alpine sites. At the subalpine site, predicted directional selection on wing absorptivity has shifted from generally positive (favouring increased wing melanin) to generally negative during the past 60 years, but there is substantial variation among years in the predicted magnitude and direction of selection and the optimal absorptivity. The predicted magnitude of directional selection at the alpine site declined during the past 60 years and varies substantially among years, but selection has generally been positive at this site. Predicted evolutionary responses to mean climate warming at the subalpine site since 1980 is small, because of the variability in selection and asymmetry of the fitness function. At both sites, the predicted effects of adaptive evolution on mean population fitness are much smaller than the fluctuations in mean fitness due to climate variability among years. Our analyses suggest that variation in climate within and among years may strongly limit evolutionary responses of ectotherms to mean climate warming in these habitats. 相似文献
11.
Summary Population structure encompasses all the rules by which a population's gametes come together, including genetic and physiological investment in offspring. We document female use of nutrients donated by males at mating, and complete sperm precedence, in Colias eurytheme Boisduval. The effect of these phenomena on the population structure of this species is discussed. 相似文献
12.
This study evaluated the impact of the thermal environment on the flying behavior of male Japanese sulfur butterflies Colias erate searching for females in an open habitat. Thoracic temperature was monitored before and after flight. Mean thoracic temperature of butterflies immediately after landing was consistently higher than, but independent of, ambient temperature. Although ground speed of flying butterflies was different between flight types, air speed against the butterfly was similar across flight types. The excess of thoracic over ambient temperature was lower in flying butterflies than in basking ones, as predicted by a model. This difference appeared to be due to air current, which enhanced heat loss. In a laboratory study, newly eclosed male butterflies were placed under an incandescent lamp to measure their thoracic temperature at different air current speeds. The excess of thoracic over ambient temperature decreased as the speed of air currents increased. When the air current was similar to the air speed against flying butterflies in the field, a substantial decrease occurred in the operative thoracic temperature. 相似文献
13.
14.
15.
Mountain butterflies have evolved efficient thermoregulation strategies enabling their survival in marginal conditions with short flight season and unstable weather. Understanding the importance of their behavioural thermoregulation by habitat use can provide novel information for predicting the fate of alpine Lepidoptera and other insects under ongoing climate change. We studied the link between microhabitat use and thermoregulation in adults of seven species of a butterfly genus Erebia co-occurring in the Austrian Alps. We captured individuals in the field and measured their body temperature in relation to microhabitat and air temperature. We asked whether closely related species regulate their body temperature differently, and if so, what is the effect of behaviour, species traits and individual traits on body to air and body to microhabitat temperature differences. Co-occurring species differed in mean body temperature. These differences were driven by active microhabitat selection by individuals and also by species–specific habitat preferences. Species inhabiting grasslands and rocks utilised warmer microclimates to maintain higher body temperature than woodland species. Under low air temperatures, species of rocky habitats heated up more effectively than species of grasslands and woodlands which allowed them to stay active in colder weather. Species morphology and individual traits play rather minor roles in the thermoregulatory differences; although large species and young individuals maintained higher body temperature. We conclude that diverse microhabitat conditions at small spatial scales probably contribute to sympatric occurrence of closely related species with different thermal demands and that preserving heterogeneous conditions in alpine landscapes might mitigate detrimental consequences of predicted climate change. 相似文献
16.
Students wearing swim suits were exposed for 30 min to neutral room temperature (TR=28C). During the following 60 min they were subjected to gradual decreases or increases of room temperature reaching 12C or 45C, respectively. Static thermal stimuli were applied to the palms of the right (38C) and left (25C) hands. Hands and feet of all subjects were thermally isolated at 22C ambient temperature. General thermal comfort (GTC), local thermal comfort (LTC), skin blood flow (which is proportional to heat transport index ) several body temperatures, oxygen-consumption
, and sweat rate (S), were measured. After moderate intermittent heat exposures (7 times for 1h at TR=42.5C) the experiments started again. From GTC, LTC, or as functions of TR, no new knowledge about thermoregulatory or adaptive mechanisms was available. The high in the cold stimulated left hand, however, and the oscillatory thresholds (OSC) for rhythmic vasomotion indicated the peripheral influence of skin temperature, as well as local, mean skin temperature (¯Ts) and core temperature. When exposed to moderate temperature decreases or increases the body seems to react only with increasing thermal resistance by vasoconstriction or an increase of sweat rate, respectively. Moderate heat adaptation is only able to raise sweat rate, but not the thresholds and gain of the S-function. We assume that functional studies of adaptive modifications in humans must be conducted at temperatures greatly beyond those used in these experiments. 相似文献
17.
The evolution of wing color in Colias butterflies: heritability,sex linkage,and population divergence 总被引:3,自引:0,他引:3
We investigated the genetic background of intraspecific variation in wing color across an elevational gradient in the butterfly Colias philodice eriphyle. The degree of wing melanization was an accelerating function of elevation, and differences in wing melanization persisted in a common environment. Full-sibling analysis and parent-offspring regression yielded consistent, moderate to high heritabilities for the degree of wing melanization. The breeding experiments also demonstrated that wing melanization is strongly sex linked. Because traits that differentiate sister species also tend to be sex linked, our results suggest that the genetic mechanisms underlying intraspecific differences in wing melanization are not fundamentally different from those that have been shown to differentiate sister species. 相似文献
18.
A mitochondrial-DNA-based phylogeny for some evolutionary-genetic model species of Colias butterflies (Lepidoptera, Pieridae) 总被引:1,自引:0,他引:1
We study the phylogenetic relationships among some North American Colias ("sulfur") butterflies, using mitochondrial gene sequences (ribosomal RNA, cytochrome oxidase I+II) totaling about 20% of the mitochondrial genome. We find that (1) the lowland species complex shows a branching order different from earlier views; (2) several montane and northern taxa may be more distinct than in earlier views; (3) one morphologically conservative Holarctic assemblage, C. hecla, is differentiated at the molecular-genetic level into at least three taxa which occupy distinct positions in the phylogeny and are sisters to diverse other taxa. These conclusions, constituting phylogenetic hypotheses, are supported by parsimony, maximum-likelihood, and Bayesian reconstruction algorithms. They are tested formally, by interior branch tests and paired-site tests, against alternative hypotheses derived from conventional species and subspecies naming combinations. In all cases our hypotheses are supported by these tests and the conventional alternatives are rejected. The "barcoding" subset of cytochrome oxidase I sequence identifies only some of the taxa supported by our full data set. Comparison of genetic divergence values among Colias taxa with those among related Pierid butterflies suggests that species radiations within Colias are comparatively younger. This emerging Colias phylogeny facilitates comparisons of genetic polymorphism and other adaptive mechanisms among taxa, thereby connecting micro- and macro-evolutionary processes. 相似文献
19.
The evolution of wing color: male mate choice opposes adaptive wing color divergence in Colias butterflies 总被引:3,自引:0,他引:3
Abstract Correlated evolution of mate signals and mate preference may be constrained if selection pressures acting on mate preference differ from those acting on mate signals. In particular, opposing selection pressures may act on mate preference and signals when traits have sexual as well as nonsexual functions. In the butterfly Colias philodice eriphyle , divergent selection on wing color across an elevational gradient in response to the thermal environment has led to increasing wing melanization at higher elevations. Wing color is also a long-range signal used by males in mate searching. We conducted experiments to test whether sexual selection on wing melanization via male mate choice acts in the same direction as natural selection on mate signals due to the thermal environment. We performed controlled mate choice experiments in the field over an elevational range of 1500 meters using decoy butterflies with different melanization levels. Also, we obtained a more direct estimate of the relation between wing color and sexual selection by measuring mating success in wild-caught females. Both our experiments showed that wing melanization is an important determinant of female mating success in C. p. eriphyle . However, a lack of elevational variation in male mate preference prevents coevolution of mate signals and mate preference, as males at all elevations prefer less-melanized females. We suggest that this apparently maladaptive mate choice may be maintained by differences in detectability between the morphs or by preservation of species recognition. 相似文献
20.
Shared ancestry and introgression can contribute to genetic similarity between hybridizing species, and it is generally difficult to disentangle these causes. However, shared ancestry plays a more limited role in traits that have recently undergone parallel directional selection in the two species, permitting the role of introgression to be better understood. The butterflies Colias eurytheme (Boisduval) and Colias philodice (Godart) (Lepidoptera, Pieridae) are native to North America and have shifted their host ranges in parallel onto several introduced weedy and agricultural legumes. These butterflies hybridize at moderate rates throughout their range, and there is a strong possibility that they could be sharing host‐associated adaptations. We split families of each species among nine introduced, prospective hosts and measured survivorship, larval duration, pupal weight, and a new variable, effective daily growth rate (DGR), analogous to a compound daily interest rate in economics. We found strong effects of host, sex, and family (species), but negligible effects of the host*species interaction that would indicate species‐specific differences in performance on different hosts. We found species‐specific life‐history differences: C. eurytheme matured significantly later and reached a significantly larger body size than C. philodice while growing at the same DGR. Protandry was strong, and males, in addition to pupating sooner than females, grew significantly faster than females as measured by DGR. We measured broad‐sense heritabilities and genetic correlations for host‐associated performance variables. Most pairwise comparisons of performance among hosts and most pairwise comparisons between performance variables showed positive genetic correlations, except survivorship where little heritability was found. Nevertheless, a factorial multivariate analysis of variance of G‐matrices showed highly significant species, host, and host*species interactions, suggesting differentially evolving genetic architectures underlying host adaptation in these two species, despite the small differences in overall performance. At least some of the genes affecting host performance in Colias are likely to be in the small, species‐diagnostic regions and not shared via introgression between these hybridizing species. For biologists interested in the evolutionary ecology of their host associations, including applied biologists managing their agricultural pest potential, C. eurytheme and C. philodice are most usefully studied as if they were a single polymorphic species wherever they co‐exist. In studying species that hybridize readily with a sympatric congener, it may often be necessary to include the second species in the experimental design. 相似文献