首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolution of senescence: late survival sacrificed for reproduction.   总被引:17,自引:0,他引:17  
In so far as it is associated with declining fertility and increasing mortality, senescence is directly detrimental to reproductive success. Natural selection should therefore act in the direction of postponing or eliminating senescence from the life history. The widespread occurrence of senescence is explained by observing that (i) the force of natural selection is generally weaker at late ages than at early ages, and (ii) the acquisition of greater longevity usually involves some cost. Two convergent theories are the 'antagonistic pleiotropy' theory, based in population genetics, and the 'disposable soma' theory, based in physiological ecology. The antagonistic pleiotropy theory proposes that certain alleles that are favoured because of beneficial early effects also have deleterious later effects. The disposable soma theory suggests that because of the competing demands of reproduction less effort is invested in the maintenance of somatic tissues than is necessary for indefinite survival.  相似文献   

2.
The evolution of ageing and longevity.   总被引:8,自引:0,他引:8  
Ageing is not adaptive since it reduces reproductive potential, and the argument that it evolved to provide offspring with living space is hard to sustain for most species. An alternative theory is based on the recognition that the force of natural selection declines with age, since in most environments individuals die from predation, disease or starvation. Ageing could therefore be the combined result of late-expressed deleterious genes which are beyond the reach of effective negative selection. However, this argument is circular, since the concept of 'late expression' itself implies the prior existence of adult age-related physiological processes. Organisms that do not age are essentially in a steady state in which chronologically young and old individuals are physiologically the same. In this situation the synthesis of macromolecules must be sufficiently accurate to prevent error feedback and the development of lethal 'error catastrophes'. This involves the expenditure of energy, which is required for both kinetic proof-reading and other accuracy promoting devices. It may be selectively advantageous for higher organisms to adopt an energy saving strategy of reduced accuracy in somatic cells to accelerate development and reproduction, but the consequence will be eventual deterioration and death. This 'disposable soma' theory of the evolution of ageing also proposes that a high level of accuracy is maintained in immortal germ line cells, or alternatively, that any defective germ cells are eliminated. The evolution of an increase in longevity in mammals may be due to a concomitant reduction in the rates of growth and reproduction and an increase in the accuracy of synthesis of macromolecules. The theory can be tested by measuring accuracy in germ line and somatic cells and also by comparing somatic cells from mammals with different longevities.  相似文献   

3.
According to the antagonistic pleiotropy theory of ageing, natural selection has favoured genes conferring short-term benefits to the organism at the cost of deterioration in later life. The 'disposable soma' theory expresses this as a life-history strategy in which somatic maintenance is below the level required to prevent ageing, thus enabling higher immediate fertility. It has been argued that a non-ageing strategy will always be bettered by a low but non-zero rate of ageing, because the costs of such ageing will be felt only in the distant future when they are of negligible importance. Here, we examine this argument critically. We find that a non-ageing strategy will be locally optimal if, in the presence of ageing, the onset of deterioration is sufficiently rapid or early. Conversely, ageing will be optimal if deterioration is sufficiently slow or late. As the temporal profile of ageing changes from one of steady deterioration to one involving a sudden loss of vitality after a period of little or no decline, the conditions for a non-ageing strategy to be locally optimal become progressively more stringent. But for all forms of profile considered, conditions can be found for which a strategy involving no ageing is locally optimal.  相似文献   

4.
Calorie restriction results in an increased lifespan and reduced fecundity of rodents. In a natural environment the availability of food will vary greatly. It is suggested that Darwinian fitness will be increased if animals cease breeding during periods of food deprivation and invest saved resources in maintenance of the adult body, or soma. This would increase the probability of producing viable offspring during an extended lifespan. The diversion of limited energy resources from breeding to maintenance of the soma is seen as an evolutionary adaptation, fully compatible with the 'disposable soma' theory of the evolution of ageing.  相似文献   

5.
Little is known about the importance of trade-offs between ageing and other life history traits, or the effects of ageing on sexual selection, particularly in wild populations suffering high extrinsic mortality rates. Life history theory suggests that trade-offs between reproduction and somatic maintenance may constrain individuals with higher initial reproductive rates to deteriorate more rapidly, resulting in reduced sexual selection strength. However, this trade-off may be masked by increased condition dependence of reproductive effort in older individuals. We tested for this trade-off in males in a wild population of antler flies (Protopiophila litigata). High mating rate was associated with reduced longevity, as a result of increased short-term mortality risk or accelerated ageing in traits affecting viability. In contrast, large body size was associated with accelerated ageing in traits affecting mating success, resulting in reduced sexual selection for large body size. Thus, ageing can affect sexual selection and evolution in wild populations.  相似文献   

6.
Sex differences in ageing in natural populations of vertebrates   总被引:3,自引:0,他引:3  
In many long-lived vertebrates (including humans), adult males have shorter lifespans than adult females, partly as a result of higher annual rates of mortality in males and partly owing to sex differences in the rate of ageing. A probable explanation of the evolution of sex differences in ageing is that, in polygynous species, intense intrasexual competition between males restricts the number of seasons for which individual males are able to breed successfully, weakening selection pressures favouring adult longevity in males relative to females. If this is the case, sex differences in adult longevity and in the onset and rate of senescence should be greater in polygynous species than in monogamous ones and their magnitude should be related to the duration of effective breeding males compared with females. Here, we use data from longitudinal studies of vertebrates to show that reduced longevity in adult males (relative to females) is commonly associated with a more rapid decline in male than female survival with increasing age and is largely confined to polygynous species. The magnitude of sex differences in adult longevity in different species is consistently related to the magnitude of sex differences in the duration of effective breeding, calculated across surviving adults. Our results are consistent with the suggestion that sex differences in senescence in polygynous species are a consequence of weaker selection for longevity in males than females.  相似文献   

7.
We provide a quantitative test of the hypothesis that sex role specialization may account for sex differences in lifespan in baboons if such specialization causes the dependency of fitness upon longevity, and consequently the optimal resolution to an energetic trade‐off between somatic maintenance and other physiological functions, to differ between males and females. We present a model in which females provide all offspring care and males compete for access to reproductive females and in which the partitioning of available energy between the competing fitness‐enhancing functions of growth, maintenance, and reproduction is modeled as a dynamic behavioral game, with the optimal decision for each individual depending upon his/her state and the behavior of other members of the population. Our model replicates the sexual dimorphism in body size and sex differences in longevity and reproductive scheduling seen in natural populations of baboons. We show that this outcome is generally robust to perturbations in model parameters, an important finding given that the same behavior is seen across multiple populations and species in the wild. This supports the idea that sex differences in longevity result from differences in the value of somatic maintenance relative to other fitness‐enhancing functions in keeping with the disposable soma theory.  相似文献   

8.
Male D. melanogaster kept supplied with virgin females had lower longevity than males kept without access to females. Cessation of reproductive activity by males previously kept with females resulted after a short lag in the same life expectancy as that of flies of the same age which had never had females. Commencement of reproductive activity resulted in life expectancy indistinguishable from that of males of the same age kept with females throughout life. The effect of reproductive activity on longevity is therefore short-term and reversible and not due to an acceleration of ageing. This finding has implications for the way that different theories of the evolution of ageing should be tested.  相似文献   

9.
The evolutionary theories of senescence predict that investment in reproduction in early life should come at the cost of reduced somatic maintenance, and thus earlier or more rapid senescence. There is now growing support for such trade-offs in wild vertebrates, but these exclusively come from females. Here, we test this prediction in male red deer (Cervus elaphus) using detailed longitudinal data collected over a 40-year field study. We show that males which had larger harems and thereby allocated more resources to reproduction during early adulthood experienced higher rates of senescence in both harem size and rut duration. Males that carried antlers with more points during early life did not show more pronounced declines in reproductive traits in later life. Overall, we demonstrate that sexual competition shapes male reproductive senescence in wild red deer populations and provide rare empirical support for the disposable soma theory of ageing in males of polygynous vertebrate species.  相似文献   

10.
High condition enables individuals to express a phenotype with greater reproductive potential. However, life‐history theory predicts that reproduction will trade off with somatic maintenance and viability, and several studies have reported faster age‐related decline in performance in high‐condition individuals, suggesting that high condition in early life is associated with accelerated somatic deterioration. This trade‐off may be especially pronounced in males, which often express condition‐dependent secondary sexual traits that can impose viability costs during development and through damage‐inflicting adult sexual behaviours. To test this prediction, we reared larvae of the neriid fly Telostylinus angusticollis on diets of varying nutrient content and quantified somatic deterioration in solitary males, males housed in all‐male or mixed‐sex groups and immobilized males subjected to mechanical stress. We found that males reared on a nutrient‐rich larval diet (high‐condition males) suffered a higher rate of somatic deterioration with age, particularly when housed in groups. Perhaps as a result of accelerated somatic deterioration, high‐condition males did not outlive low‐condition males. In addition, high‐condition males housed in all‐male groups experienced a greater reduction in escape response with age than males housed in mixed‐sex groups, suggesting that male–male combat promotes somatic deterioration. However, even when immobilized, high‐condition males were still found to be more susceptible to somatic damage than low‐condition males. Our findings suggest that a high‐condition male phenotype is more prone to somatic damage, both as a result of associated behaviours such as combat, and because of the inherent fragility of the high‐condition body.  相似文献   

11.
Abstract A publication by Shanley and Kirkwood (2000) attempts to explain data on caloric restriction (CR) and life extension in the context of the Disposable Soma (DS) theory for the evolution of senescence. As the authors concede, this juxtaposition appears at first to offend intuition: According to the DS theory, senescence is the result of a tight budget for caloric energy, such that repair and maintenance functions are shortchanged; yet, in CR experiments, it is found that longevity decreases smoothly as the total caloric budget is increased. In the Shanley-Kirkwood model, an optimized allocation of resources causes energy to be diverted away from somatic maintenance at a greater rate than caloric intake increases, with the net result that more total energy is associated with less energy available for maintenance. In the present critique, the limitations of this model are detailed and its special assumptions reviewed. While the CR experiments find comparable life extension for males and females, measured relative to nonbreeding controls, the Shanley-Kirkwood model draws its energy budget from data on breeding females. In addition, the success in reproducing the observed relationship between feeding and longevity depends crucially on a mathematical relationship between food availability and the probability of reproductive success which may be difficult to justify.  相似文献   

12.
Life-history (LH) theory predicts that selection will optimize the trade-off between reproduction and somatic maintenance. Reproductive ageing and finite life span are direct consequences of such optimization. Sexual selection and conflict profoundly affect the reproductive strategies of the sexes and thus can play an important role in the evolution of life span and ageing. In theory, sexual selection can favor the evolution of either faster or slower ageing, but the evidence is equivocal. We used a novel selection experiment to investigate the potential of sexual selection to influence the adaptive evolution of age-specific LH traits. We selected replicate populations of the seed beetle Callosobruchus maculatus for age at reproduction ("Young" and "Old") either with or without sexual selection. We found that LH selection resulted in the evolution of age-specific reproduction and mortality but these changes were largely unaffected by sexual selection. Sexual selection depressed net reproductive performance and failed to promote adaptation. Nonetheless, the evolution of several traits differed between males and females. These data challenge the importance of current sexual selection in promoting rapid adaptation to environmental change but support the hypothesis that sex differences in LH—a historical signature of sexual selection—are key in shaping trait responses to novel selection.  相似文献   

13.
According to life history theory, physiological and ecological traits and parameters influence an individual''s life history and thus, ultimately, its lifespan. Mating and reproduction are costly activities, and in a variety of model organisms, a negative correlation of longevity and reproductive effort has been demonstrated. We are employing the annual killifish Nothobranchius furzeri as a vertebrate model for ageing. N. furzeri is the vertebrate displaying the shortest known lifespan in captivity with particular strains living only three to four months under optimal laboratory conditions. The animals show explosive growth, early sexual maturation and age-dependent physiological and behavioural decline. Here, we have used N. furzeri to investigate a potential reproduction-longevity trade-off in both sexes by means of gender separation. Though female reproductive effort and offspring investment were significantly reduced after separation, as investigated by analysis of clutch size, eggs in the ovaries and ovary mass, the energetic surplus was not reallocated towards somatic maintenance. In fact, a significant extension of lifespan could not be observed in either sex. This is despite the fact that separated females, but not males, grew significantly larger and heavier than the respective controls. Therefore, it remains elusive whether lifespan of an annual species evolved in periodically vanishing habitats can be prolonged on the cost of reproduction at all.  相似文献   

14.
Males and females frequently differ in their rates of ageing, but the origins of these differences are poorly understood. Sex differences in senescence have been hypothesized to arise, because investment in intra-sexual reproductive competition entails costs to somatic maintenance, leaving the sex that experiences stronger reproductive competition showing higher rates of senescence. However, evidence that sex differences in senescence are attributable to downstream effects of the intensity of intra-sexual reproductive competition experienced during the lifetime remains elusive. Here, we show using a 35 year study of wild European badgers (Meles meles), that (i) males show higher body mass senescence rates than females and (ii) this sex difference is largely attributable to sex-specific downstream effects of the intensity of intra-sexual competition experienced during early adulthood. Our findings provide rare support for the view that somatic maintenance costs arising from intra-sexual competition can cause both individual variation and sex differences in senescence.  相似文献   

15.
Optimality theories of ageing predict that the balance between reproductive effort and somatic maintenance determines the rate of ageing. Laboratory studies find that increased reproductive effort shortens lifespan, but through increased short‐term mortality rather than ageing. In contrast, high fecundity in early life is associated with accelerated senescence in free‐living vertebrates, but these studies are non‐experimental. We performed lifelong brood size manipulation in free‐living jackdaws. Actuarial senescence – the increase in mortality rate with age – was threefold higher in birds rearing enlarged‐ compared to reduced broods, confirming a key prediction of the optimality theory of ageing. Our findings contrast with the results of single‐year brood size manipulation studies carried out in many species, in which there was no overall discernible manipulation effect on mortality. We suggest that our and previous findings are in agreement with predictions based on the reliability theory of ageing and propose further tests of this proposition.  相似文献   

16.
Within‐population variation in ageing remains poorly understood. In males, condition‐dependent investment in secondary sexual traits may incur costs that limit ability to invest in somatic maintenance. Moreover, males often express morphological and behavioral secondary sexual traits simultaneously, but the relative effects on ageing of investment in these traits remain unclear. We investigated the condition dependence of male life history in the neriid fly Telostylinus angusticollis. Using a fully factorial design, we manipulated male early‐life condition by varying nutrient content of the larval diet and, subsequently, manipulated opportunity for adult males to interact with rival males. We found that high‐condition males developed more quickly and reached their reproductive peak earlier in life, but also experienced faster reproductive ageing and died sooner than low‐condition males. By contrast, interactions with rival males reduced male lifespan but did not affect male reproductive ageing. High‐condition in early life is therefore associated with rapid ageing in T. angusticollis males, even in the absence of damaging male–male interactions. Our results show that abundant resources during the juvenile phase are used to expedite growth and development and enhance early‐life reproductive performance at the expense of late‐life performance and survival, demonstrating a clear link between male condition and ageing.  相似文献   

17.
Sexual selection should produce sexual size dimorphism in species where larger members of one sex obtain disproportionately more matings. Recent theory suggests that the degree of sexual size dimorphism depends on physical and temporal constraints involving the operational sex ratio, the potential reproductive rate and the trade-off between current reproductive effort and residual reproductive value. As part of a large-scale experiment on dispersal, we investigated the mating system of common brushtail possums inhabiting old-growth Eucalyptus forest in Australia. Paternity was assigned to 20 of 28 pouch-young (maternity known) genotyped at six microsatellite loci. Male mating success was strongly related to body size and age; male body weight and age being highly correlated. Despite disproportionate mating success favouring larger males, sexual size dimorphism was only apparent among older animals. Trapping and telemetry indicated that the operational sex ratio was effectively 1 : 1 and the potential reproductive rate of males was at most four times that of females. Being larger appeared to entail significant survival costs because males 'died-off' at the age at which sexual size dimorphism became apparent (8-9 years). Male and female home ranges were the same size and males appeared to be as sedentary as females. Moreover, longevity appears to be only slightly less important to male reproductive success than it is to females. It is suggested that a sedentary lifestyle and longevity are the key elements constraining selection for greater sexual size dimorphism in this 'model' medium-sized Australian marsupial herbivore.  相似文献   

18.
Most accounts of human life history propose that women have short reproductive spans relative to their adult lifespans, while men not only remain fertile but carry on reproducing until late life. Here we argue that studies have overlooked evidence for variation in male reproductive ageing across human populations. We apply a Bayesian approach to census data from Agta hunter-gatherers and Gambian farmers to show that long post-reproductive lifespans characterise not only women but also males in some traditional human populations. We calculate three indices of reproductive ageing in men (oldest age at reproduction, male late-life reproduction, and post-reproductive representation) and identify a continuum of male reproductive longevity across eight traditional societies ranging from !Kung, Hadza and Agta hunter-gatherers exhibiting low levels of polygyny, early age at last reproduction and long post-reproductive lifespans, to male Gambian agriculturalists and Turkana pastoralists showing higher levels of polygyny, late-life reproduction and shorter post-reproductive lifespans. We conclude that the uniquely human detachment between rates of somatic senescence and reproductive decline, and the existence of post-reproductive lifespans, are features of both male and female life histories, and therefore not exclusive consequences of menopause.  相似文献   

19.
Some of the most spectacular exaggerated sexual ornaments are carotenoid dependent. It has been suggested that such ornaments have evolved because carotenoid pigments are limiting for both signal expression and in their role as antioxidants and immunostimulants. An implicit assumption of this hypothesis is that males which can afford to produce more elaborate carotenoid-dependent displays are signalling their enhanced ability to resist parasites, disease or oxidative stress and hence would be predicted to live longer. Therefore, in species with carotenoid-dependent ornaments where a parent's future longevity is crucial for determining offspring survival, there should be a mating preference for partners that present the lowest risk of mortality during the breeding attempt, as signalled by the ability to allocate carotenoids to sexual displays. In an experimental study using three-spined sticklebacks (Gasterosteus aculeatus), we show that when dietary carotenoid intake is limited, males attempt to maintain their sexual ornament at the expense of body carotenoids and hence suffer from reduced reproductive investment and a shorter lifespan. These males also suffer from an increased susceptibility to oxidative stress, suggesting that this may constitute the mechanism underlying the increased rate of ageing. Furthermore, in pairwise mate-choice trials, females preferred males that had a greater access to carotenoids and chance of surviving the breeding season, suggesting that females can make adaptive mate choice decisions based on a male's carotenoid status and potential future longevity.  相似文献   

20.
Juvenile population size may affect the potential for future mating opportunities and therefore potentially sperm competition; this may favour ontogenetic adjustments in sperm production. Theory predicts that males should optimize their ejaculatory investment in accordance with the risk of sperm competition. Evidence for these theories is typically revealed in males of highly polyandrous species. Whether such responses to environmental cues exist for females, or are maintained in mildly polyandrous species in which most females do not re-mate, is unknown. Male lepidopterans produce normal, fertilizing sperm (eupyrene) and non-fertilizing (apyrene) sperm. Apyrene sperm are associated with reduced female receptivity, suggesting a role in sperm competition. We tested the effect of juvenile population size on life-history parameters and reproductive investment in the mildly polyandrous almond moth, Cadra cautella , a species in which current male ejaculate traits suggest previous selection for paternity protection consistent with a sperm-competitive environment. Larvae were reared at high (H) or low population sizes (L). We recorded larval development time, adult longevity and male gametic investment. Our results show a response by adults to signals in the juvenile environment. H males transferred more apyrene, but not eupyrene sperm. We also examined potential trade-offs between somatic characters and reproductive behaviours. Larval duration was longer for H individuals, females and heavier individuals. Further, H females and L males lived longer than L females. Our data are consistent with the theory that males should adjust their reproductive investment in accordance with sperm competition risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号