首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The action of adriamycin (an inhibitor of precursor protein import into mitochondria) upon phosphatidylserine (PtdSer) import into mitochondria was examined in permeabilized CHO-K1 cells. The decarboxylation of nascent PtdSer to phosphatidylethanolamine was used as an indicator reaction for the lipid translocation process. Adriamycin was without effect upon new PtdSer synthesis but blocked the time- and translocation-dependent decarboxylation of this lipid at the mitochondrial inner membrane of permeabilized cells. The effect of adriamycin was concentration-dependent with an IC50 of 150 microM and was not due to direct inhibition of PtdSer decarboxylase. To determine at which level of PtdSer transport adriamycin was working, the adriamycin-treated permeabilized cells were incubated with 1-acyl-2-[N-(6-[(7-nitrobenz-2-oxa-1,3-diazo-4-yl)] aminocaproyl)]phosphatidyl[1'-14C] serine (NBD-Ptd[1'-14C]Ser), and its decarboxylation was determined. Since the NBD-Ptd[1'-14C]Ser freely partitions into all cell membranes, it can partition into the outer mitochondrial membrane in an ATP-independent fashion. The NBD-Ptd[1'-14C]Ser was readily decarboxylated in an ATP-independent manner in permeabilized cells. Adriamycin inhibited the decarboxylation of NBD-Ptd[1'-14C]Ser, thereby indicating that it can act upon lipid transport processes between the outer and inner mitochondrial membrane.  相似文献   

2.
In yeast, nascent phosphatidylserine (PtdSer) can be transported to the mitochondria and Golgi/vacuole for decarboxylation to synthesize phosphatidylethanolamine (PtdEtn). In strains with a psd1Delta allele for the mitochondrial PtdSer decarboxylase, the conversion of nascent PtdSer to PtdEtn can serve as an indicator of lipid transport to the locus of PtdSer decarboxylase 2 (Psd2p) in the Golgi/vacuole. We have followed the metabolism of [(3)H]serine into PtdSer and PtdEtn to study lipid transport in permeabilized psd1Delta yeast. The permeabilized cells synthesize (3)H-PtdSer and, after a 20-min lag, decarboxylate it to form [(3)H]PtdEtn. Formation of [(3)H]PtdEtn is linear between 20 and 100 min of incubation and does not require ongoing PtdSer synthesis. PtdSer transport can be resolved into a two-component system using washed, permeabilized psd1Delta cells as donors and membranes isolated by ultracentrifugation as acceptors. With this system, the transport-dependent decarboxylation of nascent PtdSer is dependent upon the concentration of acceptor membranes, requires Mn(2+) but not nucleotides, and is inhibited by EDTA. High speed membranes isolated from a previously identified PtdSer transport mutant, pstB2, contain normal Psd2p activity but fail to reconstitute PtdSer transport and decarboxylation. Reconstitution with permutations of wild type and pstB2Delta donors and acceptors identifies the site of the mutant defect as the acceptor side of the transport reaction.  相似文献   

3.
A new yeast strain, designated pstB2, that is defective in the conversion of nascent phosphatidylserine (PtdSer) to phosphatidylethanolamine (PtdEtn) by PtdSer decarboxylase 2, has been isolated. The pstB2 strain requires ethanolamine for growth. Incubation of cells with [(3)H]serine followed by analysis of the aminoglycerophospholipids demonstrates a 50% increase in the labeling of PtdSer and a 72% decrease in PtdEtn formation in the mutant relative to the parental strain. The PSTB2 gene was isolated by complementation, and it restores ethanolamine prototrophy and corrects the defective lipid metabolism of the pstB2 strain. The PSTB2 gene is allelic to the pleiotropic drug resistance gene, PDR17, and is homologous to SEC14, which encodes a phosphatidylinositol/phosphatidylcholine transfer protein. The protein, PstB2p, displays phosphatidylinositol but not PtdSer transfer activity, and its overexpression causes suppression of sec14 mutants. However, overexpression of the SEC14 gene fails to suppress the conditional lethality of pstB2 strains. The transport-dependent metabolism of PtdSer to PtdEtn occurs in permeabilized wild type yeast but is dramatically reduced in permeabilized pstB2 strains. Fractionation of permeabilized cells demonstrates that the pstB2 strain accumulates nascent PtdSer in the Golgi apparatus and a novel light membrane fraction, consistent with a defect in lipid transport processes that control substrate access to PtdSer decarboxylase 2.  相似文献   

4.
Transport of proteins into yeast mitochondria   总被引:1,自引:0,他引:1  
The amino-terminal sequences of several imported mitochondrial precursor proteins have been shown to contain all the information required for transport to and sorting within mitochondria. Proteins transported into the matrix contain a matrix-targeting sequence. Proteins destined for other submitochondrial compartments contain, in addition, an intramitochondrial sorting sequence. The sorting sequence in the cytochrome c1 presequence is a stop-transport sequence for the inner mitochondrial membrane. Proteins containing cleavable presequences can reach the intermembrane space by either of two pathways: (1) Part of the presequence is transported into the matrix; the attached protein, however, is transported across the outer but not the inner membrane (eg, the cytochrome c1 presequence). (2) The precursor is first transported into the matrix; part of the presequence is then removed, and the protein is reexported across the inner membrane (eg, the precursor of the iron-sulphur protein of the cytochrome bc1 complex). Matrix-targeting sequences lack primary amino acid sequence homology, but they share structural characteristics. Many DNA sequences in a genome can potentially encode a matrix-targeting sequence. These sequences become active if positioned upstream of a protein coding sequence. Artificial matrix-targeting sequences include synthetic presequences consisting of only a few different amino acids, a known amphiphilic helix found inside a cytosolic protein, and the presequence of an imported chloroplast protein. Transport of proteins across mitochrondrial membranes requires a membrane potential, ATP, and a 45-kd protein of the mitochondrial outer membrane. The ATP requirement for import is correlated with a stable structure in the imported precursor molecule. We suggest that transmembrane transport of a stably folded precursor requires an ATP-dependent unfolding of the precursor protein.  相似文献   

5.
The aminoglycerophospholipids of eukaryotic cells, phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho), can be synthesized by multiple pathways. The PtdSer pathway encompasses the synthesis of PtdSer, its decarboxylation to PtdEtn and subsequent methylation reactions to form PtdCho. The Kennedy pathways consist of the synthesis of PtdEtn and PtdCho from Etn and Cho precursors via CDP-Etn and CDP-Cho intermediates. The reactions along the PtdSer pathway are spatially segregated with PtdSer synthesis occurring in the endoplasmic reticulum or mitochondria-associated membrane (MAM), PtdEtn formation occurring in the mitochondria and Golgi/vacuole compartments and PtdCho formation occurring in the endoplasmic reticulum or MAM. The organelle-specific metabolism of the different lipids in the PtdSer pathway has provided a convenient biochemical means for defining events in the interorganelle transport of the aminoglycerophospholipids in intact cells, isolated organelles and permeabilized cells. Studies with both mammalian cells and yeast demonstrate many significant similarities in lipid transport processes between the two systems. Genetic experiments in yeast now provide the tools to create new strains with mutations along the PtdSer pathway that can be conditionally rescued by the Kennedy pathway reactions. The genetic studies in yeast indicate that it is now possible to begin to define genes that participate in the interorganelle transport of the aminoglycerophospholipids.  相似文献   

6.
The aminoglycerophospholipids of eukaryotic cells, phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho), can be synthesized by multiple pathways. The PtdSer pathway encompasses the synthesis of PtdSer, its decarboxylation to PtdEtn and subsequent methylation reactions to form PtdCho. The Kennedy pathways consist of the synthesis of PtdEtn and PtdCho from Etn and Cho precursors via CDP-Etn and CDP-Cho intermediates. The reactions along the PtdSer pathway are spatially segregated with PtdSer synthesis occurring in the endoplasmic reticulum or mitochondria-associated membrane (MAM), PtdEtn formation occurring in the mitochondria and Golgi/vacuole compartments and PtdCho formation occurring in the endoplasmic reticulum or MAM. The organelle-specific metabolism of the different lipids in the PtdSer pathway has provided a convenient biochemical means for defining events in the interorganelle transport of the aminoglycerophospholipids in intact cells, isolated organelles and permeabilized cells. Studies with both mammalian cells and yeast demonstrate many significant similarities in lipid transport processes between the two systems. Genetic experiments in yeast now provide the tools to create new strains with mutations along the PtdSer pathway that can be conditionally rescued by the Kennedy pathway reactions. The genetic studies in yeast indicate that it is now possible to begin to define genes that participate in the interorganelle transport of the aminoglycerophospholipids.  相似文献   

7.
Inter- and intramembrane phospholipid transport processes are central features of membrane biogenesis and homeostasis. Relatively recent successes in the molecular genetic analysis of aminoglycerophospholipid transport processes in both yeast and mammalian cells are now providing important new information defining specific protein and lipid components that participate in these reactions. Studies focused on phosphatidylserine (PtdSer) transport to the mitochondria reveal that the process is regulated by ubiquitination. In addition, a specific mutation disrupts PtdSer transport between mitochondrial membranes. Analysis of PtdSer transport from the endoplasmic reticulum to the locus of PtdSer decarboxylase 2 demonstrates the requirement for a phosphatidylinositol-4-kinase, a phosphatidylinositol-binding protein, and the C2 domain of the decarboxylase. Examination of NBD-phosphatidylcholine transport demonstrates the involvement of the prevacuolar compartment and a requirement for multiple genes involved in regulating vacuolar protein sorting for transport of the lipid to the vacuole. In intramembrane transport, multiple genes are now identified including those encoding multidrug resistant protein family members, DNF family members, ATP binding cassette transporters, and pleiotropic drug resistance family members. The scramblase family constitutes a collection of putative transmembrane transporters that function in an ATP-independent manner. The genetic analysis of lipid traffic is uncovering new molecules involved in all aspects of the regulation and execution of the transport steps and also providing essential tools to critically test the involvement of numerous candidate molecules.  相似文献   

8.
The synthesis of phosphatidylserine and its translocation to the mitochondria were examined in permeabilized Chinese hamster ovary (CHO)-K1 cells by following the metabolism of a [3H]serine precursor to [3H] phosphatidylserine (PtdSer) and [3H]phosphatidylethanolamine (PtdEtn). In physiological salt solutions approximating the intracellular ionic composition, both the synthesis of PtdSer and its translocation required ATP. The ATP requirement for PtdSer synthesis could be completely bypassed, and that for translocation could be partially bypassed at Ca2+ concentrations 10(3)-10(4) times the intracellular physiological level (i.e. 1 mM). The ATP-dependent synthesis of PtdSer could be inhibited by chelation of Ca2+ with EGTA, inhibition of Ca2+ sequestration with 2,5-di(tert-butyl)hydroquinone, mobilization of sequestered Ca2+ with ionomycin, and competition for [3H]serine with ethanolamine. The inhibition of the ATP-dependent synthesis of PtdSer by the aforementioned inhibitors provided an efficient method to rapidly arrest the incorporation of [3H]serine into [3H]PtdSer. By pulse-labeling the [3H]PtdSer pool and arresting further synthesis with inhibitors, the translocation of nascent PtdSer could be uncoupled from synthesis. The results of these pulse-labeling-arrest experiments provide unambiguous evidence that PtdSer translocation to the mitochondria is not driven by PtdSer synthesis. The addition of apyrase to ATP-supplemented, permeabilized cells abruptly terminates [3H]serine incorporation into [3H]PtdSer and the decarboxylation of [3H]PtdSer to [3H]PtdEtn, thereby demonstrating that a specific ATP requirement exists for the translocation of nascent PtdSer to the mitochondria in permeabilized cells. The translocation of nascent PtdSer to the mitochondria was unaffected by 45-fold dilution of the standard reaction thus indicating that the translocation intermediate was unlikely to be a freely diffusible complex. The requirements for translocation of nascent phosphatidylserine are different from those for the vesicular movement of proteins insofar as the lipid movement does not require cytosol and is unaffected by the addition of Ca2+, GTP, or GTP gamma S. From these studies, we conclude that: 1) the synthesis and translocation of PtdSer can be readily studied in permeabilized cells, 2) the ATP-dependent synthesis of PtdSer is functionally coupled to the ATP-dependent sequestration of Ca2+ by the endoplasmic reticulum or closely related membranes, 3) PtdSer translocation is independent of its synthesis, and 4) there is a specific requirement for ATP in the translocation of PtdSer to the mitochondria.  相似文献   

9.
K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization.  相似文献   

10.
In vitro studies using isolated cells, mitochondria and submitochondrial fractions demonstrated that in steroid synthesizing cells, the peripheral-type benzodiazepine receptor (PBR) is an outer mitochondrial membrane protein, preferentially located in the outer/inner membrane contact sites, involved in the regulation of cholesterol transport from the outer to the inner mitochondrial membrane, the rate-determining step in steroid biosynthesis. Mitochondrial PBR ligand binding characteristics and topography are sensitive to hormone treatment suggesting a role of PBR in the regulation of hormone-mediated steroidogenesis. Targeted disruption of the PBR gene in Leydig cells in vitro resulted in the arrest of cholesterol transport into mitochondria and steroid formation; transfection of the mutant cells with a PBR cDNA rescued steroidogenesis demonstrating an obligatory role for PBR in cholesterol transport. Molecular modeling of PBR suggested that it might function as a channel for cholesterol. This hypothesis was tested in a bacterial system devoid of PBR and cholesterol. Cholesterol uptake and transport by these cells was induced upon PBR expression. Amino acid deletion followed by site-directed mutagenesis studies and expression of mutant PBRs demonstrated the presence in the cytoplasmic carboxy-terminus of the receptor of a cholesterol recognition/interaction amino acid consensus sequence. This amino acid sequence may help for recruiting the cholesterol coming from intracellular sites to the mitochondria.  相似文献   

11.
The nucleotide sequence of one of the putrescine transport operons (pPT71), located at 16 min of the Escherichia coli chromosome, was determined. It contained the genes for an induced ornithine decarboxylase and a putrescine transport protein. The gene for the ornithine decarboxylase contained a 2,196-nucleotide open reading frame encoding a 732-amino acid protein whose calculated Mr was 82,414, and the predicted amino acid sequence from the open reading frame had 65% homology with that of a constitutive ornithine decarboxylase encoded by the gene at 64 min. The ornithine decarboxylase activity was observed in the cells carrying pPT71 cultured at pH 5.2, but not in the cells cultured at pH 7.0. The gene for the putrescine transport protein contained a 1,317-nucleotide open reading frame encoding a 439-amino acid protein whose calculated Mr was 46,494. The hydropathy profile of the putrescine transport protein revealed that it consisted of 12 putative transmembrane spanning segments linked by hydrophilic segments of variable length. The transport protein was in fact found in the membrane fraction. When the gene for the putrescine transport protein was linked to the tet promoter of the vector instead of its own promoter, the putrescine transport activity increased greatly. The results suggest that the gene expression of the operon is repressed strongly under standard conditions.  相似文献   

12.
In eukaryotes, phosphatidylserine (PtdSer) can serve as a precursor of phosphatidylethanolamine (PtdEtn) and phosphatidylcholine (PtdCho), which are the major cellular phospholipids. PtdSer synthesis originates in the endoplasmic reticulum (ER) and its subdomain named the mitochondria-associated membrane (MAM). PtdSer is transported to the mitochondria in mammalian cells and yeast, and decarboxylated by PtdSer decarboxylase 1 (Psd1p) to form PtdEtn. A second decarboxylase, Psd2p, is also found in yeast in the Golgi-vacuole. PtdEtn produced by Psd1p and Psd2p can be transported to the ER, where it is methylated to form PtdCho. Organelle-specific metabolism of the aminoglycerophospholipids is a powerful tool for experimentally following lipid traffic that is now enabling identification of new proteins involved in the regulation of this process. Genetic and biochemical experiments demonstrate that transport of PtdSer between the MAM and mitochondria is regulated by protein ubiquitination, which affects events at both membranes. Similar analyses of PtdSer transport to the locus of Psd2p now indicate that a membrane-bound phosphatidylinositol transfer protein and the C2 domain of Psd2p are both required on the acceptor membrane for efficient transport of PtdSer. Collectively, these recent findings indicate that novel multiprotein assemblies on both donor and acceptor membranes participate in interorganelle phospholipid transport.  相似文献   

13.
Saccharomyces cerevisiae uses multiple biosynthetic pathways for the synthesis of phosphatidylethanolamine. One route involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), the transport of this lipid to endosomes, and decarboxylation by PtdSer decarboxylase 2 (Psd2p) to produce phosphatidylethanolamine. Several proteins and protein motifs are known to be required for PtdSer transport to occur, namely the Sec14p homolog PstB2p/Pdr17p; a PtdIns 4-kinase, Stt4p; and a C2 domain of Psd2p. The focus of this work is on defining the protein-protein and protein-lipid interactions of these components. PstB2p interacts with a protein encoded by the uncharacterized gene YPL272C, which we name Pbi1p (PstB2p-interacting 1). PstB2p, Psd2, and Pbi1p were shown to be lipid-binding proteins specific for phosphatidic acid. Pbi1p also interacts with the ER-localized Scs2p, a binding determinant for several peripheral ER proteins. A complex between Psd2p and PstB2p was also detected, and this interaction was facilitated by a cryptic C2 domain at the extreme N terminus of Psd2p (C2-1) as well the previously characterized C2 domain of Psd2p (C2-2). The predicted N-terminal helical region of PstB2p was necessary and sufficient for promoting the interaction with both Psd2p and Pbi1p. Taken together, these results support a model for PtdSer transport involving the docking of a PtdSer donor membrane with an acceptor via specific protein-protein and protein-lipid interactions. Specifically, our model predicts that this process involves an acceptor membrane complex containing the C2 domains of Psd2p, PstB2p, and Pbi1p that ligate to Scs2p and phosphatidic acid present in the donor membrane, forming a zone of apposition that facilitates PtdSer transfer.  相似文献   

14.
Platelet-activating factor (PAF)-dependent transacetylase (TA) is an enzyme that transfers an acetyl group from PAF to acceptor lipids such as lysophospholipids and sphingosine. This enzyme is distributed in membrane and cytosol of the cells. We previously revealed that TA purified from rat kidney membrane showed an amino acid sequence similarity to that of bovine PAF-acetylhydrolase (AH) (II). In the present study, we purified TA from the rat kidney cytosol and analyzed its amino acid sequence. The amino acid sequence of the cytosolic TA is similar to that of bovine PAF-AH (II) and membrane TA. To clarify the relationship between TA and PAF-AH (II), we isolated cDNA of rat PAF-AH (II). The predicted amino acid sequence of rat PAF-AH (II) from isolated cDNA included all the sequences found in TAs purified from the membrane and cytosolic TAs. In addition, monoclonal antibody to recombinant PAF-AH (II) cross-reacted with both cytosolic and membrane TAs. Consistent with sequence identity, recombinant PAF-AH (II) showed TA activity, whereas recombinant PAF-AH Ib, which is a different subtype of intracellular PAF-AHs, did not possess TA activity. Analysis of a series of site-directed mutant PAF-AH (II) proteins showed that TA activity was decreased, whereas PAF-AH activity was not affected in C120S and G2A mutant proteins. Thus, Cys(120) and Gly(2) are implicated in the catalysis of TA reaction in this enzyme. Furthermore, the transfer of acetate from PAF to endogenous acceptor lipids was significantly increased in a time-dependent manner in CHO-K1 cells transfected with PAF-AH (II) gene. These results demonstrate that PAF-AH (II) can function, as a TA in intact cells, and PAF-AH (II) and TA are the same enzyme.  相似文献   

15.
In mammalian cells, phosphatidylserine (PtdSer) is synthesized through the action of the endoplasmic reticulum enzymes, PtdSer synthase 1 and 2, and the decarboxylation of PtdSer accounts for the majority of phosphatidylethanolamine (PtdEtn) synthesis. PtdSer decarboxylation for PtdEtn formation occurs in the mitochondria. In addition, the transport of PtdSer from the endoplasmic reticulum to the mitochondria is probably a rate limiting step for PtdEtn synthesis through the decarboxylation pathway. Therefore, the regulation of PtdSer synthesis and its intracellular transport appear to be essential events for the maintenance of normal cellular PtdSer and PtdEtn levels. Here we describe the current understanding of the regulation of PtdSer biosynthesis and the transport of PtdSer from the ER to the mitochondria in mammalian cells.  相似文献   

16.
Lim SF  Lee MM  Zhang P  Song Z 《Glycobiology》2008,18(11):851-860
A CHO mutant line, MAR-11, was isolated using a cytotoxic lectin, Maackia amurensis agglutinin (MAA). This mutant has decreased levels of cell surface sialic acid relative to both wild-type CHO-K1 and Lec2 mutant CHO cells. The CMP-sialic acid transporter (CMP-SAT) gene in the MAR-11 mutant cell has a C-T mutation that results in a premature stop codon. As a result, MAR-11 cells express a truncated version of CMP-SAT which contains only 100 amino acids rather than the normal CMP-SAT which contains 336 amino acids. Biochemical analyses indicate that recombinant interferon-gamma (IFN-gamma) produced by the mutant cells lack sialic acid. Using MAR-11 as host cells, an EPO/IEF assay for the structure-function study of CMP-SAT was developed. This assay seems more sensitive than previous assays that were used to analyze sialylation in Lec2 cells. Cotransfection of constructs that express CMP-SAT into MAR-11 cells completely converted the recombinant EPO to a sialylation pattern that is similar to the EPO produced by the wild-type CHO cells. Using this assay, we showed that CMP-SAT lacking C-terminal 18 amino acids from the cytosolic tail was able to allow high levels of EPO sialylation. Substitution of the Gly residues with Ile in three different transmembrane domains of CMP-SAT resulted in dramatic decreases in transporter's activity. The CMP-SAT only lost partial activity if the same Gly residues were substituted with Ala, suggesting that the lack of side chain in Gly residues in the transmembrane domains is essential for transport activity.  相似文献   

17.
Mitochondrial membrane biogenesis requires the interorganelle transport of phospholipids. Phosphatidylserine (PtdSer) synthesized in the endoplasmic reticulum and related membranes (mitochondria-associated membrane (MAM)) is transported to the mitochondria by unknown gene products and decarboxylated to form phosphatidylethanolamine at the inner membrane by PtdSer decarboxylase 1 (Psd1p). We have designed a screen for strains defective in PtdSer transport (pstA mutants) between the endoplasmic reticulum and Psd1p that relies on isolating ethanolamine auxotrophs in suitable (psd2Delta) genetic backgrounds. Following chemical mutagenesis, we isolated an ethanolamine auxotroph that we designate pstA1-1. Using in vivo and in vitro phospholipid synthesis/transport measurements, we demonstrate that the pstA1-1 mutant is defective in PtdSer transport between the MAM and mitochondria. The gene that complements the growth defect and PtdSer transport defect of the pstA1-1 mutant is MET30, which encodes a substrate recognition subunit of the SCF (suppressor of kinetochore protein 1, cullin, F-box) ubiquitin ligase complex. Reconstitution of different permutations of MAM and mitochondria from wild type and pstA1-1 strains demonstrates that the MET30 gene product affects both organelles. These data provide compelling evidence that interorganelle PtdSer traffic is regulated by ubiquitination.  相似文献   

18.
The yeast Saccharomyces cerevisiae contains three alcohol dehydrogenase isoenzymes (ADHI-ADHIII), two in the cytoplasm (ADHI and ADHII) and one in the mitochondrion (ADHIII). Sequence comparison of the corresponding nuclear genes showed that these three proteins are 80-90% identical except for a 27-amino acid extension at the amino terminus of ADHIII. Here we demonstrate that ADHIII is located inside the mitochondrial inner membrane. We also show, using gene fusions, that the amino terminus of ADHIII contains the information for targeting the protein to and transporting it into the mitochondrion. The mitochondrial isoenzyme ADHIII can be converted into a cytosolic protein by deleting its first 28 amino acids. Conversely, the cytoplasmic isoenzyme ADHII can be converted into a mitochondrial isoenzyme by replacing its first 21 amino acids with the first 48 amino acids of ADHIII. We conclude that ADHII is a cytosolic protein because it lacks an amino-terminal targeting sequence for the mitochondrion and that ADHIII is a mitochondrial protein because it contains a mitochondrial targeting sequence.  相似文献   

19.
The human NGF gene was isolated and inserted downstream from murine leukemia virus LTR in a plasmid having dihydrofolate reductase cDNA. The expression plasmid was introduced into CHO cells. Selection of the transformants for the resistance to methotrexate gave a CHO cell line which produced human NGF at a level of 4 mg/L in the culture medium. The recombinant human NGF was purified to near homogeneity from the culture supernatant. The NH2-terminal amino acid sequence, the COOH-terminal amino acid (Ala), and the amino acid composition of the human NGF were identical to those deduced from the nucleotide sequence of the human NGF gene. The recombinant human NGF was composed of 120 amino acid residues. Three disulfide linkages were determined to be Cys15-Cys80, Cys-58-Cys108, and Cys68-Cys110; the locations were identical to those in the mouse 2.5S NGF molecule. The specific biological activity of the recombinant human NGF was comparable with that of authentic mouse 2.5S NGF as determined by stimulation of neurite outgrowth from PC12 cells.  相似文献   

20.
Using highly enriched membrane preparations from lactate-grown Saccharomyces cerevisiae cells, the subcellular and submitochondrial location of eight enzymes involved in the biosynthesis of phospholipids was determined. Phosphatidylserine decarboxylase and phosphatidylglycerolphosphate synthase were localized exclusively in the inner mitochondrial membrane, while phosphatidylethanolamine methyltransferase activity was confined to microsomal fractions. The other five enzymes tested in this study were common both to the outer mitochondrial membrane and to microsomes. The transmembrane orientation of the mitochondrial enzymes was investigated by protease digestion of intact mitochondria and of outside-out sealed vesicles of the outer mitochondrial membrane. Glycerolphosphate acyltransferase, phosphatidylinositol synthase, and phosphatidylserine synthase were exposed at the cytosolic surface of the outer mitochondrial membrane. Cholinephosphotransferase was apparently located at the inner aspect or within the outer mitochondrial membrane. Phosphatidate cytidylyltransferase was localized in the endoplasmic reticulum, on the cytoplasmic side of the outer mitochondrial membrane, and in the inner mitochondrial membrane. Inner membrane activity of this enzyme constituted 80% of total mitochondrial activity; inactivation by trypsin digestion was observed only after preincubation of membranes with detergent (0.1% Triton X-100). Total activity of those enzymes that are common to mitochondria and the endoplasmic reticulum was about equally distributed between the two organelles. Data concerning susceptibility to various inhibitors, heat sensitivity, and the pH optima indicate that there is a close similarity of the mitochondrial and microsomal enzymes that catalyze the same reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号