首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine-sensitive adenylate cyclase and 3H-SCH 23390 binding parameters were measured in the rat substantia nigra and striatum 15 days after the injection of 6-hydroxydopamine into the medial forebrain bundle. The activity of nigral dopamine-sensitive adenylate cyclase and the binding of 3H-SCH 23390 to rat nigral D-1 dopamine receptors were markedly decreased after the lesion. On the contrary, 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway enhanced both adenylate cyclase activity and the density of 3H-SCH 23390 binding sites in striatal membrane preparations. The changes in 3H-SCH 23390 binding found in both nigral and striatal membrane preparations were associated with changes in the total number of binding sites with no modifications in their apparent affinity. The results indicate that: within the substantia nigra a fraction (30%) of D-1 dopamine receptors coupled to the adenylate cyclase is located on cell bodies and/or dendrites of dopaminergic neurons; striatal D-1 dopamine receptors are tonically innervated by nigrostriatal afferent fibers.  相似文献   

2.
Chronic treatment with SCH 23390, a selective D-1 dopamine receptor antagonist, elicited a 32% increase in the density of 3H-SCH 23390 binding sites in nigral membrane preparations but failed to change the apparent KD of the ligand for its binding sites. Haloperidol, a D-2 dopamine receptor antagonist which blocks the dopamine-sensitive adenylate cyclase and (-) sulpiride, a selective D-2 dopamine receptor blocker, which does not block the dopamine-sensitive adenylate cyclase, failed to change both the Bmax and KD of 3H-SCH 23390 binding. Finally, the intrastriatal injection of kainic acid produced a marked decrease of both GAD activity and GABA content and 3H-SCH 23390 binding sites (65%) in the homolateral substantia nigra. The results show that in the rat substantia nigra most of the 3H-SCH 23390 binding sites have a presynaptic localization on the striato-nigral GABAergic afferent terminals and suggest that dopamine released from nigral dendrites exerts a tonic influence on these presynaptic D-1 dopamine receptors.  相似文献   

3.
The adenylate cyclase present in membranes prepared from sea urchin eggs is sensitive to dopamine stimulation. The receptor sites coupled to sea urchin adenylate cyclase were characterized by means of specific agonists and antagonists. The D-1 dopamine agonist SKF-38393 was able to stimulate enzyme activity, while the two D-1 dopamine antagonists, SCH-23390 and SKF-83566, suppressed the stimulatory effect of dopamine. In addition, the D-2 dopamine agonists, PPHT and metergoline, brought about a dose-dependent inhibition of dopamine-stimulated adenylate cyclase activity. These data show that: (i) in sea urchin eggs adenylate cyclase is regulated by dopamine receptors; (ii) these receptors share characteristics with D-1 and D-2 dopamine receptors present in the mammalian brain.  相似文献   

4.
Distinct target size of dopamine D-1 and D-2 receptors in rat striatum   总被引:3,自引:0,他引:3  
Frozen rat striatal tissue was exposed to 10 MeV electrons from a linear accelerator. Based on the theory of target size analysis, the molecular weights of dopamine D-1 receptors (labelled by 3H-piflutixol) and dopamine D-2 receptors (labelled by 3H-spiroperidol) were 79,500 daltons and 136,700 daltons, respectively. The size of the dopamine-stimulated adenylate cyclase was 202,000 daltons. The estimated molecular sizes were deduced by reference to proteins with known molecular weights which were irradiated in parallel. The results showed that the molecular entities for 3H-piflutixol binding and 3H-spiroperidol binding were not identical. The present results do not allow conclusions as to whether D-1 and D-2 receptors are two distinct proteins in the membrane, or whether the receptors are located on the same protein. In the latter case the binding of 3H-spiroperidol needs the presence of a second molecule.  相似文献   

5.
Clones have been isolated from the human astrocytoma cell line G-CCM. Homogenates of clone D384 contain an adenylate cyclase that is stimulated by 3,4-dihydroxyphenylethylamine (dopamine), noradrenaline, and isoprenaline with Ka apparent values of 4, 56, and 2.7 microM, respectively. The Ka apparent value for dopamine was increased by the D-1 antagonist cis-flupenthixol, 25 and 100 nM, to 23 and 190 microM, respectively, but was unaffected by propranolol (1 microM). Noradrenaline stimulation of adenylate cyclase was only partially inhibited by either propranolol (10 microM) or cis-flupenthixol (1 microM). Propranolol (10 microM), but not cis-flupenthixol (1 microM), prevented stimulation by isoprenaline. The stimulation of adenylate cyclase by dopamine and noradrenaline remained unchanged in the presence of phentolamine (1 microM) and sulpiride (1 microM). These results suggest that clone D384 contains both D-1 dopaminergic and beta-adrenergic receptors coupled to adenylate cyclase. Dopamine stimulates D384 adenylate cyclase through D-1 receptors, isoprenaline via beta-receptors, and noradrenaline through both receptors.  相似文献   

6.
To identify the involvement of dopamine receptors in the transmembrane signaling of the adenosine receptor-G protein-adenylate cyclase system in the CNS, we examined the effects of pertussis toxin (islet-activating protein, IAP) and apomorphine on A1 adenosine agonist (-)N6-R-[3H]phenylisopropyladenosine ([3H]PIA) and antagonist [3H]xanthine amine congener ([3H]XAC) binding activity and adenylate cyclase activity in cerebral cortex membranes of the rat brain. Specific binding to a single class of sites for [3H]XAC with a dissociation constant (KD) of 6.0 +/- 1.3 nM was observed. The number of maximal binding sites (Bmax) was 1.21 +/- 0.13 pmol/mg protein. Studies of the inhibition of [3H]XAC binding by PIA revealed the presence of two classes of PIA binding states, a high-affinity state (KD = 2.30 +/- 1.16 nM) and a low-affinity state (KD = 1.220 +/- 230 nM). Guanosine 5'-(3-O-thio)triphosphate or IAP treatment reduced the number of the high-affinity state binding sites without altering the KD for PIA. Apomorphine (100 microM) increased the KD value 10-fold and decreased Bmax by approximately 20% for [3H]PIA. The effect of apomorphine on the KD value increase was irreversible and due to a conversion from high-affinity to low-affinity states for PIA. The effect was dose dependent and was mediated via D2 dopamine receptors, since the D2 antagonist sulpiride blocked the phenomenon. The inhibitory effect of PIA on adenylate cyclase activity was abolished by apomorphine treatment. There was no effect of apomorphine on displacement of [3H]quinuclidinyl benzilate (muscarinic ligand) binding by carbachol. These data suggest that A1 adenosine receptor binding and function are selectively modified by D2 dopaminergic agents.  相似文献   

7.
Previous studies have demonstrated high affinity 3H-dopamine binding sites on mammalian striatal membranes. These putative dopamine receptors of unknown physiological significance have been termed D-3 sites. Such studies have failed, however, to demonstrate high affinity 3H-dopamine binding to D-2 sites, which can be labeled by 3H-butyrophenones, and which represent the putative dopamine receptors most stronly implicated in the behavioral correlates of dopaminergic CNS activity. We now report that preincubation of membrane homogenates with Mg++ and inclusion of Mg++ (1–10mM) or other divalent metal cations during binding allows high affinity D-2 specific 3H-dopamine binding in rat striatal membranes, and that these ions also increase the Bmax of D-3 specific 3H-dopamine binding. GTP, GDP, and GppNHp can completely abolish all D-2 specific 3H-dopamine binding, while only a magnesium-dependent portion of D-3 sites appears to be GTP sensitive. These data are consistent with the hypothesis that the striatal D-2 receptor exists in two agonist affinity states whose interconversion is effected by guanine nucleotides and divalent metal cations. The GTP sensitive/magnesium dependent nature of 3H-dopamine binding to so-called D-3 sites suggests that some such sites may in fact represent a high agonist-affinity state of the D-1 adenylate cyclase stimulating dopamine receptor also found in this tissue.  相似文献   

8.
The optical isomers of apomorphine (APO) and N-propylnorapomorphine (NPA) were interacted with three biochemical indices of dopamine (DA) receptors in extrapyramidal and limbic preparations of rat brain tissue. There were consistent isomeric preferences for the R(-) configuration of both DA analogs in stimulating adenylate cyclase (D-1 sites) and in competing for high affinity binding of 3H-spiroperidol (D-2 sites) and of 3H-ADTN (DA agonist binding sites) in striatal tissue, with lesser isomeric differences in the limbic tissue. The S(+) apomorphines did not inhibit stimulation of adenylate cyclase by DA. The tendency for greater activity or higher apparent affinity of R(-) apomorphines in striatum may reflect the evidently greater abundance of receptor sites in that region. There were only small regional differences in interactions of the apomorphine isomers with all three receptor sites, except for a strong preference of (-)NPA for striatal D-2 sites. These results do not parallel our recent observations indicating potent and selective antidopaminergic actions of S(+) apomorphines in the rat limbic system. They suggest caution in assuming close parallels between current biochemical and functional, especially behavioral, methods of evaluating dopamine receptors of mammalian brain.  相似文献   

9.
Clinical and pharmacological evidence suggested that dopamine is involved in the control of esophageal motility. The present study was designed to determine whether or not dopamine receptors are present in human esophagus. With this aim we measured adenylate cyclase activity as a biochemical index of dopamine receptor function in esophageal specimens taken from five patients during surgery for upper esophageal carcinoma. The selective D-1 agonist fenoldopam stimulated cAMP formation in the lower esophageal sphincter, but not in the esophageal body; this effect was prevented by the selective D-1 antagonist SCH 23390 and by d-butaclamol. Bromocriptine, a selective D-2 stimulator, inhibited adenylate cyclase activity in the lower esophageal sphincter, an effect blocked by the D-2 antagonist (-)sulpiride. No effects of bromocriptine were found in the esophageal body. These data indicate that both D-1 and D-2 receptors are present in the lower esophageal sphincter, but not in esophageal body and emphasize the role of dopamine in the regulation of esophageal function.  相似文献   

10.
The potent and D-1 versus D-2 selective dopamine receptor antagonist, SK&F R-83566, was radiolabelled with tritium and was used as a radioligand for examination of D-1 receptors in rat striatum. Binding of the radioligand was stereoselective, saturable and reversible. In homogenates of rat striatum, nonspecific binding of the radioligand was less than 5% of total binding, the KD was 1.1 +/- 0.2 nM and the Bmax was 1130 +/- 70 fmoles/mg protein. Results of competition binding analyses yielded a pharmacological profile that was characteristic of dopamine D-1 receptor interaction. Competition studies of dopamine agonists against the potent antagonist radioligand indicated multiple affinities of agonist binding to the D-1 receptor. Displacement was best fit to a two-site model of ligand binding and high and low affinities were subject to regulation by guanine, but not adenine, nucleotides. Antagonist binding was not complex and was unaffected by guanine nucleotides. The role of monovalent cations in regulating D-1 receptor binding was evaluated by comparing effects of Na+, Li+, and K+ on binding of the antagonist [3H]SK&F R-83566 and the agonist [3H]fenoldopam (SK&F 82526). Whereas agonist binding was reduced in a concentration dependent fashion by monovalent cations with a ranking of potency Li+ greater than Na+ greater than K+, antagonist binding was enhanced by the cation Na+ but little affected by Li+ or K+. This effect of relatively low concentrations of Na+ to decrease agonist binding and increase antagonist binding suggests similarities between the D-1 receptor which is positively-coupled to adenylate cyclase and other receptors, e.g. alpha 2 adrenergic receptors, which are negatively-coupled to adenylate cyclase.  相似文献   

11.
A Sidhu  S Kassis  J Kebabian  P H Fishman 《Biochemistry》1986,25(21):6695-6701
An iodinated compound, [125I]-8-iodo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin -7-ol, has been recently reported [Sidhu, A., & Kebabian, J.W. (1985) Eur. J. Pharmacol. 113, 437-440] to be a specific ligand for the D-1 dopamine receptor. Due to its high affinity and specific activity, this ligand was chosen for the biochemical characterization of the D-1 receptor. Alkylation of particulate fractions of rat caudate nucleus by N-ethylmaleimide (NEM) caused an inactivation of the D-1 receptor, as measured by diminished binding of the radioligand to the receptor. The inactivation of the receptor sites by NEM was rapid and irreversible, resulting in a 70% net loss of binding sites. On the basis of Scatchard analysis of binding to NEM-treated tissue, the loss in binding sites was due to a net decrease in the receptor number with a 2-fold decrease in the affinity of the receptor for the radioligand. Receptor occupancy by either a D-1 specific agonist or antagonist protected the ligand binding sites from NEM-mediated inactivation. NEM treatment of the receptor in the absence or presence of protective compound abolished the agonist high-affinity state of the receptor as well as membrane adenylate cyclase activity. The above-treated striatal membranes were fused with HeLa membranes and assayed for dopamine-stimulated adenylate cyclase activity. When the sources of D-1 receptors were from agonist-protected membranes, the receptors retained their ability to functionally couple to the HeLa adenylate cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
As shown by autoradiography, peripheral injections of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) induced a dose-dependent decrease of [3H]SCH 23390 and [3H]prazosin high-affinity binding sites in the rat prefrontal cortex. EEDQ showed similar efficacy in inactivating cortical and striatal dopamine (DA) D1 receptors, whereas prazosin-sensitive alpha 1-adrenergic receptors were more sensitive to the action of the alkylating agent, as for all doses of EEDQ tested (from 0.8 to 3 mg/kg, i.p.), the decrease in cortical [3H]SCH 23390 binding was less pronounced than that of [3H]prazosin. The effects of EEDQ on [3H]SCH 23390 binding and DA-sensitive adenylate cyclase activity were then simultaneously compared in individual rats. In the striatum, whatever the dose of EEDQ used, the decrease of DA-sensitive adenylate cyclase activity was always lower than that of D1 binding sites, suggesting the occurrence of a large proportion of spare D1 receptors. In the prefrontal cortex, a significant increase in DA-sensitive adenylate cyclase activity was observed in rats treated with a low dose of EEDQ (0.8 mg/kg), this effect being associated with a slight reduction in [3H]SCH 23390 binding sites (-20%). Parallel decreases in the enzyme activity and D1 binding sites were observed with higher doses. The EEDQ-induced supersensitivity of DA-sensitive adenylate cyclase did not occur in rats in which the decrease in [3H]prazosin binding sites was higher than 35%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Substance P was incubated in an adenylate cyclase assay of a particulate fraction of caudate-putamen tissue of the rat in order to examine the effect of the peptide on D-1 receptor coupled adenylate cyclase in vitro. Substance P did not influence basal adenylate cyclase activity or the stimulation of the enzyme by dopamine. No influence of substance P was seen on the effects of calcium and magnesium chloride as a cofactor of adenylate cyclase. Also the inhibition of adenylate cyclase activity by the dopamine antagonist fluphenazine was not influenced by substance P. However, substance P was able to enhance cyclic AMP formation in the presence of guanosine-imidodiphosphate (Gpp(NH)p), whereas the stimulatory effect of guanosine-triphosphate (GTP) was inhibited by substance P. In our study we suggest that substance P interacts with the guanine nucleotide regulatory subunit without directly affecting D-1 dopamine receptors in the caudate-putamen of the rat.  相似文献   

14.
Summary Physiological, pharmacological, histochemical and biochemical studies indicate that dopamine receptors are heterogenous in the, central nervous system with each individual functions. This review describes pharmacological and biochemical characteristics of dopamine receptors, particularly in canine caudate nucleus, which have been studied in our laboratory with a brief comparison to the current studies by other workers in similar research fields.Two distinct dopamine receptors have been characterized by means of [3H]dopamine binding to the synaptic membranes from canine caudate nucleus. One of the receptors with a Kd of about 3 M for dopamine may be associated with adenylate cyclase and referred to as D, receptor. The other receptor with a Kd of about 10 nM for dopamine is independent of adenylate cyclase and referred to as D2. A photochemical irreversible association of [3H]dopamine with the membraneous receptors makes it possible to separate D1 and D2 receptors from one another by gel filtration on a Sephadex G-200 column after solubilization with Lubrol PX. On the basis of selective inhibition of [3H]dopamine binding to D1 and D2 receptors, dopamine antagonists can be classified into three classes: D1-selective (YM-09151-2), D2-selective (sulpiride) and nonselective (haloperidol, chlorpromazine). Effects of these typical antagonists on the metabolism of rat brain dopamine suggest that D1 receptor is more closely associated with the neuroleptic-induced increase in dopamine turnover. Studies with 28 benzamide derivatives and some classical neuroleptics reveal that apomorphine-induced stereotypy displays a greater association with D1 than with D2 receptors.Dopamine-sensitive adenylate cyclase in canine caudate nucleus can be solubilized with Lubrol PX in a sensitive form to either dopamine, Gpp(NH)p or fluoride. Sephadex G-200 gel filtration separates adenylate cyclase from D1 receptors with a concomitant loss of dopamine sensitivity. Addition of the D1 receptor fraction to the adenylate cyclase restores the responsiveness to dopamine. The solubilized dopamine-unresponsive adenylate cyclase can be further separated into two distinct fractions by a batch-wise treatment with GTP-sepharose: a catalytic unit which does not respond to fluoride, and a guanine nucleotide regulatory protein. The regulatory protein confers distinct responsiveness to Gpp(NH)p and fluoride upon adenylate cyclase. These results indicate that dopamine-sensitive adenylate cyclase is composed of at least three distinct units; D1 receptor, guanine nucleotide regulatory protein and adenylate cyclase.  相似文献   

15.
The diterpinoid forskolin stimulated adenylate cyclase activity (measured by conversion of [3H]-ATP to [3H]-cAMP) in anterior pituitary from male and female rats. Inhibition of stimulated adenylate cyclase activity by potent dopaminergic agonists was demonstrable only in female anterior pituitary. The inhibition of adenylate cyclase activity displayed a typically dopaminergic rank order of agonist potencies and could be completely reversed by a specific dopamine receptor antagonist. The IC50 values of dopamine agonist inhibition of adenylate cyclase activity correlated with equal molarity with the dissociation constant of the high-affinity dopamine agonist-detected receptor binding site and with the IC50 values for inhibition of prolactin secretion. These findings support the hypothesis that it is the high-affinity form of the D2 dopamine receptor in anterior pituitary which is responsible for mediating the dopaminergic function of attenuating adenylate cyclase activity.  相似文献   

16.
Opioid agonists bind to GTP-binding (G-protein)-coupled receptors to inhibit adenylyl cyclase. To explore the relationship between opioid receptor binding sites and opioid-inhibited adenylyl cyclase, membranes from rat striatum were incubated with agents that block opioid receptor binding. These agents included irreversible opioid agonists (oxymorphone-p-nitrophenylhydrazone), irreversible antagonists [naloxonazine, beta-funaltrexamine, and beta-chlornaltrexamine (beta-CNA)], and phospholipase A2. After preincubation with these agents, the same membranes were assayed for high-affinity opioid receptor binding [3H-labeled D-alanine-4-N-methylphenylalanine-5-glycine-ol-enkephalin (mu), 3H-labeled 2-D-serine-5-L-leucine-6-L-threonine enkephalin (delta), and [3H]ethylketocylazocine (EKC) sites] and opioid-inhibited adenylyl cyclase. Although most agents produced persistent blockade in binding of ligands to high-affinity mu, delta, and EKC sites, no change in opioid-inhibited adenylyl cyclase was detected. In most treated membranes, both the IC50 and the maximal inhibition of adenylyl cyclase by opioid agonists were identical to values in untreated membranes. Only beta-CNA blocked opioid-inhibited adenylyl cyclase by decreasing maximal inhibition and increasing the IC50 of opioid agonists. This effect of beta-CNA was not due to nonspecific interactions with G(i), Gs, or the catalytic unit of adenylyl cyclase, as neither guanylylimidodiphosphate-inhibited, NaF-stimulated, nor forskolin-stimulated activity was altered by beta-CNA pretreatment. Phospholipase A2 decreased opioid-inhibited adenylyl cyclase only when the enzyme was incubated with brain membranes in the presence of NaCl and GTP. These results confirm that the receptors that inhibit adenylyl cyclase in brain do not correspond to the high-affinity mu, delta, or EKC sites identified in brain by traditional binding studies.  相似文献   

17.
The ability of different receptors to mediate inhibition of cyclic AMP accumulation due to a variety of agonists was examined in rat striatal slices. In the presence of 1 mM 3-isobutyl-1-methylxanthine, dopamine D-2, muscarinic cholinergic, and opiate receptor stimulation by RU 24926, carbachol, and morphine (all at 10(-8)-10(-5) M), respectively, inhibited the increase in cyclic AMP accumulation in slices of rat striatum due to dopamine D-1 receptor stimulation by 1 microM SKF 38393. In contrast, these inhibitory agents were unable to reduce the ability of a number of other agonists, including isoprenaline, prostaglandin E1, 2-chloroadenosine, vasoactive intestinal polypeptide, and cholera toxin, to increase cyclic AMP levels in striatal slices. These results suggest that in rat striatum either dopamine D-2, muscarinic cholinergic, and opiate receptors are only functionally linked to dopamine D-1 receptors or that the D-1 and D-2 receptors linked to adenylate cyclase lie on the cells, distinct from other receptors capable of elevating striatal cyclic AMP levels.  相似文献   

18.
A D-2 dopamine receptor and a β2-adrenoceptor occur in the intermediate lobe of the rat pituitary gland (IL). Exposure of intact IL tissue to a D-2 agonist diminished the ability of dopaminergic agonists [but not 5′-guanylyl imidodiphosphate (Gpp(NH)p)] to inhibit adenylate cyclase activity. Conversely, exposure of intact IL tissue to a β-adrenergic agonist diminished the ability of a β-adrenergic agonist (but not forskolin) to stimulate adenylate cyclase activity. Treatment of ovariectomized rats with 17β-estradiol desensitizes the β2-adrenoceptor but not the D-2 receptor. Desensitization of the IL catecholamine receptors is discussed within the framework of a previously published “working model” of these receptors.  相似文献   

19.
The binding of [3H]forskolin to a homogeneous population of binding sites in rat striatum was enhanced by NaF, guanine nucleotides and MgCl2. These effects of NaF and guanylylimidodiphosphate (Gpp(NH)p) were synergistic with MgCl2, but NaF and Gpp(NH)p together elicited no greater enhancement of [3H]forskolin binding. These data suggest that [3H]forskolin may label a site which is modulated by the guanine nucleotide regulatory subunit which mediates the stimulation of adenylate cyclase (NS). The D1 dopamine receptor is known to stimulate adenylate cyclase via NS. In rat striatum, the Bmax of [3H]forskolin binding sites in the presence of MgCl2 and NaF was approximately two fold greater than the Bmax of [3H]SCH23390-labeled D1 dopamine receptors. Incubation of striatal homogenates with the protein modifying reagent EEDQ elicited a concentration-dependent decrease in the binding of both [3H]SCH23390 and [3H]forskolin, although EEDQ was approximately 14 fold more potent at inactivating the D1 dopamine receptor. Following in vivo administration of EEDQ there was no significant effect on [3H]forskolin binding sites using a dose of EEDQ that irreversibly inactivated greater than 90% of D1 dopamine receptors. These data suggest that EEDQ is a suitable tool for investigating changes in the stoichiometry of receptors and their second messenger systems.  相似文献   

20.
1. The adenylate cyclase activity present in the particulate fraction of planaria homogenates has been characterized.2. The enzyme requires divalent cations (Mg2+), and a Km for ATP of 0.58 at 30°C was measured.3. GTP and Gpp(NH)p, in an optimal range of 10−4–10−5M, increase the enzymatic activity.4. In the presence of GTP, dopamine stimulates the adenylate cyclase and its action is inhibited by dopaminergic antagonist.5. Both D-1 and D-2 selective dopaminergic agonists stimulate the enzymatic activity and their action is selectively antagonized by D-1 and D-2 antagonists.6. The high concentrations required for some D-1 and D-2 agents to be effective, suggest an only partial consistency with mammalian dopaminergic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号