首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrophoretic and Western blot studies were conducted on collagen fractions extracted from Sepia officinalis (cuttlefish) cartilage using a modified salt precipitation method developed for the isolation of vertebrate collagens. The antibodies used had been raised in rabbit against the following types of collagen: Sepia I-like; fish I; human I; chicken I, II, and IX; rat V; and calf IX and XI. The main finding was that various types of collagen are present in Sepia cartilage, as they are in vertebrate hyaline cartilage. However, the main component of Sepia cartilage is a heterochain collagen similar to vertebrate type I, and this is associated with minor forms similar to type V/XI and type IX. The cephalopod type I-like heterochain collagen can be considered a first step toward the evolutionary development of a collagen analogous to the typical collagen of vertebrate cartilage (type II homochain). The type V/XI collagen present in molluscs, and indeed all phyla from the Porifera upwards, may represent an ancestral collagen molecule conserved relatively unchanged throughout evolution. Type IX-like collagen seems to be essential for the formation of cartilaginous tissue.  相似文献   

2.
Invertebrates possess unique collagen-containing connective tissue elements, the biochemistry of which is not clearly understood. We previously reported the occurrence of a novel heterotrimeric type V/XI like collagen in the cranial cartilage of the cuttlefish Sepia officinalis. We report here the purification of the three chains by ion exchange chromatography and the physicochemical characteristics of this collagen. This collagen shared substantial similarity to the collagen purified from the cornea of S. officinalis, with respect to chain composition, cyanogen bromide peptide profile and amino acid composition. The mobility of the C3 chain was retarded in the corneal collagen, which also had an increased glycine content and a smaller ratio of hydroxylysine to lysine, together with a reduction in bound carbohydrates. The cartilage collagen had a higher denaturation temperature than corneal collagen. As observed by transmission electron microscopy of reconstituted fibrils, the heterotrimeric invertebrate collagen formed fibrils of no apparent periodicities as opposed to the regular 64-nm banding pattern of milk shark (Rhizoprionodon acutus) cartilage collagen. This is also the first report on the molecular species of collagen in an invertebrate cornea. Our results strongly support the functioning of minor vertebrate collagens as major collagens in some invertebrates, close similarity of collagens in two tissues with different functions and would hold significance to our understanding of collagen polymorphism and the evolution of the extracellular matrix.  相似文献   

3.
Electrophoretic and Western blot studies were conducted on collagen fractions extracted from Sepia officinalis (cuttlefish) cartilage using a modified salt precipitation method developed for the isolation of vertebrate collagens. The antibodies used had been raised in rabbit against the following types of collagen: Sepia I-like; fish I; human I; chicken I, II, and IX; rat V; and calf IX and XI. The main finding was that various types of collagen are present in Sepia cartilage, as they are in vertebrate hyaline cartilage. However, the main component of Sepia cartilage is a heterochain collagen similar to vertebrate type I, and this is associated with minor forms similar to type V/XI and type IX. The cephalopod type I-like heterochain collagen can be considered a first step toward the evolutionary development of a collagen analogous to the typical collagen of vertebrate cartilage (type II homochain). The type V/XI collagen present in molluscs, and indeed all phyla from the Porifera upwards, may represent an ancestral collagen molecule conserved relatively unchanged throughout evolution. Type IX-like collagen seems to be essential for the formation of cartilaginous tissue.  相似文献   

4.
Reconstituted cartilage collagen fibrils with an oblique banding pattern or with two types of symmetrical patterns, and reconstituted rattail tendon fibrils with a third type of symmetrical pattern were examined by electron microscopy and found to consist of narrow subfibrils having native-type cross-striations. Analysis of the four types of patterns by a graphic method of specific band matching revealed the orientation and axial relation of individual subfibrils and their component molecules. In fibrils with an oblique pattern, subfibrils have the same orientation and a regular 100A axial displacement. Observations on staining characteristics, folded fibrils, and transverse sections of embedded fibrils suggest that the obliquely banded fibrils are ribbonlike or layered structures. In the three types of fibrils with a symmetrical pattern, adjacent subfibrils are oppositely oriented and aligned within a 119-A segment of the 670-A major period. Considered together, the observations suggest that interaction sites on the surface of subfibrils (and perhaps on the surface of native collagen fibrils) occur in various patterns that are manifested accouding to the nature of the environment during fibril formation, and that such patterns can be mapped on the surface of subfibrils by noting the arrangement of subfibrils in polymorphic forms.  相似文献   

5.
Collagen type XI is a component of hyaline cartilage consisting of alpha 1(XI), alpha 2(XI), and alpha 3(XI) chains; with 5-10% of the total collagen content, it is a minor but significant component next to type II collagen, but its function and precise localization in cartilaginous tissues is still unclear. Owing to the homology of the alpha 3(XI) and alpha 1(II) collagen chains, attempts to prepare specific antibodies to native type XI collagen have been unsuccessful in the past. In this study, we report on the preparation and use for immunohistochemistry of a polyclonal antibody specific for alpha 2(XI) denatured collagen chains. The antibody was prepared by immunization with the isolated alpha 2(XI) chain and reacts neither with native type XI collagen nor type I, II, V, or IX by ELISA or immunoblotting, nor with alpha 1(XI) or alpha 3(XI), but with alpha 2(XI) chains. Using this antibody, it was possible to specifically localize alpha 2(XI) in cartilage by pretreating tissue sections with 6 M urea. In double immunofluorescence staining experiments, the distribution of alpha 2(XI) as indicative for type XI collagen in fetal bovine and human cartilage was compared with that of type II collagen, using a monoclonal antibody to alpha 1(II). Type XI collagen was found throughout the matrix of hyaline cartilage. However, owing to cross-reactivity of the monoclonal anti-alpha 1(II) with alpha 3(XI), both antibodies produced the same staining pattern. Cellular heterogeneity was, however, detected in monolayer cultures of human chondrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The morphology of head cartilage of the cephalopods Sepia officinalis and Octopus vulgaris has been studied on samples fixed and embedded for light- and electron microscopy and on fresh frozen sections viewed by polarizing microscopy. The organization of extracellular matrix (ECM) varies in different regions of the head cartilage. Superficial zones are made up of densely packed collagenous laminae parallel to the cartilage surface, while radially arranged laminae form a deeper zone where territorial and interterritorial areas are present. A compact arrangement of banded collagen fibrils (10-25 nm in diameter) forms the laminae of the superficial zones and of the interterritorial areas; a loose three-dimensional network of fibrils (10-20 nm) with many proteoglycan aggregates forms the territorial areas. A pericellular matrix surrounds the bodies of extremely branched territorial chondrocytes. Peculiar anchoring devices (ADs) are dispersed with variable orientation within the ECM. A perichondrium is present, but often connectival and muscular bundles are fused with the superficial layers of cartilage. Some vessels were also observed within the superficial inner zone and clusters of hemocyanin molecules were demonstrated both in the ECM and in some cells. The cephalopod head cartilage seems to share some morphological characteristics with both hyaline cartilage and bone tissue of vertebrates.  相似文献   

7.
Native collagen fibrils were isolated from cephalopod head cartilage and mammal hyaline cartilage. The analysis with TEM after positive and negative staining demonstrated that the fibrils have a periodic structure similar to that of fibrillar type I collagen of mammals. The banding pattern of polymeric forms (SLS, FLS) obtained in vitro from squid cartilage collagen was remarkably different from the analogous forms of mammal collagen types I and II.  相似文献   

8.
Collagen fibrils from the dermis of Sepia officinalis were processed for immunoelectron microscopy to reveal reactions to antibodies against mammalian types I, III, and V, teleost type I and cephalopod type I-like collagens, by single and double immunogold localization. The fibrils were observed: (a) in suspensions of prepared fibrils, (b) in ultrathin sections of embedded fibril preparations, and (c) in ultrathin sections of dermal tissue. Some samples were subjected to acetic acid or urea dissociation. It was found that collagen fibrils from Sepia dermis are heterotypic in that they are composed of type I-like and type V collagens. Type I-like collagen epitopes were present mainly at the periphery of the fibrils; type V collagen epitopes were present throughout the fibrils. This is the first demonstration that collagen fibrils from an invertebrate are heterotypic, suggesting that heterotypy may be an intrinsic characteristic of the fibrils of fibrillar collagens, independent of evolutionary or taxonomic status.  相似文献   

9.
The melanin-free ink of the cephalopod Sepia officinalis is shown to contain a heat labile proteinaceous component toxic to a variety of cell lines, including PC12 cells. Gel filtration chromatography indicated that the toxic component was concentrated in those fractions eluted at a molecular weight higher than 100 kDa and exhibiting the highest tyrosinase activity. SDS-PAGE analysis of the active fractions displayed a single major band migrating at an approximate molecular weight of 100 kDa, identical with that of the single tyrosinase band in the melanin-free ink. These data unambiguously demonstrated the identity of the toxic component with tyrosinase. Treatment of purified Sepia as well as of mushroom tyrosinase with an immobilized version of proteinase K resulted in a parallel loss of tyrosinase activity and cytotoxicity. Sepia apotyrosinase was ineffective in inducing cytotoxicity in PC12 cells. Purified Sepia tyrosinase was found to induce a significant increase in caspase 3 activity in PC12 cells, leading eventually to an irreversible apoptotic process. Overall, these results disclose a hitherto unrecognized property of tyrosinase that may lead to a reappraisal of its biological significance beyond that of a mere pigment producing enzyme.  相似文献   

10.
To establish an optimal method for analysis of the collagen structures from unstained tissue sections, a computerized image analysis system using a charge coupled device camera coupled to a polarizing light microscope was used. Retardation values of birefringence, which are proportional to the content and fibril orientation of collagen in the extracellular matrix of articular cartilage, were determined from sections prepared in different ways. In the superficial zone of articular cartilage, the highest retardation values were recorded from sections cut parallel to the so-called split lines indicating the anisotropic arrangement of collagen. Complete digestion of glycosaminoglycans reduced the retardation value by approximately 6.0%, suggesting a minor, but not insignificant, contribution of glycosaminoglycans to the birefringence of the matrix. The use of a mounting medium with a refractive index close to that of the collagen (e.g. DPX) increased the specificity of the method, since the optical anisotropy of collagen derives predominantly from the intrinsic (structural) birefringence. In conclusion, analysis of unstained sections after careful removal of paraffin and glycosaminoglycans from the tissues provides a sensitive and rapid quantitative assessment of oriented collagen structures in articular cartilage  相似文献   

11.
We used various anti-collagen antibodies to perform indirect immunofluorescent staining of cartilage sections from cuttlefish (S. officinalis). On ultrathin sections and collagen fibril preparations from the same tissue, we performed immunostaining with colloidal gold. The extracellular matrix (ECM) of S. officinalis cartilage reacted intensely and homogeneously with an antibody directed against type I-like collagen isolated from the cartilage of cuttlefish and with anti-rat type V collagen antibody. A weak reaction was observed with anti-fish and anti-chicken type I collagen antibodies, while no reaction was observed with anti-rat type I and anti calf type II collagen antibodies. Anti-chicken type II, anti calf type IX and type XI collagen antibodies reacted weakly with ECM, while stained cell bodies and cell processes reacted more intensely. A similar pattern of reaction was observed on cartilage section and isolated collagen fibrils prepared for electron microscopy. These findings suggest that ECM of cuttlefish cartilage may be composed of molecules similar to the type I, type V, type IX and type XI collagen molecules of vertebrates. Cephalopods have evolved a cartilage of structure and macromolecular organisation similar to that of vertebrate cartilage. However, the main molecular components of S. officinalis cartilage--type I-like and type V collagens--differ from those of vertebrate cartilage. We suggest that this type I-like collagen can be considered an initial step toward the evolution of type II collagen typical of vertebrates.  相似文献   

12.
Type VI collagen, a widespread structural component of connective tissues, has been isolated in abundance from fetal bovine skin by a procedure involving bacterial collagenase digestion under nonreducing, nondenaturing conditions and gel filtration chromatography. Rotary shadowing electron microscopic analysis revealed that the collagen VI was predominantly in the form of extensive intact microfibrillar arrays. These microfibrils were seen in association with hyaluronan, which was identified by its ability to bind the G1 fragment of cartilage proteoglycan. Treatment with highly purified hyaluronidase largely disrupted the collagen VI microfibrils into component tetramers, double tetramers, and short microfibrillar sections. Subsequent incubation of disrupted collagen VI in the presence of hyaluronan facilitated a partial repolymerization of the microfibrils. In vitro binding studies have also demonstrated that type VI collagen binds hyaluronan with a relatively high affinity. These studies demonstrate that a specific structural relationship exists between type VI collagen and hyaluronan. This association is likely to be of primary importance in the growth and remodeling processes of connective tissues.  相似文献   

13.
Lampreys possess unique types of cartilage in which elastin-like proteins are the dominant matrix component, whereas gnathostome cartilage is mainly composed of fibrillar collagen. Despite the differences in protein composition, the Sox-col2a1 genetic cascade was suggested to be conserved between lamprey pharyngeal cartilage and gnathostome cartilage. We examined whether the cascade is conserved in another type of lamprey cartilage, the trabecular cartilage. We found that SoxD and SoxE are expressed in both trabecular and pharyngeal cartilages. However, trabecular cartilage shows no clade A fibrillar collagen gene expression, including genes expressed in pharyngeal cartilage of this animal. On the basis of these observations, we propose that lampreys possess an ancestral type of cartilage that is similar to amphioxus gill cartilage, and in this respect, gnathostome cartilage can be regarded as derived for the loss of elastin-like protein as a cartilage component and recruitment of fibrillar collagen, which is included as a minor component in the ancestral cartilage, as the main component.  相似文献   

14.
The distribution of type II and VI collagen was immunocytochemically investigated in bovine articular and nasal cartilage. Cartilage explants were used either fresh or cultured for up to 4 weeks with or without interleukin 1α (IL-1α). Sections of the explants were incubated with antibodies for both types of collagen. Microscopic analyses revealed that type II collagen was preferentially localized in the interchondron matrix whereas type VI collagen was primarily found in the direct vicinity of the chondrocytes. Treatment of the sections with hyaluronidase greatly enhanced the signal for both types of collagen. Also in sections of explants cultured with IL-1α a higher level of labeling of the collagens was found. This was apparent without any pre-treatment with hyaluronidase. Under the influence of IL-1α the area positive for type VI collagen that surrounded the chondrocytes broadened. Although the two collagens in both types of cartilage were distributed similarly, a remarkable difference was the higher degree of staining of type VI collagen in articular cartilage. Concomitantly we noted that digestion of this type of cartilage hardly occurred in the presence of IL-1α whereas nasal cartilage was almost completely degraded within 18 days of culture. Since type VI collagen is known to be relatively resistant to proteolysis we speculate that the higher level of type VI collagen in articular cartilage is important in protecting cartilage from digestion.  相似文献   

15.
Collagen fibres from rat tail tendon suspended in small pieces in a solution (pH 7.8) containing 0.5 M CaCl2 were treated with purified bovine trypsin at 20 degrees C for 20 h. After the enzyme treatment collagen from this solution was precipitated out and reconstituted in vitro into native-type fibrils. The banding pattern in these reconstituted fibrils was found to be oblique. This is comparable to that observed recently in fibrils reconstituted from cartilage collagen. On the other hand, normal transverse banding pattern was observed in the fibrils reconstituted in vitro from collagen solution of rat tail tendon which was not pre-treated with trypsin. No significant change was, however, observed in the segment long spacing fibrils precipitated from the enzyme-treated collagen solution. It is possible that the enzyme might affect the mode of organization of tropocollagen molecules during in vitro fibrillogenesis into native-type fibrils either by interacting with the "telopeptide" regions or with the non-collagenous components associated with the native protein and this could probably result into the formation of fibrils with oblique banding pattern.  相似文献   

16.
When 19-day fetal rat triceps muscle was cultured for 7 to 14 days upon decalcified, sequentially extracted adult rat bone, cartilage formed within clefts and vascular spaces of the decalcified bone. The bone substrata were prepared by extracting tibias and femurs of Sprague-Dawley rats with 1:1 chloroform:methanol, 0.6 N HCl, 2 M CaCl2, 0.6 M EDTA, 8 M LiCl, and H2O at 56°C. The culture medium used was CMRL 1066 with 15% newborn calf serum. During cultivation, fibroblastic mesenchymal cells migrated out of muscle and into bone crevices where they secreted a cartilaginous matrix composed of thin, randomly dispersed collagen fibrils and proteoglycan granules. The latter are characteristic for cartilage matrix. Extracted bone matrix contained mature collagen fibrils, some of which retained their typical 640-Å banding. Other collagen fibrils were partially disaggregated and expanded to reveal component 50-Å-thick, beaded micro fibrils. Such an expansion of collagen fibrils is known to result from exposure to proteoglycan solvents such as 2 M CaCl2. The decalcified bone matrix contained many residual devitalized cells and cell fragments which often were seen in close proximity to chondrifying mesenchymal cells. This finding indicates the possibility that residual cellular material could play a role in stimulating cartilage development.  相似文献   

17.
The collagenous tissues of echinoderms, which have the unique capacity to rapidly and reversibly alter their mechanical properties, resemble the collagenous tissues of other phyla in consisting of collagen fibrils in a nonfibrillar matrix. Knowledge of the composition and structure of their collagen fibrils and interfibrillar matrix is thus important for an understanding of the physiology of these tissues. In this report it is shown that the collagen molecules from the fibrils of the spine ligament of a seaurchin and the deep dermis of a sea-cucumber are the same length as those from vertebrate fibrils and that they assemble into fibrils with the same repeat period and gap/overlap ratio as do those of vertebrate fibrils. The distributions of charged residues in echinoderm and vertebrate molecules are somewhat different, giving rise to segment-long-spacing crystallites and fibrils with different banding patterns. Compared to the vertebrate pattern, the banding pattern of echinoderm fibrils is characterized by greatly increased stain intensity in the c3 band and greatly reduced stain intensity in the a3 and b2 bands. The fibrils are spindle-shaped, possessing no constant-diameter region throughout their length. The shape of the fibrils is mechanically advantageous for their reinforcing role in a discontinuous fiber-composite material.  相似文献   

18.
The major collagen in lamprey notochord is type II, as determined by its amino acid composition and solubility properties. This collagen has a distribution of charged residues indistinguishable from higher vertebrate Type II collagens as judged by its SLS banding pattern. Lamprey type II collagen has a higher thermal stability than lamprey skin collagen, in contrast to the identical melting temperatures for these types in mammals. A minor collagen in lamprey notochord has solubility properties, amino acid composition, and electrophoretic mobility similar to that of 1 alpha, 2 alpha, 3 alpha collagen in human cartilage.  相似文献   

19.
Type X collagen is a short chain, non-fibrilforming collagen synthesized primarily by hypertrophic chondrocytes in the growth plate of fetal cartilage. Previously, we have also identified type X collagen in the extracellular matrix of fibrillated, osteoarthritic but not in normal articular cartilage using biochemical and immunohistochemical techniques (von der Mark et al. 1992 a). Here we compare the expression of type X with types I and II collagen in normal and degenerate human articular cartilage by in situ hybridization. Signals for cytoplasmic α1(X) collagen mRNA were not detectable in sections of healthy adult articular cartilage, but few specimens of osteoarthritic articular cartilage showed moderate expression of type X collagen in deep zones, but not in the upper fibrillated zone where type X collagen was detected by immunofluorescence. This apparent discrepancy may be explained by the relatively short phases of type X collagen gene activity in osteoarthritis and the short mRNA half-life compared with the longer half-life of the type X collagen protein. At sites of newly formed osteophytic and repair cartilage, α1(X) mRNA was strongly expressed in hypertrophic cells, marking the areas of endochondral bone formation. As in hypertrophic chondrocytes in the proliferative zone of fetal cartilage, type X collagen expression was also associated with strong type II collagen expression.  相似文献   

20.
The aim of this work was to prepare specific antibodies against skin and bone collagen (type I) and cartilage collagen (type II) for the study of differential collagen synthesis during development of the chick embryo by immunofluorescence. Antibodies against native type I collagen from chick cranial bone, and native pepsin-extracted type II collagen from chick sternal cartilage were raised in rabbits, rats, and guinea pigs. The antibodies, purified by cross-absorption on the heterologous collagen type, followed by absorption and elution from the homologous collagen type, were specific according to passive hemagglutination tests and indirect immunofluorescence staining of chick bone and cartilage tissues. Antibodies specific to type I collagen labeled bone trabeculae from tibia and perichondrium from sternal cartilage. Antibodies specific to type II collagen stained chondrocytes of sternal and epiphyseal cartilage, whereas fluorescence with intercellular cartilage collagen was obtained only after treatment with hyaluronidase. Applying type II collagen antibodies to sections of chick embryos, the earliest cartilage collagen found was in the notochord, at stage 15, followed by vertebral collagen secreted by sclerotome cells adjacent to the notochord from stage 25 onwards. Type I collagen was found in the dermatomal myotomal plate and presumptive dermis at stage 17, in limb mesenchyme at stage 24, and in the perichondrium of tibiae at stage 31.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号