首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myosins in melanocytes: to move or not to move?   总被引:2,自引:0,他引:2  
The actin network has been implicated in the intracellular transport and positioning of the melanosomes, organelles that are specialized in the biosynthesis and the storage of melanin. It contributes also to molecular mechanisms that underlie the intracellular membrane dynamics and thereby can control the biogenesis of melanosomes. Two mechanisms for actin-based movements have been identified: one is dependent on the motors associated to actin namely the myosins; the other is dependent on actin polymerization. This review will focus on to the role of the actin cytoskeleton and myosins in the transport and in the biogenesis of melanosomes. Myosins involved in membrane traffic are largely seen as transporters of organelles or membrane vesicles containing cargos along the actin networks. Yet increasing evidence suggests that some of the myosins contribute to the dynamics of internal membrane by using other mechanisms. The role of the myosins and the different molecular mechanisms by which they contribute or may contribute to the distribution, the movement and the biogenesis of the melanosomes in epidermal melanocytes and retinal pigmented epithelial (RPE) cells will be discussed.  相似文献   

2.
The actin network has been implicated in the intracellular transport and positioning of the melanosomes, organelles that are specialized in the biosynthesis and the storage of melanin. It contributes also to molecular mechanisms that underlie the intracellular membrane dynamics and thereby can control the biogenesis of melanosomes. Two mechanisms for actin‐based movements have been identified: one is dependent on the motors associated to actin namely the myosins; the other is dependent on actin polymerization. This review will focus on to the role of the actin cytoskeleton and myosins in the transport and in the biogenesis of melanosomes. Myosins involved in membrane traffic are largely seen as transporters of organelles or membrane vesicles containing cargos along the actin networks. Yet increasing evidence suggests that some of the myosins contribute to the dynamics of internal membrane by using other mechanisms. The role of the myosins and the different molecular mechanisms by which they contribute or may contribute to the distribution, the movement and the biogenesis of the melanosomes in epidermal melanocytes and retinal pigmented epithelial (RPE) cells will be discussed.  相似文献   

3.
This study investigated regulation of uniform positioning of melanosomes and erythrosomes in chromatophores from spotted triplefin Grahamina capito from New Zealand, by modulating levels of intracellular cAMP. Elevated cAMP levels, caused by forskolin treatment, inhibited aggregation and induced rapid dispersion of melanosomes and erythrosomes. The dispersing organelles moved to and accumulated at the cell periphery, leading to an abnormal hyperdispersed state with a melanosome- or erythrosome-depleted cell center. Minutes after hyperdispersion, these organelles reversed direction and moved towards the center again to finally distribute throughout the cells. When chromatophores with initially dispersed melanosomes or erythrosomes were treated with forskolin, no hyperdispersion was seen, but the erythrosomes aggregated slowly. Disassembly of actin by latrunculin resulted in a similar but constant hyperdispersed melanosome and erythrosome distribution. The results show that cAMP not only disperses but also aggregates melanosomes and erythrosomes, and that it is the intracellular position of these organelles that determine the directionality of the cAMP-induced movement. To ascertain the even distribution in the dispersed state, regulatory components associated with the actin cytoskeleton in the cell periphery might modify activity of cytoplasmic dynein or kinesin upon contact with dispersing melanosomes or erythrosomes.  相似文献   

4.
Cytoplasmic dyneins are multisubunit minus-end-directed microtubule motors. Different isoforms of dynein are thought to provide a means for independent movement of different organelles. We investigated the differential regulation of dynein-driven transport of pigment organelles (melanosomes) in Xenopus melanophores. Aggregation of melanosomes to the cell center does not change the localization of mitochondria, nor does dispersion of melanosomes cause a change in the perinuclear localization of the Golgi complex, indicating that melanosomes bear a dedicated form of dynein. We examined the subcellular fractionation behavior of dynein light intermediate chains (LIC) and identified at least three forms immunologically, only one of which fractionated with melanosomes. Melanosome aggregation was specifically blocked after injection of an antibody recognizing this LIC. Our data indicate that melanosome-associated dynein is regulated independently of bulk cytoplasmic dynein and involves a subfraction of dynein with a distinct subunit composition.  相似文献   

5.
The organization of the cytoplasm is regulated by molecular motors, which transport organelles and other cargoes along cytoskeleton tracks. In this work, we use single particle tracking to study the in vivo regulation of the transport driven by myosin-V along actin filaments in Xenopus laevis melanophores. Melanophores have pigment organelles or melanosomes, which, in response to hormones, disperse in the cytoplasm or aggregate in the perinuclear region. We followed the motion of melanosomes in cells treated to depolymerize microtubules during aggregation and dispersion, focusing the analysis on the dynamics of these organelles in a time window not explored before to our knowledge. These data could not be explained by previous models that only consider active transport. We proposed a transport-diffusion model in which melanosomes may detach from actin tracks and reattach to nearby filaments to resume the active motion after a given time of diffusion. This model predicts that organelles spend ∼70% and 10% of the total time in active transport during dispersion and aggregation, respectively. Our results suggest that the transport along actin filaments and the switching from actin to microtubule networks are regulated by changes in the diffusion time between periods of active motion driven by myosin-V.  相似文献   

6.
Previously, we have shown that melanosomes of Xenopus laevis melanophores are transported along both microtubules and actin filaments in a coordinated manner, and that myosin V is bound to purified melanosomes (Rogers, S., and V.I. Gelfand. 1998. Curr. Biol. 8:161-164). In the present study, we have demonstrated that myosin V is the actin-based motor responsible for melanosome transport. To examine whether myosin V was regulated in a cell cycle-dependent manner, purified melanosomes were treated with interphase- or metaphase-arrested Xenopus egg extracts and assayed for in vitro motility along Nitella actin filaments. Motility of organelles treated with mitotic extract was found to decrease dramatically, as compared with untreated or interphase extract-treated melanosomes. This mitotic inhibition of motility correlated with the dissociation of myosin V from melanosomes, but the activity of soluble motor remained unaffected. Furthermore, we find that myosin V heavy chain is highly phosphorylated in metaphase extracts versus interphase extracts. We conclude that organelle transport by myosin V is controlled by a cell cycle-regulated association of this motor to organelles, and that this binding is likely regulated by phosphorylation of myosin V during mitosis.  相似文献   

7.
Pigmentation of the hair, skin, and eyes of mammals results from a number of melanocyte-specific proteins that are required for the biosynthesis of melanin. Those proteins comprise the structural and enzymatic components of melanosomes, the membrane-bound organelles in which melanin is synthesized and deposited. Tyrosinase (TYR) is absolutely required for melanogenesis, but other melanosomal proteins, such as TYRP1, DCT, and gp100, also play important roles in regulating mammalian pigmentation. However, pigmentation does not always correlate with the expression of TYR mRNA/protein, and thus its function is also regulated at the post-translational level. Thus, TYR does not necessarily exist in a catalytically active state, and its post-translational activation could be an important control point for regulating melanin synthesis. In this study, we used a multidisciplinary approach to examine the processing and sorting of TYR through the endoplasmic reticulum (ER), Golgi apparatus, coated vesicles, endosomes and early melanosomes because those organelles hold the key to understanding the trafficking of TYR to melanosomes and thus the regulation of melanogenesis. In pigmented cells, TYR is trafficked through those organelles rapidly, but in amelanotic cells, TYR is retained within the ER and is eventually degraded by proteasomes. We now show that TYR can be released from the ER in the presence of protonophore or proton pump inhibitors which increase the pH of intracellular organelles, after which TYR is transported correctly to the Golgi, and then to melanosomes via the endosomal sorting system. The expression of TYRP1, which facilitates TYR processing in the ER, is down-regulated in the amelanotic cells; this is analogous to a hypopigmentary disease known as oculocutaneous albinism type 3 and further impairs melanin production. The sum of these results shows that organellar pH, proteasome activity, and down-regulation of TYRP1 expression all contribute to the lack of pigmentation in TYR-positive amelanotic melanoma cells.  相似文献   

8.
The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ~ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules.  相似文献   

9.
The melanosome as a model to study organelle motility in mammals   总被引:6,自引:0,他引:6  
Melanosomes are lysosome-related organelles within which melanin pigment is synthesized. The molecular motors that allow these organelles to move within melanocytes have been the subject of intense study in several organisms. In mammals, melanosomes travel bi-directionally along microtubule tracks. The anterograde movement, i.e., towards microtubule plus-ends at the periphery, is accomplished by proteins of the kinesin superfamily, whereas the retrograde movement, i.e., towards microtubule minus-ends at the cell center, is achieved by dynein and dynein-associated proteins. At the periphery, melanosomes interact with the actin cytoskeleton via a tripartite complex formed by the small GTPase Rab27a, melanophilin and myosin Va, an actin-based motor. This interaction is essential for the maintenance of a dispersed state of the melanosomes, as shown by the perinuclear clustering of organelles in mutants in any of the referred proteins. In the retinal pigment epithelium, a similar complex formed by Rab27a, a melanophilin homolog called MyRIP and myosin VIIa is probably responsible for the tethering of melanosomes to the actin cytoskeleton. The coordination of motor activities is still poorly characterized, although some models have emerged in recent years and are discussed here. Unraveling regulatory mechanisms responsible for melanosome motility in pigmented cells will provide general insights into organelles dynamics within eukaryotic cells.  相似文献   

10.
The protein content of melanosomes in the retinal pigment epithelium (RPE) was analyzed by mass spectrometry. More than 100 proteins were found to be common to two out of three variations of sample preparation. Some proteins normally associated with other organelles were detected. Several lysosomal enzymes were detected, with the presence of cathepsin D confirmed by immunoelectron microscopy, thus supporting the previously suggested notion that melanosomes may contribute to the degradation of ingested photoreceptor outer segment disks.  相似文献   

11.
Melanosomes are morphologically and functionally unique organelles within which melanin pigments are synthesized and stored. Melanosomes share some characteristics with lysosomes, but can be distinguished from them in many ways. The biogenesis and intracellular movement of melanosomes and related organelles are disrupted in several genetic disorders in mice and humans. The recent characterization of genes defective in these diseases has reinvigorated interest in the melanosome as a model system for understanding the molecular mechanisms that underlie intracellular membrane dynamics.  相似文献   

12.
In order to study proteins of the melanosome, we developed a panel of antisera against various protein fractions of melanosomes from B16 melanoma cells. An antiserum raised against a Triton X-100 insoluble fraction of melanosomes recognized a 65-kDa protein in melanocytes from mice homozygous for the buff mutation, but not in their wild type counterparts. Further studies were conducted using a specific, second generation antiserum raised against the purified protein. The protein was also detected in melanocytes cultured from albino mice, but absent in cultured mouse cell lines not of melanocyte origin. Density gradient centrifugation of subcellular organelles and indirect immunofluorescent cell staining, indicated that the protein was associated with melanosomes and vesicles. The protein on intact organelles could be made soluble using sodium carbonate, and digested with proteases in the absence of detergent suggesting that it was a peripheral membrane protein localized on the cytosolic face of organelle membranes. Metabolic labelling of cells and N-glycosidase F digestion of cell extracts indicated that the protein was not N-glycosylated. Based on its intracellular localization and biochemical defects in the buff mouse, a potential role has been suggested for the 65-kDa protein in intracellular membrane trafficking.  相似文献   

13.
Melanin, which is responsible for virtually all visible skin, hair, and eye pigmentation in humans, is synthesized, deposited, and distributed in subcellular organelles termed melanosomes. A comprehensive determination of the protein composition of this organelle has been obstructed by the melanin present. Here, we report a novel method of removing melanin that includes in-solution digestion and immobilized metal affinity chromatography (IMAC). Together with in-gel digestion, this method has allowed us to characterize melanosome proteomes at various developmental stages by tandem mass spectrometry. Comparative profiling and functional characterization of the melanosome proteomes identified approximately 1500 proteins in melanosomes of all stages, with approximately 600 in any given stage. These proteins include 16 homologous to mouse coat color genes and many associated with human pigmentary diseases. Approximately 100 proteins shared by melanosomes from pigmented and nonpigmented melanocytes define the essential melanosome proteome. Proteins validated by confirming their intracellular localization include PEDF (pigment-epithelium derived factor) and SLC24A5 (sodium/potassium/calcium exchanger 5, NCKX5). The sharing of proteins between melanosomes and other lysosome-related organelles suggests a common evolutionary origin. This work represents a model for the study of the biogenesis of lysosome-related organelles.  相似文献   

14.
The transport of cell cargo, such as organelles and protein complexes in the cytoplasm, is determined by cooperative action of molecular motors stepping along polar cytoskeletal elements. Analysis of transport of individual organelles generated useful information about the properties of the motor proteins and underlying cytoskeletal elements. In this work, for the first time (to our knowledge), we study collective movement of multiple organelles using Xenopus melanophores, pigment cells that translocate several thousand of pigment granules (melanosomes), spherical organelles of a diameter of ∼1 μm. These cells disperse melanosomes in the cytoplasm in response to high cytoplasmic cAMP, while at low cAMP melanosomes cluster at the cell center. Obtained results suggest spatial and temporal organization, characterized by strong correlations between movement of neighboring organelles, with correlation length of ∼4 μm and pair lifetime ∼5 s. Furthermore, velocity statistics revealed strongly non-Gaussian velocity distribution with high velocity tails demonstrating exponential behavior suggestive of strong velocity correlations. Depolymerization of vimentin intermediate filaments using a dominant-negative vimentin mutant or actin with cytochalasin B reduced correlation of behavior of individual particles. Based on our analysis, we concluded that steric repulsion is dominant, but both intermediate filaments and actin microfilaments are involved in dynamic cross-linking organelles in the cytoplasm.  相似文献   

15.
Molecular motors and their role in pigmentation.   总被引:6,自引:0,他引:6  
Skin pigmentation is orchestrated through a series of complementary processes. After migration of melanoblasts out of the neural crest to epidermis and hair follicle, these cells mature into melanocytes. Differentiated melanocytes produce melanin in specialized organelles, the melanosomes. Moreover, the cytoplasm of melanocytes branches into extensions, the dendrites. Via the tips of these dendrites they donate their mature melanosomes to the keratinocytes resulting in skin pigmentation. Thus, one essential part of the process of pigmentation is the translocation of melanosomes from their site of origin in the perinuclear cytoplasm towards the dendrite tips. Motor proteins are molecules which use the energy derived from ATP hydrolysis to move along cytoskeletal elements, either actin filaments or microtubules, to transport their cargo, which can be organelles, vesicles or chromosomes. This review describes the different classes of microtubule-based and actin-based motor proteins with their characteristics and functional importance in cell biology and organelle transport. Some of them will be highlighted and several recent studies in mammalian pigment cells indicating their role in pigment granule transport will be discussed. As a result of these data and previous suggestions, a model will be proposed for the possible cooperation of both systems in melanosome movement.  相似文献   

16.
Melanosomes, specific organelles produced only by melanocytes, undergo a unique maturation process that involves their transition form amorphous rounded vesicles to fibrillar ellipsoid organelles, during which they move from the perinuclear to the distal areas of the cells. This depends upon the trafficking and processing of gp100 (also known as Pmel17 and the silver protein), a protein of great interest, because it elicits immune responses in melanoma patients but in which specific function(s) remains elusive. In this study, we have used biochemical and immunochemical approaches to more critically assess the synthesis, processing, glycosylation, and trafficking of gp100. We now report that gp100 is processed and sorted in a manner distinct from other melanosomal proteins (such as tyrosinase, Tyrp1 and Dct) and is predominantly delivered directly to immature melanosomes following its rapid processing in the endoplasmic reticulum and cis-Golgi. Following its arrival, gp100 is cleaved at the amino and at the carboxyl termini in a series of specific steps that result in the reorganization of immature melanosomes to the fibrillar mature melanosomes. Once this structural reorganization occurs, melanogenic enzymes begin to be targeted to the melanosomes, which are then competent to synthesize melanin pigment.  相似文献   

17.
Melanosomes--dark organelles enlighten endosomal membrane transport   总被引:1,自引:0,他引:1  
Melanosomes are tissue-specific lysosome-related organelles of pigment cells in which melanins are synthesized and stored. Analyses of the trafficking and fate of melanosomal components are beginning to reveal how melanosomes are formed through novel pathways from early endosomal intermediates. These studies unveil generalized structural and functional modifications of the endosomal system in specialized cells, and provide unexpected insights into the biogenesis of multivesicular bodies and how compartmentalization regulates protein refolding. Moreover, genetic disorders that affect the biogenesis of melanosomes and other lysosome-related organelles have shed light onto the molecular machinery that controls specialized endosomal sorting events.  相似文献   

18.
A key feature of the pigment melanin is its high binding affinity for trace metal ions. In modern vertebrates trace metals associated with melanosomes, melanin‐rich organelles, can show tissue‐specific and taxon‐specific distribution patterns. Such signals preserve in fossil melanosomes, informing on the anatomy and phylogenetic affinities of fossil vertebrates. Fossil and modern melanosomes, however, often differ in trace metal chemistry; in particular, melanosomes from fossil vertebrate eyes are depleted in Zn and enriched in Cu relative to their extant counterparts. Whether these chemical differences are biological or taphonomic in origin is unknown, limiting our ability to use melanosome trace metal chemistry to test palaeobiological hypotheses. Here, we use maturation experiments on eye melanosomes from extant vertebrates and synchrotron rapid scan‐x‐ray fluorescence analysis to show that thermal maturation can dramatically alter melanosome trace element chemistry. In particular, maturation of melanosomes in Cu‐rich solutions results in significant depletion of Zn, probably due to low pH and competition effects with Cu. These results confirm fossil melanosome chemistry is susceptible to alteration due to variations in local chemical conditions during diagenesis. Maturation experiments can provide essential data on melanosome chemical taphonomy required for accurate interpretations of preserved chemical signatures in fossils.  相似文献   

19.
Melanin is a heterogeneous biopolymer produced only by specific cells termed melanocytes, which synthesize and deposit the pigment in specialized membrane-bound organelles known as melanosomes. Although melanosomes have been suspected of being closely related to lysosomes and platelets, the total number of melanosomal proteins is still unknown. Thus far, six melanosome-specific proteins have been identified, and the challenge is to characterize the complete proteome of the melanosome to further understand its mechanism of biogenesis. In this report, we used mass spectrometry and subcellular fractionation to identify protein components of early melanosomes. Using this approach, we have identified all 6 of the known melanosome-specific proteins, 56 proteins that are shared with other organelles, and confirmed the presence of 6 novel melanosomal proteins using western blotting and by immunohistochemistry.  相似文献   

20.

Background

Organelle transport is driven by the action of molecular motors. In this work, we studied the dynamics of organelles of different sizes with the aim of understanding the complex relation between organelle motion and microenvironment.

Methods

We used single particle tracking to obtain trajectories of melanosomes (pigmented organelles in Xenopus laevis melanophores). In response to certain hormones, melanosomes disperse in the cytoplasm or aggregate in the perinuclear region by the combined action of microtubule and actin motors.

Results and conclusions

Melanosome trajectories followed an anomalous diffusion model in which the anomalous diffusion exponent (α) provided information regarding the trajectories' topography and thus of the processes causing it. During aggregation, the directionality of big organelles was higher than that of small organelles and did not depend on the presence of either actin or intermediate filaments (IF). Depolymerization of IF significantly reduced α values of small organelles during aggregation but slightly affect their directionality during dispersion.

General significance

Our results could be interpreted considering that the number of copies of active motors increases with organelle size. Transport of big organelles was not influenced by actin or IF during aggregation showing that these organelles are moved processively by the collective action of dynein motors. Also, we found that intermediate filaments enhance the directionality of small organelles suggesting that this network keeps organelles close to the tracks allowing their efficient reattachment. The higher directionality of small organelles during dispersion could be explained considering the better performance of kinesin-2 vs. dynein at the single molecule level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号