共查询到5条相似文献,搜索用时 0 毫秒
1.
Setoguchi K Misaki Y Araki Y Fujio K Kawahata K Kitamura T Yamamoto K 《Journal of immunology (Baltimore, Md. : 1950)》2000,165(10):5980-5986
For the treatment of rheumatoid arthritis, efficient drug delivery methods to the inflamed joints need to be developed. Because T cells expressing an appropriate autoantigen-specific receptor can migrate to inflamed lesions, it has been reasoned that they can be employed to deliver therapeutic agents. To examine the ability and efficiency of such T cells as a vehicle, we employed an experimentally induced model of arthritis. Splenic T cells from DO11.10 TCR transgenic mice specific for OVA were transduced with murine IL-10. Adoptive transfer of the IL-10-transduced DO11.10 splenocytes ameliorated OVA-induced arthritis despite the presence of around 95% nontransduced cells. Using green fluorescent protein as a marker for selection, the number of transferred cells needed to ameliorate the disease was able to be reduced to 10(4). Preferential accumulation of the transferred T cells was observed in the inflamed joint, and the improvement in the disease was not accompanied by impairment of the systemic immune response to the Ag, suggesting that the transferred T cells exert their anti-inflammatory task locally, mainly in the joints where the Ag exists. In addition, IL-10-transduced DO11.10 T cells ameliorated methylated BSA-induced arthritis when the arthritic joint was coinjected with OVA in addition to methylated BSA. These results suggest that T cells specific for a joint-specific Ag would be useful as a therapeutic vehicle in rheumatoid arthritis for which the arthritic autoantigen is still unknown. 相似文献
2.
IFN-gamma-inducible protein 10 (CXCL10) contributes to airway hyperreactivity and airway inflammation in a mouse model of asthma 总被引:9,自引:0,他引:9
Medoff BD Sauty A Tager AM Maclean JA Smith RN Mathew A Dufour JH Luster AD 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(10):5278-5286
Allergic asthma is an inflammatory disease of the airways characterized by eosinophilic inflammation and airway hyper-reactivity. Cytokines and chemokines specific for Th2-type inflammation predominate in asthma and in animal models of this disease. The role of Th1-type inflammatory mediators in asthma remains controversial. IFN-gamma-inducible protein 10 (IP-10; CXCL10) is an IFN-gamma-inducible chemokine that preferentially attracts activated Th1 lymphocytes. IP-10 is up-regulated in the airways of asthmatics, but its function in asthma is unclear. To investigate the role of IP-10 in allergic airway disease, we examined the expression of IP-10 in a murine model of asthma and the effects of overexpression and deletion of IP-10 in this model using IP-10-transgenic and IP-10-deficient mice. Our experiments demonstrate that IP-10 is up-regulated in the lung after allergen challenge. Mice that overexpress IP-10 in the lung exhibited significantly increased airway hyperreactivity, eosinophilia, IL-4 levels, and CD8(+) lymphocyte recruitment compared with wild-type controls. In addition, there was an increase in the percentage of IL-4-secreting T lymphocytes in the lungs of IP-10-transgenic mice. In contrast, mice deficient in IP-10 demonstrated the opposite results compared with wild-type controls, with a significant reduction in these measures of Th2-type allergic airway inflammation. Our results demonstrate that IP-10, a Th1-type chemokine, is up-regulated in allergic pulmonary inflammation and that this contributes to the airway hyperreactivity and Th2-type inflammation seen in this model of asthma. 相似文献
3.
Nakagome K Imamura M Kawahata K Harada H Okunishi K Matsumoto T Sasaki O Tanaka R Kano MR Chang H Hanawa H Miyazaki J Yamamoto K Dohi M 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(10):5077-5089
Allergic inflammation in the airway is generally considered a Th2-type immune response. However, Th17-type immune responses also play important roles in this process, especially in the pathogenesis of severe asthma. IL-22 is a Th17-type cytokine and thus might play roles in the development of allergic airway inflammation. There is increasing evidence that IL-22 can act as a proinflammatory or anti-inflammatory cytokine depending on the inflammatory context. However, its role in Ag-induced immune responses is not well understood. This study examined whether IL-22 could suppress allergic airway inflammation and its mechanism of action. BALB/c mice were sensitized and challenged with OVA-Ag to induce airway inflammation. An IL-22-producing plasmid vector was delivered before the systemic sensitization or immediately before the airway challenge. Delivery of the IL-22 gene before sensitization, but not immediately before challenge, suppressed eosinophilic airway inflammation. IL-22 gene delivery suppressed Ag-induced proliferation and overall cytokine production in CD4(+) T cells, indicating that it could suppress Ag-induced T cell priming. Antagonism of IL-22 by IL-22-binding protein abolished IL-22-induced immune suppression, suggesting that IL-22 protein itself played an essential role. IL-22 gene delivery neither increased regulatory T cells nor suppressed dendritic cell functions. The suppression by IL-22 was abolished by deletion of the IL-10 gene or neutralization of the IL-10 protein. Finally, IL-22 gene delivery increased IL-10 production in draining lymph nodes. These findings suggested that IL-22 could have an immunosuppressive effect during the early stage of an immune response. Furthermore, IL-10 plays an important role in the immune suppression by IL-22. 相似文献
4.
Edwan JH Perry G Talmadge JE Agrawal DK 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(8):5016-5023
Flt3 ligand (Flt3-L) is a growth factor for dendritic cells and induces type 1 T cell responses. We recently reported that Flt3-L prevented OVA-induced allergic airway inflammation and suppressed late allergic response and airway hyper-responsiveness (AHR). In the present study we examined whether Flt3-L reversed allergic airway inflammation in an established model of asthma. BALB/c mice were sensitized and challenged with OVA, and AHR to methacholine was established. Then mice with AHR were randomized and treated with PBS or 6 microg of Flt3-L i.p. for 10 days. Pulmonary functions and AHR to methacholine were examined after rechallenge with OVA. Treatment with Flt3-L of presensitized mice significantly suppressed (p < 0.001) the late allergic response, AHR, bronchoalveolar lavage fluid total cellularity, absolute eosinophil counts, and inflammation in the lung tissue. There was a significant decrease in proinflammatory cytokines (TNF-alpha, IL-4, and IL-5) in bronchoalveolar lavage fluid, with a significant increase in serum IL-12 and a decrease in serum IL-5 levels. There was no significant effect of Flt3-L treatment on serum IL-4 and serum total IgE levels. Sensitization with OVA significantly increased CD11b(+)CD11c(+) cells in the lung, and this phenomenon was not significantly affected by Flt3-L treatment. These data suggest that Flt3-L can reverse allergic airway inflammation and associated changes in pulmonary functions in murine asthma model. 相似文献
5.
IFN-gamma-inducing factor (IL-18) increases allergic sensitization, serum IgE, Th2 cytokines, and airway eosinophilia in a mouse model of allergic asthma 总被引:34,自引:0,他引:34
Wild JS Sigounas A Sur N Siddiqui MS Alam R Kurimoto M Sur S 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(5):2701-2710
We investigated the effects of IFN-gamma-inducing factor (IL-18) in a ragweed (RW) mouse model of allergic asthma. Administration of IL-18 in conjunction with allergic sensitization and challenge in wild-type, but not IFN-gamma -/- mice, inhibited the bronchoalveolar lavage (BAL) eosinophilia induced by RW challenge, and increased serum levels of RW-specific IgG2a and production of IFN-gamma from splenocytes cultured with RW, indicating a critical role for IFN-gamma in mediating these effects. Paradoxically, the same treatment schedule in WT mice increased serum levels of RW-specific IgE and IgG1, and production of IL-4 and IL-5 from splenocytes cultured with RW. When the effects of the same IL-18 treatment schedule were allowed to mature for 3 wk, the inhibition of lung eosinophil recruitment was replaced by augmentation of lung eosinophil recruitment. In another experiment, IL-18 administered only with allergic sensitization increased BAL eosinophilia and lung expression of IL-5 and IFN-gamma, while IL-18 administered only with RW challenge decreased BAL eosinophilia and increased lung IFN-gamma expression, while lung expression of IL-5 remained unchanged. IL-18 administered without RW or adjuvant to naive mice increased total serum IgE levels. Finally, intrapulmonary administrations of IL-18 plus RW in naive mice dramatically increased Th2 cytokine production, IgE levels, eosinophil recruitment, and airway mucus, demonstrating induction of allergic sensitization. This is the first report demonstrating that IL-18 promotes a Th2 phenotype in vivo, and potently induces allergic sensitization. These results suggest that IL-18 may contribute to the pathogenesis of allergic asthma. 相似文献